IMAGE SPACE ALGORITHMS FOR LINE
CLIPPING

by

J.D.DAY

Queensland University of Technology
School of Computing Science
GPO Box 2434
Brisbane 4001
Australia
e—mail j.dayQqut.edu.au

Abstract

Algorithms for clipping lines against rectangular windows are nor-
mally implemented in object space using floating point arithmetic,
and the resulting clipped lines are then scan converted to obtain
their representation as a list of pixels in image space. Some algo-
rithms avoid the use of floating point arithmetic. They use integer
arithmetic to obtain the end points of the clipped line. The line is
then scan converted as before. In both cases there is a side effect.
This is described and discussed. An alternative approach is to scan
convert the lines, then clip against the viewport. The algorithm
would then use a description of the line as a list of pixel locations in
image space, rather than a pair of end points in object space. The
feasability of this method, in terms of side effects and efficiency, is
discussed.

Keywords: clipping,line clipping,computer graphics

1. Introduction

One of the most fundamental of computer graphics algorithms
is two dimensional line clipping against a rectangular window. The
best known of these is the Cohen-Sutherland algorithm [6]. This
algorithm assigns a four bit code to each end point of the line. Once
encoded it is easy to identify lines which are completely within the
window or completely outside it. Another algorithm which uses a
similar model is the Kaijian-Edwards-Cooper algorithm [7] which
improves the Cohen-Sutherland algorithm by means of more effi-
cient end code regeneration. Further improvements were made in the
Duvanenko-Robbins-Gyurcsik algorithm [5]. The Sobkow-Pospisil-
Yang algorithm [10] combines the two end codes into an eight bit
line code which permits the classification of the line as one of 81 pos-
sible cases,each of which is handled differently. The Liang-Barsky
algorithm [8] has a different computational model. It uses the para-
metric form of the equation to a straight line. The intersections with
the window edges are calculated as values of the parameter ¢, and
the appropriate value of ¢ is identified from this set of values. This
algorithm is similar to the Cyrus-Beck algorithm [1], but is more ef-
ficient for rectangular windows. The Nicholl-Lee-Nicholl algorithm
[9] uses a third computational model. It compares the slope of the
line with the slopes of the lines joining an end point and each corner
of the window. This enables the efficient identification of the edge
which intersects the line. Day [2],[3] described two efficient algo-
rithms, using different computational models, and compared all the
algorithms described above.

All of these algorithms operate in object space. That is, they all
use floating point arithmetic for their computations. Dorr’s algo-
rithm [4] was designed to avoid this by using only integer operations.
The algorithm is based on the Liang-Barsky model, and includes a
complex rounding scheme to ensure that the computed coordinates
are the same as those of any object space algorithm whose results
are rounded to the nearest integer. The same rounding scheme can
be utilized by other algorithms to avoid floating point arithmetic.
Although the algorithms use integer arithmetic, strictly speaking
they operate in object rather than image space. Any coordinate,

such as the end point of the line (in object space) is rounded to the
nearest integer. This is not necessarily a pixel location. The aim
of these algorithms is to improve efficiency by doing computations
using integers rather than floating point numbers.

Whether the computations are done using floating point or in-
teger arithmetic, all algorithms essentially do the calculations in
object space, obtain the end points of the clipped line (either as
floating point or integer numbers), then scan convert the line into a
list of pixel locations (in image space), using Bresenham’s algorithm
(6], or something similar. The process has an inherent side effect.

2. A Side Effect

When we scan convert a line, we take a description of that line in
two dimensional object space in the form of two (z,y) coordinates
corresponding to the end points of the line, and convert it to a
description in image space in the form of a list of pixel locations.
This is done by mapping the end points to pixel locations, then
calculating which other pixels should be illuminated in order to best
approximate the line with a series of dots. This is essentially done by
finding the pixels whose centre points are closest to the line. Figure
1 illustrates this. Bresenham’s algorithm [6] is an efficient way of
doing the calculations.

If we clip a line against a window edge, we find the intersection
point, and later scan convert the visible part of the line in the man-
ner described above. The clipped line in object space is part of the
original line, since the intersection calculations were done in object
space. However the scan conversion process starts by mapping the
end points of a line to image space, and rounding the result to pixel
locations. In most cases this causes a slight perturbation to the line.
Then at a series of discrete intervals of pixel size, the pixel closest
to this perturbed line is determined. The point of intersection is on
the line in object space. However the line is sampled in image space
at discrete intervals to determine the pixel locations. The point of
intersection, when mapped to image space, may not correspond to
one of these sampling points. In fact, it generally will not map to
a point on the perturbed line. It will map to a point on the line

in image space, but when the end points of the line are rounded
to pixel locations, the line will move slightly, and the point of in-
tersection will not. Consequently, the point of intersection could
round to a pixel which is not in the pixel list of the original line.
Subsequent scan conversion of the clipped line will then give a set
of pixels which is not a subset of the set of pixels of the original
line. Algorithms which use integer arithmetic are affected by this as
well. The integer coordinates are simply the rounded floating point
coordinates, and these are mapped to image space in a similar way.
Figure 2 illustrates this.

Thus we have a situation where the clipping process itself can
affect the image. It will not affect the model in object space, merely
the display. This will not always be a problem. It depends on what
is being done, and even so, it may be possible to avoid the conse-
quences by a suitable adjustment to any algorithm which produces
this as a side effect. Nevertheless it is interesting to look for ways
of avoiding this artifact.

3. An Image Space Algorithm

The two dimensional viewing pipeline is:

1. Build the model in object space using whatever primitives and
attributes are available.

2. Specify a window in object space, and clip the model to it.

3. Specify a viewport in image space, and map the contents of the
window to it. If the model consists of lines, for example, then
the end points of the lines are mapped from object to image
space.

4. Scan convert the model. For lines, the pixel locations of the
end points are known, and the scan conversion algorithm will
find all other pixels needed to approximate the line.

Consider an alternative viewing pipeline:

1. Build the model in object space.

2. Specify a window in object space, but do not clip the model to
it.

3. Specify a viewport in image space, and map the unclipped
model to it. This means that the part of the model which
is in the window will be mapped to the interior of the view-
port. However there will be part of the model which maps to
the exterior of the viewport, and must be clipped. If parts of
this unclipped model are mapped to image space which does
not correspond to any pixel location, it does not matter. Ulti-
mately, only the interior of the viewport will be displayed.

4. Scan convert the unclipped model.
5. Clip the scan converted model against the viewport.

This will certainly eliminate the side effect described above, but at
a cost. There will be more effort required to do the scan conversion,
since we are now using the whole model, rather than that portion
inside the window. There is also the question of the clipping algo-
rithm itself. This will take a line described by a list of pixel locations
and clip it against a rectangular viewport. It will return a list of
pixels corresponding to that part of the (scan converted) line which
is inside the viewport. Some object space algorithms can be used
as a basis for this algorithm. For example the well known Cohen—
Sutherland algorithm [6] is easily adapted. This algorithm assigns a
four bit endcode to each of the two endpoints of the line, depending
on their position with respect to the window (Figure 3). In pseu-
docode, the algorithm is:

repeat
{Find the end codes for P, and P, in the form
(bit[top],bit[bottom],bit[right],bit[left]) eg (1001) }
if totally invisible then
rejected
finished
else if totally visible then
accepted
finished
else
if P, inside window then

exchange P, and P,
end if
{end codes below refer to P; }
if bit[left] = 1 then
clip against left edge
else if bit[right] = 1 then
clip against right edge
else if bit[bottom| = 1 then
clip against bottom edge
else if bit[top] = 1 then
clip against top edge
end if
end if
until finished
if accepted then draw the line

Clearly, all that is needed is an algorithm for finding the point
of intersection between a line (described by a list of pixel locations)
and a vertical or horizontal viewport edge. The pixel list is ordered
in z and y so a binary search [11] suggests itself. In pseudocode this
is:

while low < high do
mid < (low + high +1) div 2
if key < list[mid] then
high < mid - 1
else
low < mid
end if
end while

The algorithm has complexity O(log(n)), and the operations within
the loop are a few integer additions, subtractions and comparisons,
together with an integer division by 2. All of these are fast oper-
ations, and the log(n) complexity ensures that even if n is quite
large, there will not be many passes through the loop. For example,

device resolution of approximately 1000 x 1000 is considered good,
but log(1000) is approximately 10. As mentioned previously the
line can extend beyond the display space. However, even if there
were 10% elements in the pixel list, only approximately 20 passes
through the loop would be required. The average situation could
be expected to be more reasonable than this, and so the approach
seems competitive.

A side effect, however, is that the ’point’ of intersection may be
more than one pixel, due to aliasing (Figure 4). This is not much
of a problem since they are adjacent on the pixel list, and a slight
adjustment to the searching algorithm will enable all pixels coinci-
dent with an edge to be identified.

4. Summary

An undesirable side effect of the traditional two dimensional view-
ing pipeline has been described. A different viewing pipeline has
been described, which requires an algorithm for clipping a scan con-
verted line against a viewport in image space. Such an algorithm
has been described, and an analysis indicates that the new process
is feasible.

References

[1] Cyrus,M. and Beck,J.: Generalized two- and three-dimensional
clipping. Computers and Graphics 3,23-28(1978)

[2] Day,J.D.: An algorithm for clipping lines in object and image
space. Computers and Graphics 16,421-426(1992)

[3] Day,J.D. A new two dimensional line clipping algorithm for
small windows. Computer Graphics Forum 11,241-245(1992)

[4] Dorr,M. A new approach to parametric line clipping. Com-
puters and Graphics 14,449-464(1990)

[5] Duvanenko,V.J.,Robbins,W.E., and Gyurcsik,R.S.: Improv-
ing line segment clipping. Dr.Dobb’s Journal 15,7,36-45,98-100(1990)

[6] Foley,J.D.,van Dam,A. Feiner,S.K. and Hughes J.F.: Com-
puter Graphics Principles and Practice, second edition,Addison-Wesley
Reading,Mass.(1990)

[7] Kaijian,S.,Edwards,J.A. and Cooper,D.C.: An efficient line
clipping algorithm. Computers and Graphics 14,297-301(1990)

[8] Liang,Y-D. and Barsky,B.A.: A new concept and method for
line clipping. ACM Transactions on Graphics 3,1-22(1984)

[9] Nicholl, T.M.,Lee,D.T. and Nicholl,R.A.: An efficient new al-
gorithm for 2-D line clipping:It’s development and analysis. Com-
puter Graphics 21,253-262(1987)

[10] Sobkow,M.S.,Pospisil,P. and Yang,Y-H.: A fast two-dimensional
line clipping algorithm via line encoding. Computers and Graph-
ics 11,459-467(1987)

[11] Stubbs,D.F. and Webre,N.W.: Data Structures with Abstract
Data Types and Pascal, Brooks-Cole Publishing Company, Mon-
terey,Calif. (1985)

()

@

Figure 1: Scan Conversion of a Line

line

e,
I

e,
I

intersection intersection

Figure 2: Scan Conversion of a Line and the
Visible Portion of that Line.
(small circle indicates end points of visible line)

10

1001 1000 1010

0001 0000 0010

0101 0100 0110

Figure 3: Cohen-Sutherland End Codes

Wy

line viewport edge

Figure 4: Intersection of a Line and a Viewport Edge

11

