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Abstract

A computational method, called Nibble algorithm, for triangulation of non-manifold
solid boundary is proposed. The algorithm is based on an incremental boundary traversal
technique. The mesh generator creates a mesh element-by-element until the whole region is
covered no matter the domain complexity (faces with non convex shapes and multi-connected
boundaries are treated). At each step of the algorithm, a surface boundary called active
boundary is evaluated in such a way that it nibbles the surface to be triangulated. The
fundamental feature of this process is the definition of an area, called in fluence zone, which
controls the node insertion and thus avoids edge intersection tests. Further, the generated
mesh is refined through an extension of the Laplacian smoothing. It allows an optimization
of the smoothing quality without saturating the time complexity. A new technique for
adaptive smoothing is also applied in order to speed up the mesh refinement.

Keywords :
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ometry, triangular mesh generation, boundary triangulation.

1 Introduction

A key topic in computational geometry is the generation and the refinement of triangular meshes.
Indeed, space partition into triangles and tetrahedra is the simplest subdivision that enables
the discretization of any polyhedral domain. Computational analysis using various numerical
methods such as the finite element method (FEM) and the boundary element method (BEM)
is a classic example of application field. _

Our interest is directed towards a more recent application concerning the triangulation of
the boundary surface of non-manifold objects (see [9, 11, 17, 19, 18, 21] ) defined in terms of
the boundary representation (BRepr) [12].

On one hand, BRepr models are topologically rich representations. The description of the
topology of the modeled objects leads to notable improvement of algorithm complexity and
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reliability [11]. On the other, the use of solid models as input data for the triangular mesh
generation considerably reduces the gap between geometric modeling and product design. As
a matter of fact, solid models could be automatically transformed into mesh of finite elements
represented in a way compatible to the postprocessing product analysis.

The presented work has been motivated by our researches on integration of free form surfaces
into BRepr models. More precisely, once the solid boundary is triangulated, it is embedded
on a triangular mesh of Gregory-Bezier patches with surface continuity corresponding to the
application. For this purpose, triangular mesh generator should meet several requirements:

- It should operate on complex domain. Indeed, non-manifold solids have complex geo-
metric shapes with possible cavities, holes through, protuberances and protrusions, and thus
necessitating the treatment of non convex faces with multi-connected boundaries.

- It should produce a mesh as regular as possible i.e. the triangulation should define a
subdivision into triangles nearly equilateral. This feature is of primordial importance for the
embedment into triangulated free form surface. The more regular is the triangular mesh, the
more intuitive is the manipulation of the corresponding free form surface.

- The generator should provide also a local control on the triangle size. Often, free form
deformations are applied on chosen parts of the solid boundary. Continuous shape deformation
could be obtained if the triangular mesh is graded! with node spacing controlled by an explicit
continuous node spacing function.

The Nibble algorithm is designed with respect to the above requirements. Moreover, it is
well suited for adaptive mesh refinement due to the geometric complexity? of most solids of
practical interest.

The paper is organized as follows. First, basic notions in triangular mesh generation and
refinement are reviewed. Next, we present the Nibble method and some associated geometric
and topologic considerations. Finally, different examples are given to illustrate the performance
of the proposed techniques.

2 Basic notions

There is a wide variety of methods for construction of irregular computational meshes ( [1,
2,3, 7, 10, 13, 16, 20, 22, 23]). Irregular meshes are attractive because they allow nodes on
curved boundaries of irregularly shaped domain. Moreover, nodes could be distributed in the
interior of the domain as desired for variable resolution. Most of the existing automatic mesh
generators are focussed on triangulation. Two basic tasks have to be distinguished during
the triangulation process: node placement and triangulation of a set of nodes. Usually, node
placement precedes the triangulation and is involved in generating or modifying a node list where
nodes are identified with the corresponding coordinate information. The triangulation consists
of constructing a triangle list identifying each triangle and its vertices. Once a triangulation has
been created, it is refined in order to improve its geometric and topological mesh irregularity (
resp. €, and ¢; ) defined as follows:

¢ = 2.[0.5— #|/m, where i = 0...m, m is the number of elements, and r; and R; are the
radii of inscribed and circumscribing circles.

€& = Y. |di — 6|/n, where i = 0...n, n represents the total number of interior nodes in the
domain, d; is the degree or the number of neighboring nodes connected to the ¢th interior node.

1Meshes with varying element sizes.
?Physically based considerations are beyond the scope of the present discussion.
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An important feature of mesh generator is the size of mesh elements. A specified element
size could be achieved by controlling either the node spacing (the distance between neighboring
nodes) or the node density (the number of nodes per unit length or area).

The boundary traversal method is a broadly used method for automatic mesh generation
[2, 6, 3, 4] that uses boundary node spacing to guide the node placement.

It is summarized as follows. Initially the domain boundary is defined with a desired node
spacing. Then, each boundary edge is considered in turn. A new interior node is placed alongside
the current edge so as to form nearly equilateral triangles with the given edge and any other
edge close enough to be affected. Next, the boundary of the domain is readjusted removing the
triangles just formed. The readjusted boundary is usually called active boundary. This process
is iterated until the active boundary shrinks down as the last triangle is formed.

In the present article attention is paid to the application of the boundary traversal method
for meshing non-manifold solid boundary. With this respect an important inconvenience of this
method is the loose of the size element control. In fact, the algorithm tends to reduce the size
of the triangles when we move away from the domain boundary. Moreover, often non-convex
domains (see for example [3]) are initially subdivided into a set of convex regions with simply
connected boundaries. Further, each region is triangulated separately and the mesh covering
the entire domain is an assembly of the meshes spread over different convex regions. Despite
of the fact that the subdivision into convex parts is a time consuming process, the assembly
provokes irregularities along the common boundaries that cannot be smoothed (see [5]).

The Nibble algorithm presented in the next section follows the boundary traversal approach
but it offers several advantages:

- It gives the opportunity to manipulate the size of the triangle in every point of the domain
without being only influenced by the boundary. Such a process permits to eliminate the triangle
shrinking phenomenon.

- It supports the triangulation of any polygonal domain with no restriction on the geometric
shape and boundary connection.

- It offers the possibility to develop the active boundary without having to calculate visibility
[4] or edge intersection. An influence zone is introduced (see section 3) that avoids these
cumbersome calculations.

3 Nibble Algorithm

3.1 Method overview

The proposed Nibble algorithm could be classified as a boundary traversal method. To start up,
the boundary of the domain to be triangulated is specified along with a function f(z), called
distance function, defining the size of the mesh elements in each point of the domain. The
algorithm could be schematized as follows:

Step 0 : An active boundary is associated to each connected component of the domain
boundary.

Step 1 : Each active boundary is subdivided according to the distance function.

Step 2 : Among all edges of all active boundaries, the longest edge (n;,n;) is selected.

Step 3 : An isosceles triangle with base the longest edge (n;,n;) and height d= f("‘—“;'-’l-)
is constructed. Corresponding to this triangle a zone, called influence zone is built up. Its
definition will be given in the next subsection. The influence zone enables to validate or to reject
the newly created triangle as an element of the generated mesh. If the influence zone does not
contain any other node, the triangle is accepted. Otherwise, it is rejected and a new triangle is
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constructed linking n;, n; and the node lying in the influence zone. This process could lead to
the destruction or the subdivision of an active boundary.

Step 4 : A smoothing, called extended Laplacian smoothing, is applied using an adaptive
smoothing technique.

Step 5 : Go back to step 2 until no active boundary is left.

A basic novelty of the method is the use of the influence zone detailed in the next subsection.

3.2 Geometric considerations

As summarized above, the elaborated algorithm for triangular mesh generation is compounded
by three main steps : looking for the longest edge (step 2), creating of a new triangle along this
edge (step 3) and smoothing a mesh during its evaluation (step 4).

3.2.1 Longuest edge detection

The use of the longuest edge interferes with the self-intersection problems detailed in 3.2.2. From
computational point of view, looking for the longest edge is fast insofar as just the edges that
belong to the active boundary are considered. On the initial step this information is directly
available as long as the underlying geometric model, the Radialmodel (8, 14], contains an
explicit representation of the boundary edge loops for each solid face. Further this information
is maintained for each active boundary using the corresponding modeling tools (see [15]).

3.2.2 Node insertion

The creation of a new triangle is a more delicate task because an erroneous choice could provoke
undesired edge intersections and thus could invalidated the generated mesh.

Deljouie’s Triangulation

Incremental Nibble Method
Deljouie’s triangulation

Referenced Iriangle size

a
Fig 1 : (a) An ezample of triangle shrinking phenomenon with the Deljouie’s algorithm [3].
(b) A comparison with the Nibble method.

This step consists of creating the more adapted triangle. We propose to construct a triangle
T with base the longest edge chosen in step 2, called triangle base, and height d = f(”'—';nl-) In
the rest of this article, the distance d will be called triangle size. This choice enables to avoid
the triangle shrinking phenomenon (see fig.1).

In some cases new node insertion can invalidate the generated mesh as shown in fig.2. The
insertion of n, provokes the intersection of two mesh elements. Similarly, the creation of a new
node n, is inappropriate because of the proximity of n; that will cause the appearance of a
degenerated triangle (see [20]).
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Fig 2 : Problems arising during the evaluation of the active boundary.

In order to avoid erroneous node insertion we introduce an influence zone. This zone is
deduced from the following considerations:

(1) The Delaunay triangulation guarantees triangles as well shaped as possible for given
set of nodes. This triangulation verifies the so called empty circumdisc property i.e. for every
triangle in the mesh, the open circumdisc of the triangle contains no nodes. With this respect if
there is a node n; that belongs to the circumdisc of the triangle T it is preferable to join nj to
the base of T than to insert n,. We apply this property for boundary traversal of non-convex
domain. Then, just one part of the circumdisc of T is of interest, the one that lies in the interior
of the domain. In the opposite case, the enclosed triangle (n;,n;,nx) would not belong to the
domain as illustrated in fig.4. Let us denote this zone Z,.

(2) Let us consider two same length edges (n;,n;), (n;,n;) and the angle § between them.
We suppose that 0° < 6 < 180° (see fig.3). Three cases are possible: (0° < 6 < 90°,0 =
90°,90° < @ < 180°). The angle o denotes the smaller angle when a new node is inserted by
subdividing @ thus creating two new triangles (n;,n;j, n;) and (nj, ng,n;). The angle a3 is the
smaller angle in the alternative case when a new triangle is closed with the creation of the edge
(ng,m;). It could be shown (see [14]) that:

-if 0° < 8 < 90° then ay < a9

- if 8 = 90° then a; = a9

- if 90° < 6 < 180° then a; > oy

As long as we look for a maximization of the smallest angles of the triangles, the new node
insertion should be avoided in the first case. Thus, if there exists a node nj in the square with
side (n;,n;), it is preferable to reach ny rather than to insert a new node n,.

. With angle
subdivision

Pl
90< 0 < 180 i
,_.27/
Pl
” PO b

Fig 3 : Test of the minimum angle : 3 typical situations according to both 6 and the operation carried

out.

This observation is extended when (n;,n;) and (nj, ng) are not equal. Let us denote the
resulting rectangular zone Z,.
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(3) During the mesh creation a smoothing is carried out. Then, each newly created node n,
is centered in relation to its neighbor nodes. Let (n;, n;) is the base edge found in step (2) and
let n; is the node that we want to insert and create a new triangle (n;,n;,n,) of size d. One
should calculate how long should be the distance between n, and the nearest boundary node,
in order to obtain around n, triangle size close to d. It is proved (see [14]) that if there is a
boundary node nj that belongs to the disc Z., centered at n, with radius %, then ng should be
joined and no new node should be created.

Fig 4: The influence zone

Combining the remarks discussed above the in fluence zone is defined as the union of Z,,
Z. and Z., where Z, is an ellipse with minor radius % and major radius equal to the triangle
base (n;,n;) such that it makes the transition from Z, to Z, as shown in fig.4. Then, when we
reach step (3) of the algorithm, we test if there is an active boundary node n; located in the
influence zone. If nj exists then it is connected to the ends of the longest edge and thus forming
the new triangle. In the opposite case, a new node n, is inserted.

One should remark that in step (3), several active boundary nodes could be located in the
influence zone. In this case the linear time algorithm of [4] is applied on nodes belonging to the
influence zone in order to choose the node to be joined up.

The use of the influence zone permits on the one hand to accelerate the computations.
Indeed, following the classical approach visibility nodes are calculated for each potential new
node. By contrast, in the proposed method these calculations are made for a candidate node
just in case when there are several active boundary nodes in its corresponding influence zone.
During algorithm tests this situation occurred very rarely when there are important variations of
the distance function. On the other hand, if no boundary node is detected in the influence zone,
no self-intersection could occur. In fact, if an edge with endpoints lying outside the influence
zone intersects T it should be longer than the triangle base. Such an edge cannot exist because
the base is the longest edge according to step. 2 (see [14]).

3.2.3 Mesh smoothing

A broadly used technique for triangular mesh smoothing is the so called Laplacian smoothing [5].
We propose an extension of this method, called extended Laplacian smoothing. Our objective
is to be able to smooth the generated mesh according to the given distance function at any
iteration of the Nibble algorithm and in any node including the active boundary. Moreover,
by contrast with the classic method, when the mesh is smoothed in chosen node ng, the nodes

(n1,...,ny) adjacent to no do not necessarily form a closed boundary around ne.

The principle can be summarized in the following way. Let ng is a node and (n1,...,ny,) is a
list of nodes adjacent to ng (i.e. connected to ng through an edge). We propose to calculate the
new position ny of ng after the smoothing as the average of all the tops nz; of T}, = 1,...,m—-1,

where T; are the triangles of size d; = ﬂ%ﬂ and base (ni4+1,n;).
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The smoothing is applied when a new triangle is constructed. As long as this step is the
most expensive in computational cost it is worthwhile to improve it. The elaborated adaptive
smoothing technique is based on two observations. Firstly, smoothing provokes important mesh
modifications locally around a newly inserted triangle. Secondly, depending on the technique
used for the construction of the new triangle, the induced modifications are propagated on a
variable sized area. It is proved (see [14]) that when active boundaries meet and when the
triangle creation does not imply node insertion, the smoothing could induce important mesh
modifications. So, the area of smoothing is defined according to the kind of operation that is
performed.

Fig 5 : (a) A path (n;,n;) of length m = 4. (b) Node distance to triangle T.

For this purpose we define a path of length m as a sequence of m edges such that each
vertex is adjacent to at most two edges as illustrated in fig.5a. If T is the triangle (ng, 71, n2)
then all the nodes which can be reached from ng, n; or ng by a path of length m and which can
not be reached by a path of length smaller than m are said to be at an influence distance m
to T. An example of triangulation, where the nodes are numbered according to their distance
to T, is shown in fig.5b.

The adaptive smoothing technique begins with a chosen triangle T'. Starting with T the
refinement is propagated to all nodes with influence distance less or equal to a given value
depending on the nature of the construction of T'. For a comparative illustration see fig.6.

3.3 Topological considerations

The data structure that underlies the Nibble algorithm is a non-manifold boundary representa-
tion, called Radial Model (see [8, 15]). Each object is described as a complex where each cell
is defined in terms of its boundary. Each dimensionally homogeneous part of the object that
does not contain singular points® is encoded as a primitive. Thus an object is represented as
an assembly of wireframes , shells or volumes resp. :D primitives, where 7z = 1,2, 3 specifies the
primitive dimension.

For the current application, we are interested in shell and volume primitives. The boundary
surface of each volume is a shell and thus is subdivided into 2D cells, called faces. The trian-
gulation algorithm operates on faces using their boundary definition as oriented loops of edges
(1D cells), each edge being defined as a couple of vertices (0D cells). At the initial step of the
algorithm, the boundary of the domain to be triangulated is given by the boundary edge loops of
the corresponding faces. Consequently, both the subdivision of the active boundary and the face
subdivision are performed using a set of basic operators. The use of this set of basic operators
guarantees the validity of the underlying geometric model. See [15] for a detailed discussion.
The topological information needed for the triangulation is the boundary edge connection for

3Points of non-manifold conditions, internal boundaries or cracks.
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each individual face and the face adjacencies for shells and boundary surfaces of volumes when
they share common boundaries. Indeed, boundary subdivision should be propagated to all the
primitives with common boundaries. This process is illustrated in fig.9.

4 Implementation results

The proposed N ibble algorithm is used for automatic triangular mesh generation of non-manifold
object boundaries. It is incorporated in NEMO 4, a solid modeler running on SG workstations.
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Fig. 6 Mesh refinement with extended Laplacian smoothing and adaptive smoothing

The first example in fig.6 illustrates the triangulation with a constant element size of a single
face shell. In fig.6a the extended Laplacian smoothing is applied 3 times for each iteration of the
Nibble algorithm. The resulting triangular mesh is characterized by ¢; = 0.074 and ¢;= 0.0098.
The triangulation in fig.6b uses the adaptive smoothing with the same number of applications
and an influence distance=4. The results are ¢;=0.058 and €;=0.0092. The generation of the
triangulation in the first case is three times slower than in the second. As one can see, the gain
in time complexity using adaptive smoothing is significative for comparative mesh qualities.

Results for the test example given by [20] are shown in fig.7. We start up a ”bad” triangu-
lation of the donkey (e; = 0.405 and €;= 0.046). The mesh is improved to ¢; = 0.261 and ¢;=
0.018. using the Nibble method and an adaptive smoothing applied 2 times for each iteration
with influence distance=3.

Fig. 7 Nibble meshing convergence

The example in fig.8 shows mesh generation with variable triangle size using the linear
distance function f(z).

*Non-manifold Environment for Modeling of 3D Objects.
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Fig. 8 Triangulation with linear distance function

Finally, the embedment of the boundary surface of an object A onto triangular Gregory-
Bézier patches is illustrated in fig.9. The underlying graded triangular meshes are generated
using the Nibble algorithm. Local deformations are applied on the edge e with desired continuity.
The deformation continuity is preserved across e for all the primitives sharing e.

Fig. 9 Free form deformations using the surface boundary triangulation

5 Conclusion

A new method for automatic triangular mesh generation, called Nibble method, has been in-
troduced. It enables the regular triangulation of non convex domains with multi-connected
boundaries without preliminary subdivision into convex regions. The developed algorithm uses
a central mechanism called influence zone that offers two basic advantages.

First, the mesh element size is controlled thus avoiding the shrinking phenomenon of the
classical boundary traversal methods. Second, no more tests for self-intersections are needed to
ensure the mesh validity. In order to refine the generated mesh, an extension of the Laplacian
smoothing is proposed. Moreover, an adaptive smoothing technique is elaborated to speed up
the computations. The experiments show that quality mesh is improved for a sensible reduction
of the time complexity.

The Nibble method is incorporated in a solid modeling system as a tool for boundary surface
triangulation. The generated triangular meshes are used as control points for the construction of
triangular Gregory-Bezier patches. Further research will exploit the distance function variation
to produce continuous deformation on solid boundary.
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