
IMAGE SPACE ALGORITHMS FOR LINE

CLIPPING

by

J�D�DAY

Queensland University of Technology
School of Computing Science

GPO Box ����
Brisbane ����
Australia

e�mail j�day	qut�edu�au

�



Abstract

Algorithms for clipping lines against rectangular windows are nor

mally implemented in object space using �oating point arithmetic�
and the resulting clipped lines are then scan converted to obtain
their representation as a list of pixels in image space� Some algo

rithms avoid the use of �oating point arithmetic� They use integer
arithmetic to obtain the end points of the clipped line� The line is
then scan converted as before� In both cases there is a side e
ect�
This is described and discussed� An alternative approach is to scan
convert the lines� then clip against the viewport� The algorithm
would then use a description of the line as a list of pixel locations in
image space� rather than a pair of end points in object space� The
feasability of this method� in terms of side e
ects and e�ciency� is
discussed�

Keywords� clipping�line clipping�computer graphics

�



�� Introduction

One of the most fundamental of computer graphics algorithms
is two dimensional line clipping against a rectangular window� The
best known of these is the Cohen
Sutherland algorithm ���� This
algorithm assigns a four bit code to each end point of the line� Once
encoded it is easy to identify lines which are completely within the
window or completely outside it� Another algorithm which uses a
similar model is the Kaijian
Edwards
Cooper algorithm ��� which
improves the Cohen
Sutherland algorithm by means of more e�

cient end code regeneration� Further improvements were made in the
Duvanenko
Robbins
Gyurcsik algorithm ���� The Sobkow
Pospisil

Yang algorithm ���� combines the two end codes into an eight bit
line code which permits the classi�cation of the line as one of �� pos

sible cases�each of which is handled di
erently� The Liang
Barsky
algorithm ��� has a di
erent computational model� It uses the para

metric form of the equation to a straight line� The intersections with
the window edges are calculated as values of the parameter t� and
the appropriate value of t is identi�ed from this set of values� This
algorithm is similar to the Cyrus
Beck algorithm ���� but is more ef

�cient for rectangular windows� The Nicholl
Lee
Nicholl algorithm
��� uses a third computational model� It compares the slope of the
line with the slopes of the lines joining an end point and each corner
of the window� This enables the e�cient identi�cation of the edge
which intersects the line� Day ������� described two e�cient algo

rithms� using di
erent computational models� and compared all the
algorithms described above�

All of these algorithms operate in object space� That is� they all
use �oating point arithmetic for their computations� Dorr�s algo

rithm ��� was designed to avoid this by using only integer operations�
The algorithm is based on the Liang
Barsky model� and includes a
complex rounding scheme to ensure that the computed coordinates
are the same as those of any object space algorithm whose results
are rounded to the nearest integer� The same rounding scheme can
be utilized by other algorithms to avoid �oating point arithmetic�
Although the algorithms use integer arithmetic� strictly speaking
they operate in object rather than image space� Any coordinate�

�



such as the end point of the line �in object space� is rounded to the
nearest integer� This is not necessarily a pixel location� The aim
of these algorithms is to improve e�ciency by doing computations
using integers rather than �oating point numbers�

Whether the computations are done using �oating point or in

teger arithmetic� all algorithms essentially do the calculations in
object space� obtain the end points of the clipped line �either as
�oating point or integer numbers�� then scan convert the line into a
list of pixel locations �in image space�� using Bresenham�s algorithm
���� or something similar� The process has an inherent side e
ect�

�� A Side E�ect

When we scan convert a line� we take a description of that line in
two dimensional object space in the form of two �x� y� coordinates
corresponding to the end points of the line� and convert it to a
description in image space in the form of a list of pixel locations�
This is done by mapping the end points to pixel locations� then
calculating which other pixels should be illuminated in order to best
approximate the line with a series of dots� This is essentially done by
�nding the pixels whose centre points are closest to the line� Figure
� illustrates this� Bresenham�s algorithm ��� is an e�cient way of
doing the calculations�

If we clip a line against a window edge� we �nd the intersection
point� and later scan convert the visible part of the line in the man

ner described above� The clipped line in object space is part of the
original line� since the intersection calculations were done in object
space� However the scan conversion process starts by mapping the
end points of a line to image space� and rounding the result to pixel
locations� In most cases this causes a slight perturbation to the line�
Then at a series of discrete intervals of pixel size� the pixel closest
to this perturbed line is determined� The point of intersection is on
the line in object space� However the line is sampled in image space
at discrete intervals to determine the pixel locations� The point of
intersection� when mapped to image space� may not correspond to
one of these sampling points� In fact� it generally will not map to
a point on the perturbed line� It will map to a point on the line

�



in image space� but when the end points of the line are rounded
to pixel locations� the line will move slightly� and the point of in

tersection will not� Consequently� the point of intersection could
round to a pixel which is not in the pixel list of the original line�
Subsequent scan conversion of the clipped line will then give a set
of pixels which is not a subset of the set of pixels of the original
line� Algorithms which use integer arithmetic are a
ected by this as
well� The integer coordinates are simply the rounded �oating point
coordinates� and these are mapped to image space in a similar way�
Figure � illustrates this�

Thus we have a situation where the clipping process itself can
a
ect the image� It will not a
ect the model in object space� merely
the display� This will not always be a problem� It depends on what
is being done� and even so� it may be possible to avoid the conse

quences by a suitable adjustment to any algorithm which produces
this as a side e
ect� Nevertheless it is interesting to look for ways
of avoiding this artifact�

�� An Image Space Algorithm

The two dimensional viewing pipeline is�

�� Build the model in object space using whatever primitives and
attributes are available�

�� Specify a window in object space� and clip the model to it�

�� Specify a viewport in image space� and map the contents of the
window to it� If the model consists of lines� for example� then
the end points of the lines are mapped from object to image
space�

�� Scan convert the model� For lines� the pixel locations of the
end points are known� and the scan conversion algorithm will
�nd all other pixels needed to approximate the line�

Consider an alternative viewing pipeline�

�� Build the model in object space�

�� Specify a window in object space� but do not clip the model to
it�

�



�� Specify a viewport in image space� and map the unclipped
model to it� This means that the part of the model which
is in the window will be mapped to the interior of the view

port� However there will be part of the model which maps to
the exterior of the viewport� and must be clipped� If parts of
this unclipped model are mapped to image space which does
not correspond to any pixel location� it does not matter� Ulti

mately� only the interior of the viewport will be displayed�

�� Scan convert the unclipped model�

�� Clip the scan converted model against the viewport�

This will certainly eliminate the side e
ect described above� but at
a cost� There will be more e
ort required to do the scan conversion�
since we are now using the whole model� rather than that portion
inside the window� There is also the question of the clipping algo

rithm itself� This will take a line described by a list of pixel locations
and clip it against a rectangular viewport� It will return a list of
pixels corresponding to that part of the �scan converted� line which
is inside the viewport� Some object space algorithms can be used
as a basis for this algorithm� For example the well known Cohen�
Sutherland algorithm ��� is easily adapted� This algorithm assigns a
four bit endcode to each of the two endpoints of the line� depending
on their position with respect to the window �Figure ��� In pseu

docode� the algorithm is�

repeat

fFind the end codes for P� and P� in the form
� bit�top��bit�bottom��bit�right��bit�left�� eg ������ g
if totally invisible then
rejected
�nished

else if totally visible then
accepted
�nished

else

if P� inside window then

�



exchange P� and P�

end if

fend codes below refer to P� g
if bit�left� � � then
clip against left edge

else if bit�right� � � then
clip against right edge

else if bit�bottom� � � then
clip against bottom edge

else if bit�top� � � then
clip against top edge

end if

end if

until �nished
if accepted then draw the line

Clearly� all that is needed is an algorithm for �nding the point
of intersection between a line �described by a list of pixel locations�
and a vertical or horizontal viewport edge� The pixel list is ordered
in x and y so a binary search ���� suggests itself� In pseudocode this
is�

while low � high do

mid � �low � high ��� div �
if key � list�mid� then
high � mid 
 �

else

low � mid
end if

end while

The algorithm has complexityO�log�n��� and the operations within
the loop are a few integer additions� subtractions and comparisons�
together with an integer division by �� All of these are fast oper

ations� and the log�n� complexity ensures that even if n is quite
large� there will not be many passes through the loop� For example�

�



device resolution of approximately ����� ���� is considered good�
but log������ is approximately ��� As mentioned previously the
line can extend beyond the display space� However� even if there
were ��� elements in the pixel list� only approximately �� passes
through the loop would be required� The average situation could
be expected to be more reasonable than this� and so the approach
seems competitive�

A side e
ect� however� is that the �point� of intersection may be
more than one pixel� due to aliasing �Figure ��� This is not much
of a problem since they are adjacent on the pixel list� and a slight
adjustment to the searching algorithm will enable all pixels coinci

dent with an edge to be identi�ed�

�� Summary

An undesirable side e
ect of the traditional two dimensional view

ing pipeline has been described� A di
erent viewing pipeline has
been described� which requires an algorithm for clipping a scan con

verted line against a viewport in image space� Such an algorithm
has been described� and an analysis indicates that the new process
is feasible�

�



References

��� Cyrus�M� and Beck�J�� Generalized two
 and three
dimensional
clipping� Computers and Graphics �������������

��� Day�J�D�� An algorithm for clipping lines in object and image
space� Computers and Graphics �	��������������

��� Day�J�D� A new two dimensional line clipping algorithm for
small windows� Computer Graphics Forum ����������������

��� Dorr�M� A new approach to parametric line clipping� Com�

puters and Graphics ����������������

��� Duvanenko�V�J��Robbins�W�E�� and Gyurcsik�R�S�� Improv

ing line segment clipping� Dr�Dobb�s Journal �
���������������������

��� Foley�J�D��van Dam�A��Feiner�S�K� and Hughes�J�F�� Com�

puter Graphics Principles and Practice� second edition�Addison
Wesley
Reading�Mass�������

��� Kaijian�S��Edwards�J�A� and Cooper�D�C�� An e�cient line
clipping algorithm� Computers and Graphics ����������������

��� Liang�Y
D� and Barsky�B�A�� A new concept and method for
line clipping� ACM Transactions on Graphics ������������

��� Nicholl�T�M��Lee�D�T� and Nicholl�R�A�� An e�cient new al

gorithm for �
D line clipping�It�s development and analysis� Com�

puter Graphics ����������������

���� Sobkow�M�S��Pospisil�P� and Yang�Y
H�� A fast two
dimensional
line clipping algorithm via line encoding� Computers and Graph�

ics ����������������

���� Stubbs�D�F� and Webre�N�W�� Data Structures with Abstract
Data Types and Pascal� Brooks�Cole Publishing Company� Mon

terey�Calif� ������

	



��
��

��
��

��
��

��
��

��
��

��
����
��
��
��
��
����
��
��
����
��
��
��
��
����
��

Figure �� Scan Conversion of a Line

�
d

intersection

�
d

intersection

��
��

��
��

��
��

��
��

��
��

��
�� line

��
��
��
����
��
��
����
��
��
��
��
����
��
��
��

g

g

Figure �� Scan Conversion of a Line and the
Visible Portion of that Line�

� small circle indicates end points of visible line�

�





�
�




�

�

�


�









�





��




�


�
�


Figure �� Cohen	Sutherland End Codes

viewport edge�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

line

��
����
����
����
����
����
����
����
��

Figure 
� Intersection of a Line and a Viewport Edge

��


