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ABSTRACT

In this paperwe presenta new, morphologicalcriterion for determiningwhethera geometricsolid is
suitablefor voxelizationat a given resolution. The criterion embodiegwo conditions,namelythat the
curvatureof the solid mustbe boundedandthe critical points of the distancefield mustbe at a certain
distancefrom the boundaryof thesolid. For solidsthatfulfill this criterion,we presentinanalyticandan
empiricalboundfor thetrilinear reconstructiorerror. Additionally, we give a theoreticalargumentasto
why thedistancdield approacho voxelizationis moresoundthanthe prefilteringtechniqgue Theessence
of the agumentis that while samplingand interpolationmust always introducesomeerror, the latter
method(but nottheformer)introducesanerrorin the surfacepositionindependentlyf the sampling.
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1 INTRODUCTION

Volume graphicsis the broadterm usedto describe
a set of techniquesin 3D computergraphicsthat
employ discreterepresentationsf 3D objectsrather
than continuousimplicit or parametricrepresenta-
tions. Volumegraphicshasimportantapplicationsn
certainareasof computergraphicssuchasthe mod-
eling of amorphou®bjects(clouds,smole &c.) and
the interactive modelingof certaintypesof solids.
The latter applicationis usually known as volume
sculpting [Galye91 Wang95 Beaeren98 Volume
sculptingis not yet a very widespreadechnique put
we believe thatit may soonbecomemore popular
since the volumetric representatiorallows for very
intuitivetools,andis moreamenabléo modelingob-
jectswith organicandcomplex shapeshanboundary
representations.

However, oneof theimpediment$o awidespreadise
of volumegraphicsis that someof the fundamental
operationstill needtheoreticalvork. Theaim of this

papetis to improve theunderpinning®f oneof these
operationspamelythevoxelizationof solids.

Hitherto, two main paradigmdor voxelizationhave
beenproposed:

e The prefiltering approachWang93, wherea
geometricsolid is numericallycorvolved with
a bandlimitingfilter in the continuousdomain,
beforesampling.

e The distance field approach [Breen98
Gibs0o98 Srame99 Srame98, where the
idea is to samplethe distanceto the solid.
This approachcan also be modified so that a
functionof the distancds sampledatherthan
thedistanceitself [Srame99.

After somepreliminary definitionsin section2, we
discussthe prefiltering anddistancefield techniques
for voxelizationin section3 andarguewhy thelatter
is preferable.In section4 we presenta setof condi-
tionsfor whetherasolidis suitablefor voxelizationat
agivenresolution.In sectionb acriterionfor whether
a geometricsolid is suitablefor voxelizationis pre-
sented.In section6 we presentwo error boundsfor
the reconstructiorof voxelizedsolidsthatfulfill the
criterion. Thefirst errorboundis analyticthe second
is basecbn empiricaldata.

We only investigatethe reconstructiorerror for the
trilinear interpolationfunction, becauserilinear re-
constructionis fast, usually adequatefor volume



graphics(evenif it is not alwaysadequatdor visu-
alizationtasks)andusuallythe choseninterpolation
for hardwareimplementationsuchasin the cubear-
chitecturewhich hasrecentlybeenimplementedin
the VolumeProsystem[Pfist99.

Lastly, we draw conclusionsanddiscusguture work
in thesections7 and8.

2 DEFINITIONS

Solid By a solid X we understandh closedsub-
setof R3. We definethe interior of X asthe set
itself (p € X), the exterior as the complement(
p ¢ X), andtheboundaryp € 0X C X)asthesub-
setwhereary neighborhood:ontainsnon members.
Danglingboundariesrenot allowed,i.e. theremust
be a pathfrom a boundarypoint to a non—boundary
point which doesnot touch other boundarypoints.
The boundaryof a solid is, of course,a surfacein
R? andthewordssurfaceandboundarywill beused
interchangeably

Inside—outsidefunction The inside—outsiddunc-
tion returnsO for pointsoutsidethe objectand 1 for
pointsinside

e ={ o PEY &

Distancefield By a distancefield, we understand
scalarfield associateavith a solid X. The value of
thefield is givenby a function Fx : R?* — R that
mapsa pointin spaceo the distancerom that point
totheclosespointondX.

—minygeox(lp—q|) peX
Fx(p)=4 0 p€9X
miny,eax (|p —ql) p¢X

(@)

As is apparenfrom (2) we usethe corventionthat
Fx is positive outsideand negative insidethe solid,

soit is really an orienteddistancefunction which is

alsocalleda Hessenormalform[Hartm99. Thenor

malformhasseveralpropertieghatwewill needater.

For instance|VF| = 1 andthe principal curvatures
can be inferred from the Hessian(i.e. the matrix

of secondorder derivatives) of the normalform. It

shouldbe notedthatthe distancefield (normalform)
is only known explicitly for planesandspheresand
thenormalformcalculationsnust,in generalbedone
numerically

Maximum curvature In this paperwe will notuse
GauRianor averagecurvature, so curvatule means

normalcurvature[Carmo7§. By the maximumcur-

vatureatapoint p, we meanthe numericallygreatest
principal curvature[Carmo7§ at p of theisosurace
thatcontainsp. By the maximumcurvatureof a dis-

tancefield in someregion S C R we understandhe

maximumof themaximumcurvaturesofall p € S

Voxel A voxelis usually definedeitherasa small
rectangulaibox or a point sampleof a 3D function.
In this paperonly the latter definition is used. The
voxelsarearrangedn arectangularisotropic3D lat-
tice, anda neighboringvoxel is oneof the six voxels
that are closestalongone of the six principal direc-
tionsof thelattice.

Voxelunit Thevoxelunitvuis thedistancebetween
two neighboringvoxels. All distancesarein voxel
units.

2.1 An example

A typical exampleof a solid is the sphere.Theinte-
rior of a spherewith centrepo andradiusr is given

by

X={p:|lp—po|l<r} 3)
Theboundaryis givenby
0X ={p:|[p—po|l=r} (4)

andthedistancgunctionis

Fx(p) =|p—Ppo| — 7 (5)

3 VOXELIZA TION TECHNIQ UES

The first work on non-binaryvolume samplingof

geometricprimitives (solids or polygons)was done
by WangandKaufmanin [Wang93. Their method,
known as prefiltering was to cornvolve the inside—
outside function of a geometric primitive with a
Bartlettfilter! beforesamplingin orderto band-limit
thefunction. It is only necessaryo know thevalueof

thecornvolutionat voxel positions hencea numerical
solutionis feasibleandthe methodwassuccessfuin

producingvoxelizedobjectswith few visible aliasing
artifacts.

Recently anotherand simpler techniquehas been
employed for solid voxelization by e.g. Sramek
[Srame98 Srame99, Gibson[Gibso9§, and Breen
[Breen9§. Theideais to simply samplethe distance

1Also known asthehypercondilter. Thefilter hasits maximum
in the centreof the supportandthe value decreasenearly with
thedistanceto the centreto 0 atthe edgeof the support



function (2) or a functionthatis proportionalto the
distancefunction. It is possibleto sampleandinter-
polatethe distancefunction just like the corvolved
inside—outsidefunction, but this approachhas the
adwantagethat it is simpler (in fact the prefiltering
methodusesthe distancefield), and hasexperimen-
tally beenshown to yield superiorresults[éréme%.

Variousreconstructiorfilters may be appliedto the
voxel rasterto reconstructhe value at arbitrary lo-
cations,andeventhetrilinearfilter yields quite good
results. Sramekshaws experimentallythat the sur
facereconstructiorerrorfor aspherelecreaseasthe
radiusincreasesndreportsan averageerror of less
than 0.05 vu [Srame99 for the reconstructiorof a
sphereof aradiusof 4 vu. Both Gibsonand Sramek
conjecturethatthe erroris curvaturedependentand
Gibsonalsonotesthat certainspecialcasesnustbe
takeninto account.Thesespeciakasesarewhencrit-
ical pointsin the distancefield comeso closeto the
surfacethatthey arewithin thesupportof reconstruc-
tion or gradientreconstructiorfilters. This can ei-
therbedueto sharpedgesor, in the caseof anobject
with asmoothsurface,dueto two surfaceqor surface
componentshhatarecloseto eachother

3.1 Prefiltering

The enticingthing aboutthe prefilteringapproachs
thattheoperatiorof bandlimitingby cornvolving with
a smoothindfilter is a well known operationthat is
frequentlyusedin computergraphics. However, in
volume graphics,the methodhasa dravback. Sur
facesof solids are almostalways definedasisosur
facesin the scalarfield usedto representhe solid,
andthe valueof the corvolution ata pointon 0.X is
only constanfor all p € 0X if the curvatureof the
surfaceof X is constant.Thereforethereis, in gen-
eral,noisovalues for which

{p: (Bx » Ba)(p) = 0} = OX (6)

wherex denotescorvolution and Ba is the Bartlett
filter. Thisproblemdoesnotexistin thedistancdield
approactsinceby definitionof thedistancdield

{p: Fx(p) =0} =0X @)

The problemis illustratedin figure 1 wherewe ob-
sene that only a planarsurfacedivides a spherical
supportin two identical halves when the centre of

the supportis exactly on the surface of the solid.
The greaterthe curvatureat the boundarypoint, the
greatetthedifferencebetweerthe partof the support
thatintersectshesolid andthe partthatdoesnot,and
asthefilter is non—zerowithin the support theresult
of the corvolution will alsodiffer. Notethatthe er

ror is not a byproductof samplingandinterpolation,

Convolution kernel support

X__ Solid~*

Figurel: Intersectiorof solid andfilter support

but anintrinsic problemwith the methodwhich sug-
geststhat prefiltering may not be the bestparadigm
for voxelization.

3.2 Distancefield sampling

It hasbeenmentionedthat high curvatureis known
to reducethe quality in voxelizationaccordingto the
distancdfield approachandfurthermorecertainspe-
cial casesshouldbe avoided. Thesespecialcases
havein commonthatthey occurwheneerthemedial
surfaceof the solid or the complemenbf the solid
comesgtoo closeto the surfaceof the solid. A medial
surface(Seealsoappendix)s thelocusof pointsthat
areequidistanfrom atleasttwo pointsonthebound-
ary of the solid. Thesepointsarethe critical points
of thedistancdield wherethegradients notdefined,
andsincethe gradientis usedin shading(to estimate
thesurfacenormal),the gradientfilter shouldnotuse
sampleghat are distributed on both sidesof a me-
dial surface. The medialsurfacemay be closeto the

Figure2: Medial axis of a solid andpartsof the me-
dial axisof thecomplement.

boundaryeitherdueto a sharpedge(wherethe me-
dial surfacetoucheghesurfaceof thesolid) or avery
thin structure. A 2D exampleof medial surfacesis
shavnin figure 2 wherethe dashedinesindicatethe



medialaxes. (The 2D counterparbf medialsurfaces
aremedialaxes).

4 CONDITIONS FOR VOXELIZA TION SUIT-
ABILITY

The obsenationsin the previous sectioncanbe pre-
sentedmoreconciselyastwo conditionsfor whether
anobjectis suitablefor voxelization

Condition 1 The curvatureshouldbe low relative to
theresolution.This reduceseconstructiorerror.

Condition 2 The reconstructiorandgradientrecon-
structionfilters shouldnot usesamplegshat are dis-
tributed on both sidesof a medial surfaceof X or
Xe,

Theseconcconditioncanberestatedas: No pointon
the medial surfaceshouldbe closerto X than/6.
Becauseif p is a pointonthe surfaceof X thenthe
gradientvalueis calculatedattheeightnearesvoxels
andtrilinearly interpolatedat p. Thevaluesatatotal
28voxelsareused.(Thevoxel configuratioris shavn
in figure 3). p mustby constructionbe within the

farthest voxel

Surface point

Figure3: Voxelsusedin gradientcomputation

cubewhosecornersarethe eightnearestoxels,and
it is possibleto ascertairby visualinspectiorthatthe
greatestlistancerom a point within thatcubeto ary
voxel in the configuratioris v/6 = v/22 + 12 + 12.

Theaim of the next sectionis to definea singlecrite-
rion thatcomprisedothof theabove conditions.

5 MORPHOLOGICAL CRITERION

What is neededis somesort of measurehat takes
both curvatureand overall featuresize into account.
Fortunately such measuresexist in mathematical
morphology(seeappendixfor definitions).

Let S, denotea sphereof radiusr and X a solid
whichis S,—openandsS,—closedthen X hasthefol-
lowing two additionalproperties

Property 1 Givena point p for which Fix (p) = o
where—r < ¢ < r thefollowing holdsfor &, the
maximumcunatureat p

1

r—|o|

(8)

K<

Property 2 The medialsurfaceis nowherecloserto
theboundaryo X thanr.

Property2 follows directly from the definition of the
medialaxis (seeappendix).

Proof of property 1

Withoutlossof generalityweassumeéhatp is apoint
intheinteriorof X. Letpy bethepointondX closest
to p. It isrequiredthat X is S,—openandS,—closed.
ThismeanghatS, canbetranslatedothatit touches
po from eitherside. The exteriorinstance S, , of S,
doesnottouchinterior pointsof X andthe opposite
holdsfor theinteriorinstanceS,.,. The configuration
of p andthe translatednstancesf S, is shawvn in
figure 4. It is clear that the translatedinstancesof

Figure4: Translatednstancesof S, touchp from
eitherside.

S, mustsharetangeniplanewith eachotherandwith
0X.

Now, let S, beasphereof radiusr + o which has
the samecentreas S,.,, andlet S,._, be a sphereof



radiusr — o with the samecentreasS,,. Any new
pointp; nearp onthe sameisosurfice F'x (o) must
lie on or betweenthe two spheresS,,, andS,_,,
becausassumingtherwisdeadsto a contradiction:

Assumethat p; is inside S,._,. Sincethe distance
from p; to the surfaceis o the surfaceintersectsS,.,
whichviolatesthe S,—openness.

Assumethat p; is inside S, + 0. By the S,—
closednesgroperty there must be a point on S,
which hasshorterdistanceto p; thane violatingthat

FX(pl) =0.

If all pointsontheos isosurhcelie betweens,., , and
Sr—o thenthe smallestosculatingsphereof a curve
on the o—isosurfceat the pointp is S,_,. Hence,
thegreateshormalcurvatureatp is indeedr_;lal.

5.1 Putting the criterion together

Thereis anobviouscorrespondendeetweerthetwo
propertiesf this sectionandthetwo conditionsfrom
the previous section. In fact, if r is chosenlarge
enough,property 1 ensureshat condition1 is ful-
filled. Likewise,if » > /6 it follows from property
2 thatcondition2 mustbefulfilled. More concisely:

Voxelization suitability criterion

A geometricsolid X is suitablefor voxelization at

a given resolution,if X is S,—openand S,—closed
wherer > /6 is chosenso that the reconstruction
erroris sufficiently low for the application.

Notethatby choosingaradiusr we alsochooseres-
olution, sincer is in voxel units.

6 ERROR BOUNDS

Theabove criterionis, of coursepnly really interest-
ing if we cansaysomethingabouttheerrorsothatit

is possibleto determinevhetherthe errorfor agiven
r is “sufficiently low”. In this section,we will de-
velopa(somevhatloose)analyticerrorboundfor the
reconstructiorerror and afterwardsa tighter empiri-
cally basederrorbound. Theseerro-boundsanthen
beusedto determinevhatr to pluginto thecriterion
we foundin the precedingsection.

First, we needa theoremaboutlinear interpolation:
Let f(z) beafunctionwhich is continuouson [a, b]

and twice differentiableon (a,b), and let there be
givenalinearinterpolationfunction

fla)(b—x) + f(b)(z — a)

h(z) = — ©)
whichinterpolatedetweerthevalueof f ata andb.
£(@) — hia) = T g (10

wherec € (a,b). Using (10), it is easyto shav
that given a bound on the secondorder derivative
|f"(z)| < M wealsohave aboundontheinterpola-
tion error

|f(z) = h(z)] <

Theproofsof theabove maybefoundin [Young8§.

QEMZW (11)

6.1 Analytic error bound

Using (11) we will now derive an error bound for
trilinear interpolationin a voxelized distancefield?.
Givena distancefield F : R? — R andaline seg-

Figure5: Line sggmentfrom a to b in distancefield
F

mentbetweentwo neighboringvoxels a andb, we
know thatthevalueof thefield alongtheline from a
tobis

f(s) = F(p(s)) (12)
wherep is aparameterizetine
p(s)=s(b—a)+a (13)

and|p’(s)| = 1 sincea andb areneighboringsoxels.

To find thederivative of the function f, we applythe
chainruleto theright handsideof (12) yielding

fls9 = VF-@ =
Fz (p(s)) b:l: — Ay (14)
Fy(p(s)) by — Gy
F.(p(s)) b, —a,

2recallfrom section2 thata distancefield is just a scalarfield,
wherethescalavalueis thedistanceo thesurfaceof thesolidthat
is representedtly thefield



Thedotproductyieldsathreetermexpressiorfor f',
andto get f” all we needto dois to applythe chain
rule to eachof thesethreeterms. Theresultis anine
term sum,whereeachtermis the productof one of
theseconcdbrderpartial derivativesof F' andthe cor-
respondingtwo componentf p’. This nine term
sumcanbe written in matrix notationin the follow-
ing way

f"(s) =p'(s)H (p(s))p'(s) (15)

whereH is the Hessianof F, i.e. the matrix of the
seconcbrderpartialderivatives

sz Fwy sz
H=\| F, F, F, (16)

Fz:c Fzy Fzz

To find aboundfor | f"| all we needto do s find the
numericalmaximumof theright handsideof (15).

Thisturnsoutto besimple,becausd fulfills there-

quirementf a Hessenormalform[Hartm99, andit

is known from thetheoryaboutsuch thatthe Hessian
of the normalform(i.e. the Hessianof F') hasthree
eigervalues)yg = 0, Ay = Kmin, A2 = Kmaz COF

respondingrespectiely, to the directionof the gra-
dient (n) andthe directionsof minimum and max-
imum curvature (t,,;, andt,,.. Sinceary vector
v € R3, |v| = 1 canbeexpressedhsa linearcombi-
nationof thesethreeeigervectors,

v=an+bt,, +ctns a7)
where|v| = Va2 + b2 + ¢2 = 1, we know that

[VIHv| = |aXo+ b1 + c)al

18

< P2l = Fmal (18)
Consequently

1" (s)| < |xl (19)

wherex is the maximumecurvatureat all pointson
theline sggmentbetweem andb (Seesection2 for
a definition of maximumcurvature).Using (19) and
(11) we obtain

. 1
lin_err= §|/-z| (20)

Of course,our real interestis in the trilinear inter-
polation function. A trilinear interpolationmay be
percevedasa linearinterpolationof two valuesthat
are pairwiselinearly interpolatedbetweenfour val-
ueswhich areinterpolatedetweertheeightoriginal
voxels. Theseseven linearinterpolationsare shavn
in figure 6. To do aworstcaseanalysisof the cumu-
lative error, let us begin with the valuelAO0. IAQ is
linearly interpolatedbetweenthe voxels VO and V1
andthe maximuminterpolationerroris known to be

A3

V6 -
®1B1

A2
V4 Vs

1AL
. v

V2

® B0

Vo A0

\%8

Figure6: The sevenlinearinterpolationghat consti-
tutetrilinearinterpolation

lin_err. IA1 hasthe samemaximumerror. IBO is in-

terpolatedbetween A0 andIAl. If we knew the ex-

actvaluesat IAO andIA1, it would follow thatthe
maximumerror at IBO would be just lin_err. How-

ever, we musttake into accountthatwe areinterpo-
lating betweeninterpolatedvalues. Fortunately we

know that(for linearinterpolation)the differencebe-
tweeninterpolationbetweenexact valuesandinter-

polationbetweerimprecisevaluescannotbegreater
thanthegreatesbf thetwo errorsassociateavith the
imprecisevalues. In the presentcase,the interpo-
lation is betweenlAO andIA1 both of which differ

from theexactvaluesby atmostlin_err. Thereforeto

obtainaboundfor thetotal errorat B0, we mustadd
lin_err to the linear interpolationerror boundat IBO

yielding a total errorboundof 2 lin_err. By a similar
argumentwe mayconcludethatthetotal errorbound
atIC whichis interpolatecbetweenB0 andIB1 is 3

lin_err, hence

. 3
trilin _err = g\fd (21)
where|x| is themaximumcurvaturewithin thecell.

Thefinal importantquestionis to find the maximum
curvaturewithin thecell. Accordingto propertyl, we
canfind themaximumcurnvatureby findingthegreat-
estdistancdrom ary pointin thecell to thesurfaceof
the solid andpluggingthatdistancento (8). We are
only interestedn cellswhichintersecthesurface,so
thegreatespossibledistanceérom the surfaceof ary
point in the cell is /3, andthe final expressionfor
the reconstructiorerror asa function of the radiusr
of our structuringelementS,. becomes

3
8(r—V3)

where,accordingto the suitability criterion,r > /6.
It is obvious, unfortunately that the boundis some-
what loose, sincewe have to make worst caseas-
sumptionsat every step,but it is difficult to make a
tighterboundwithout makingassumptionsiboutthe

err(r) = (22)



shapeof thesolid or theconfiguratiorof thesolidand
thetrilinearcell. A plotof err(r) canbeseenn figure
7

05 T T

Error | Error bound for the distance field —
VU]

04r

03} \

02

01f S~

Sphere radius [VU]

Figure7: Theerrorfunction.

6.2 Empirical error bound

The analytic errorbound shavs us that the recon-

structionerror decreaseasthe curvaturedecreases.

For a generalsolid X which fulfills the suitability
criterion for somesphereS,., we know thatthe cur-
vatureof isosurficesin X is lessthanor the same
asthatof isosurficescorrespondingo the sameiso-
valuesin S,. Therefore,we would assumehat the
worstcaseaeconstructiorrrorof X is notworsethan
the worst casereconstructiorerror of S,.. In light

05

Error X X o
VU] Distance field: mean deviation —x%—

04 Distance field: maximum error +
031

02

+
01’{<

X

~
w
IS
o b
o
~
®
©

Sphere radius [VU]

Figure 8: Maximum and meanreconstructiorerror
for a sphereasa function of radius. Standardievia-
tion for meanerroris alsoshowvn.

of this hypothesisye proposea muchtighter bound
whichis basednourempiricalresults. We voxelized
sphereof radii rangingfrom 2 vu to 9 vu and sent
raysfrom the centreof the spheregowardstheir pe-
riphery. Wheretherayshit thelevel O isosurbice,we

measuredhe errorasthe distanceto the true sphere
surface. Figure8 shavs the maximumandmeaner-
ror. Note thatthis error measuras slightly different
from that of the previous section. The analytic er-
ror boundboundshe greatestlifferencebetweerthe
valueof thetrue andinterpolateddistancefunctions,
while theempiricalerrorshown in figure 8 is the ge-
ometricshortestlistancefrom the pointontheinter-
polatedisosurficeto thetruesphere.

We noticethatat a sphereradiusof r = 3 > /6 the
error hasfallen belowv 0.1 voxel unit, andfor mary
applicationghis errorshouldbeacceptable.

7 CONCLUSIONS

The prefiltering approachto voxelization has been
shawvn, experimentallyto yield lessprecisevolumet-
ric modelsthanthe approacthasedon distancefield
sampling[éréme9$. In this paper we have given
atheoreticalagumentasto why the prefilteringap-
proachis problematic,namelythatthe methoddoes
not, in general,producean isosurcewhich corre-
spondspreciselyto theoriginal solid.

It is known thatthereconstructiorerrorwhen(trilin-
early)reconstructinglistancdield sampledsolumet-
ric datais dueto curvature[Srame98 Gibso98. In
addition,certainspecialcaseglueto critical pointsin
thevicinity of the solid boundarymustbe takeninto
accoun{Gibso9§. We have shavn thatby formulat-
ing a suitability criterionin termsof the morphologi-
cal propertiesopennesandclosednesst is possible
to take into accounthe quality lossdueto curvature
aswell asthe problemsthataredueto thesespecial
cases.Furthermorewe have provided error bounds
for the reconstructiorerror of solidsthat fulfill the
suitability criterion. While the analytic error bound
is loose, we believe that the empirical error bound
shouldbe a practicaltool for choosingvoxelization
resolution.

8 FUTURE WORK

For simplegeometricsolidswhoseshapeandcuna-
ture are known, it is not difficult to verify whether
they fulfill the criterion. For morecomple, perhaps
compositesolids,it is frequentlyobviousthatthey do
notfulfill thecriterion(e.g.if we know theobjecthas
asharpedge) but we wantto voxelizethemarnyway.
Thereforeageneramethodfor findingoutwhethera
given(implicit) solidfulfills thecriterionwould prob-
ably be lessusefulthana methodfor filtering com-
plex solidssothatthey fulfill the criterion. This fil-
tering can, obviously, be performedby applyingthe
digital versionsof the morphologicalopenandclose



filters to the solid. Thesefilters shouldbe applied
before,or maybeasa part of the samplingprocess.
However, somedifficulties arestravn alongthe way
sincea naive implementatiorwould eitherintroduce
grossimprecisionsor be very computationallyde-
manding andfurthermorehesequencef operations
is significantsince,in general O[C[X]] # C[O[X]].

Lastly, a purely analyticerror boundis the theoreti-
cally mostpleasing,anda tighteningof the analytic
errorboundis, indeed,a partof our plansfor future
work.
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APPENDIX A: MORPHOLOGY
Openand close

Theopenoperatiorof asetX with respecto astruc-
turingelement is

O[X, 0] = | {bx : bx C X} (23)

The closeoperationof X with respectto b may be
expressedn termsof the openoperation

C[X, b] = O[X*, b]° (24)

wherex is avectorandb, isthestructuringelemend
translatechccordingto x. Intuitively, the openoper
ation correspondso moving the structuringelement
b aroundinsidethesetX . Theresultof theoperation
is the subsebf X whereb fits. Thelittle protrusions
whereb doesnot fit arecut off. Similarly, the close
operatiorfills outthe cavities whereb doesnotfit.

Oneof theimportantpropertiesharedoy bothopen
andcloseis idempotence

O[O[X, b],b] = O[X, b] (25)
C[C[X, b],b] = C[X, ] (26)

If we have alreadyappliedopenor closeto anobject,
furtherapplicationsf the operatordo notchangehe
result. A setX whichis notchangedy anopenop-
erationwith a structuringelement is calledb—open.
A setwhichis not changedy a closeoperatiorwith

astructuringelement is calledb—closed.

The medial surface

Letp € X. Fx(p) isthedistanceto 9X. If there
is morethanonepointp; € 0X sothat|p; — p| =
Fx(p) we saythatp is in the medialsurface. More
intuitively: Let X bea solid. If p is the centreof
a sphereS;, andthereis no sphereof greateradius
S» which properlyincludesS; whilst itself beingin-
cludedin X, thenp belongsto the medialsurface.



