
Boolean operations on feature-based models

Yvon Gardan
CMCAO Team / IFTS

Pôle de Haute Technologie
08000 Charleville-Mézières

 France, Charleville-Mézières,
Ardennes

gardan@infonie.fr

Christian Minich
CMCAO Team / Metz university

Île du Saulcy
57045 METZ Cedex 01
France, Metz, Moselle

minich@sciences.univ-
metz.fr

Estelle Perrin
CMCAO Team / Metz university

Île du Saulcy
57045 METZ Cedex 01
France, Metz, Moselle

perrin@sciences.univ-
metz.fr

ABSTRACT

Boolean operations and feature-based modeling are closely linked domains. For example, several, sometimes
many Boolean operations are involved during a feature instantiation or modification. So Boolean combinations
are tools used “inside” feature-based modeling and it is interesting to study the way to make these operations
faster or less numerous by using the fact that they are applying to features. This is the first issue this paper deals
with. Symmetrically, Boolean operators may be used to combine two feature-based objects. This occurs, for
example, when a genetic algorithm is used to semi-automatically generate the shape of a product from
requirements. The second part of the paper tackles the Boolean operation optimization in this specific context.
This includes improving Boolean operations performances and incrementally maintaining the feature-based
model of the object resulting from a Boolean operation.
Keywords

Boolean operations, feature-based modeling, geometric and topological representations, geometric interrogations
and reasoning, computational geometry, robustness of geometric computations.

1. INTRODUCTION
For a long time, CAD/CAM systems have been only
based on geometrical models (such as boundary
representation (B-Rep) and Constructive Solid
Geometry (CSG)). These models made it possible to
develop a number of important treatments such as
objects combination, visualization, analysis and
manufacturing. Some of these algorithms, for
example the Boolean combination of two objects
through a union, intersection or difference, are
complex and time consuming. Today, new trends try
hard to take higher semantic notions into account,
such as the product specifications, requirements or
functions [Gar00a][Gar99]. The intent is to use this
new information to better carry out the tasks quoted
above. In this context, Boolean operations still play a

predominant role because they can be used in genetic
algorithms to semi-automatically generate a product
from specifications. In this context, a form feature is
considered to be a geometrical solution for one or
several requirements of specifications. Classical
problems of genetic algorithms are solution coding,
solutions crossover and mutations. A solution can be
coded by a feature based object. The crossover
mechanism consists in randomly choosing a Boolean
operation applied to the two parent solutions, form
feature type and values for feature parameters.
Finally, to mutate a solution, one just has to
randomly change one or more feature parameters.
For such algorithms, Boolean operations have to be
fast and/or less numerous. Instead of dealing just
with geometrical information, a first step in this
direction is to make the most of features, which are a
kind of semantic information. In this paper, we deal
with the relationships between feature-based
modeling and Boolean operations in two different
ways. The latter operations are first seen as internal
tools for feature-based modeling. For example,
several, sometimes many Boolean operations are
involved during a feature instantiation or
modification. So the first part of the paper studies the
way to lower the number of topological combinations
depending on what kind of treatment they are

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Journal of WSCG, Vol.11, No.1., ISSN 1213-6972
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic
Copyright UNION Agency – Science Press.

involved: feature instantiation or feature
modification. Symmetrically, Boolean operators can
be used to combine two feature-based objects and
then, they have a more external role. The second part
of the paper tackles the Boolean operation
optimization in this specific context and, again, two
issues are investigated in detail: (1) how to compute
the boundary representation of the resulting object by
taking the most of the feature-based models of both
operands; (2) how to deduce the feature-based model
of the resulting object from the feature-based models
of both operands. The later work is still in progress:
we prove an interesting result which allows to
concentrate on the union operator and present the
approaches which seem the most promising to us.

2. PREVIOUS WORK
Boolean operations
Needs of CAD/CAM systems obliged Boolean
operations algorithm to take into account a wide
variety of objects: polyhedral objects, non-manifold
objects and objects with non-planar faces. Methods
belong to two families: those that directly use B-Reps
[Mar87a][Mar87b][Man83][Pil89][Ma88] and those
that use an intermediate representation (like octree
representation [Nav86][Pla93]). They all rely on the
following sequence of statements: calculate the
intersections, combine, classify and extract entities
(faces, edges and vertices) of the operands.
Intersections computations concern entities of
various types (edge-face intersection, face-face
intersection…) and the process that classifies entities
differs for each method (section polygon that splits
objects in inner or outer sets, classification of sub-
faces (interior or exterior) by using point
classification). As a result, the main drawbacks of
these methods are: (1) imprecise computations; these
methods have to deal with tolerances in order to
compare two floats or to calculate intersections; (2) a
significant computation time that may end up with a
wrong result; (3) a lot of particular cases; (4) a
difficult adaptation to other kinds of objects (non
planar or non-manifold faces).
The method developed in our team, called the
“sections method” [Gar96a], solves the major
drawbacks mentioned above because it formalizes
the 3D Boolean operations in using 2D Boolean
operations as described by the following equation:

[]
[]
[])O(F)O(F

)O(I)O(F
)O(I)O(FOO

2D21

1D22

2D212D31

⊗∪
⊗∪
⊗=⊗

 where ⊗ may

represent union, intersection or difference. The first
and the second terms both represent a Boolean
operation between the faces of an object and the
interior of the other, which can be expressed as
several two dimensional Boolean operations. Each

2D Boolean operation involves a face of an object
and the section of the other by the face’s surface. The
word “section” denotes the interior of the set of all
points common to an object and a plane or a surface.
The 2D Boolean operations depend on the 3D one.
The last term represents the particular case of same
surface faces. Its result depends on the interior’s
position in the neighborhood of the faces to be
combined. The ∪ operator denotes that faces must be
joined to form the resulting object. This treatment is
realized in considering topological information to
limit errors due to computations.

REGAIN Feature-based modeler
Feature-based modeling is an extremely rich topic
[Ros90][Che95a][Che95b][Bid98][Bid00], but this
paper focuses on relationships between feature
management and Boolean operations. The feature-
based modeler we used is REGAIN [Gar96b], which
has been developed in our team like the Boolean
operations algorithm mentioned above. In this paper,
our goal is not to compare REGAIN with other
feature-based modelers but to give a short overview
of the system architecture and highlight the important
aspects for the rest of this paper.
In REGAIN, a part has both a geometric and a
feature-based description. The former is a boundary
polyhedral representation. The latter is roughly an
ordered list of the features the user inserted in the
part. A feature is a parameterized object such as a
cylinder, box, fin, pocket or any other shape which
takes on a given semantics in a given business. We
distinguish library features, the so-called generic
features, from their instances, which we call
instanced features. Generic features are gathered in a
hierarchy, in order to factorize elements common to
several features (data or behavior). The top level of
the hierarchy is an abstract class (“features”) and
immediately below, the difference between primary
and secondary features appears: the former give its
outline to the design object (cylinder, box...), the
latter are shape modifications which generally have a
local influence (rib, mounting bracket, fillet...).
Any generic feature is made up of a generative
surface, parameters, a conceptual graph and various
other constraints such as equations or inequations. In
what follows, only the generative surface is useful.
The generative surface limits a half space which
allows to compute the amount of matter the feature
adds or removes. For a primary feature, the
generative surface is simply its boundary (e.g. six
faces, twelve edges … for a box). For a secondary
feature, the surface is generally open and extends
infinitely in the directions where the instanced
feature shall have to extend to reach the limits of the
part that will carry it (Figure 1.a shows the

generative surfaces of a L-slot and a square tenon).
This gives the feature a behavior of automatic
adjustment to the part which carries it (Figure 1.d).
An instanced feature refers to a generic feature and
complements it by preserving the value of its
parameter, the coordinate system transformation to
apply to locate it in the right place on the solid which
carries it, constraints and the matter volume that it
has added to or removed from it, called useful
volume in the following.
One aspect this paper emphasizes is the link between
Boolean operations and features instantiation. So the
steps involved during instantiation have to be
detailed. An instantiation begins with the acquisition
of the parameters’ values, the feature’s
dimensioning, its positioning and its orientation.
These stages are not detailed here. For a primary
feature, instantiation is finished; useful volume is the
feature itself. On the other hand, a secondary feature
must still be combined with its carrier, depending on
a process we will summarize in what follows.
The preliminary instantiation phases yields the
feature generative surface and correctly dimensions,
positions and orientates it. To assess the feature’s
useful volume, a Boolean operation is first carried
out between the half space limited by the generative
surface on the one hand, and the carrier on the other
hand; it is an intersection for matter removal (V1 and
V2 in Figure 1.b) and a difference for matter addition
(V3 and V4 in Figure 1.b). Among the computed
volumes, called candidates, those which are not
finite (for example V4) or which do not have at least
one face on each face of the generative surface (for
example V2, since none of its faces coincides with
the “bottom” of the L-slot generative surface) are
deleted. All together, the remaining volumes (V1 for
the slot, V3 for the tenon) make up the useful volume
and are preserved in the instanced feature. Another
Boolean operation ends the instantiation by
combining the carrier with the useful volume,
through a difference for matter removal and a union
for an addition (so V1 were subtracted and V3 were
added to the part in Figure 1.d).
Computing the useful volume of each instanced
feature also allows to maintain a tree which models
the part’s shape as shown on Figure 2. At the very
beginning, the tree is only made up of the useful
volume of the first (primary) feature used to build the
part. Then, every feature instantiation generates a
Boolean node, the left son of which is the current
tree and the right son of which is the useful volume
of the new feature. The Boolean node is a union or a
difference, depending on whether the feature is
positive or negative. All right nodes in this particular
tree are restricted to a single node, so the tree looks
like a comb. In what follows, the comb associated to

a feature-based object will denote the tree built with
this procedure. Figure 2 shows an object created with
a box, a L-slot, a tenon and a blind slot and the
associated comb.

V2

V1

V3

V4

d

c

b

a

Figure 1: (a) two generative surfaces, (b)

candidate volumes for both features, (c) useful
and closing faces for V1, (d) after instantiation of

both features

3. BOOLEAN OPERATIONS DURING
FEATURE INSTANTIATION
As explained above, the instantiation of a secondary
feature involves two Boolean operations. This makes
the feature instantiation costly. The first Boolean
operation calculates the useful volume and the
second one the resulting object. Each Boolean
operation processes the two operands face by face as
explained in section 2. The first Boolean operation
works on faces of the carrier volume and faces of the
generative surface and builds the useful volume. The
second one works on faces of the carrier volume and
faces of the useful volume, that is faces of the carrier
volume and the generative surface. So finally faces
of the resulting object are parts of the carrier volume
faces and of the generative surface faces. As both
Boolean operations work on the same faces, we had
the idea to check whether it was possible to merge
the two operations into one.

b

-

-
∪

a
Figure 2: a feature-based object (a) and the

corresponding comb (b)
We have demonstrated [Gar00b] that the two
Boolean operations can be reduced to one treatment
in using the same formalism as the one applied for
the “sections method”. We have proved that
whatever the Boolean operations applied (so
whatever the nature of the feature), each part of a
face that both belongs to the feature and to the useful
volume, belongs to the resulting object. Similarly,
each part of a face that belongs to the carrier volume
and that does not belong to the useful volume
belongs to the resulting object.
In conclusion, this means that adding a new feature
can be realized by only one special Boolean
operation instead of two.

4. COMBINING TWO FEATURE-
BASED OBJECTS
This section is dedicated to another classical
relationship between Boolean operations and feature-
based modeling. We are trying to highlight what can
be made faster or with more reliability during the
combination of two objects which are both feature-
based and, thus, to which a comb was associated (see
2). In the next section, we use the fact that features
useful volumes are known, that they can be used to
check inclusions and save the combination algorithm
from many computations in order to get the resulting
boundary representation. And we explore the
different possibilities to build the feature based
object of the resulting object.

Getting the boundary representation of
the resulting object
The main processing in the combination of two B-
Reps is to calculate the parts of an operand face that
belong to the resulting object. By extending this idea
to feature-based object, we get: the main processing
in the combination of two feature-based objects is to
calculate the parts of a feature operand that belong to
the resulting object. Suh and Ahluwalia make a
similar reasoning in [Suh91][Suh99] but with a
different intent. Their goal is to predict which
features occur in the resulting object if a feature-
based object (FBO) is combined with a primitive
solid (PS), like a cube, a box, a cylinder, a sphere,

etc. To achieve this, they detect the interactions
between PS and FBO by breaking down PS's
boundary into parts exterior or interior to the feature-
base object. This classification helps them in
detecting which feature the combination has deleted,
kept as they are or modified. But to determine the
classification, Boolean operations are necessary so
this approach is not compatible with our aim which is
precisely to reduce the complexity of a single
Boolean operation.
Our idea is to use a pre-processing in order to detect
what features can be neglected during the Boolean
operation. Such features are those which are totally
unchanged or totally deleted. This raises a major
problem: how to detect whether a feature can be
neglected (we call this treatment feature-feature
filter)?
The features of an operand that can be neglected are
those which are totally exterior or interior to the
other operand: depending on the Boolean operation,
they can only be deleted or unchanged. For example,
the union of two objects is formed by parts of both
operands which are exterior to the other operand. So
exterior features are unchanged and interior features
are deleted. Our feature-feature filter can be summed
up as follows:
For each form feature FF of O

If FF is interior to O’ Then

 Switch Boolean operation

 Case union: neglect FF

 Case intersection: keep FF as it is

 Case difference: If (O = O
1
)

Then neglect FF

 Else Keep reversed FF

 End Switch

ElseIf FF is exterior to O’ Then

 Switch Boolean operation

 Case union: keep FF

 Case intersection: neglect FF

 Case difference: If (O = O
1
)

Then keep FF

 Else neglect FF

 End Switch

Else process FF

The main difficulty of this algorithm is to assign a
status to each feature, that is to find out whether it is
interior, exterior or if it has an interference with the
other operand. This is solved by using the useful
volumes of all features and the fact that they add or
remove material. Let us call FF the feature under
study, FFUV its useful volume, FF1, FF2, ... , FFn the
features of the other object in a chronological order
and FFUVi their useful volumes. To initialize the
status of FF, its useful volume FFUV is compared
with FFUV1 and four results are possible: FF is
included in FF1, FF1 is included in FF, FF has no
interference with FF1, and FF has an interference

with FF1. Then, FF's status is set as follows: if FF1 is
included in FF or if FF has no interference with FF1
then FF's status is exterior; if FF is included in FF1
then status is interior; else status is interference.
If the current
status is …

if FFi adds
material

if FFi subtracts
material

Interior Interior Exterior
Exterior Interior Exterior
Interference Interior Exterior

Table 1. FF is included in FFi
If the current
status is …

if FFi adds
material

if FFi subtracts
material

Interior Interior Interior
Exterior Exterior Exterior
Interference Interference Interference

Table 2. FF has no intersection with FFi
If the current
status is …

if FFi adds
material

if FFi subtracts
material

Interior Interference Interference
Exterior Interference Interference
Interference Interference Interference

Table3. FF interferes with FFi
If the current
status is …

if FFi adds
material

if FFi subtracts
material

Interior Interior Interior
Exterior Exterior Exterior
Interference Interference Interference

Table 4. FF contains FFi
Generally, FF1 is a primary form feature like a box or
a cylinder, so it adds material. If this shouldn't be the
case, the status should be reversed (interior and
exterior should be switched). FFVU is then
compared with all the other useful volumes. The
status evolves as the traversal makes progress. Tables
1,2 3,4 give the next status, knowing its current
value, the result of the useful volumes comparison
and the nature of FFi (it adds or subtracts material).

 A1 A2 A3 A4
B1 Interferes Includes Includes Includes

B2 No
intersection

No
intersection

No
intersection

No
intersection

B3 Interferes Includes Intersects No
intersection

Table 5. Results after the first step for the
example of figure 3.

Let us trace this algorithm on an example (see Figure
3). The first step studies each form feature with
regard to the others (see table 5).

A1 A2
A3

A4

B1 B2

B3
A2

Figure 3: A 2D example: object A has four
features named A1 to A4, object B has three

features named B1 to B3.
 State1 State2 State3 State4
A1

Interfere
s

Interfere
s

Interfere
s

A2
Interior Interior Exterior

A3
Interior Interior Interfere

s

A4
Interior Interior Interior

B1
Interfere
s

Interfere
s

Interfere
s

Interfere
s

B2
Exterior Exterior Exterior Exterior

B3
Interfere
s

Interfere
s

Interfere
s

Interfere
s

Table 6. State evolution for features of A and B.
Table 6 means that A1, A3, B1 and B3 must be
considered during the combination of A and B,
whatever the Boolean operation is. The other features
(A2, A4 and B2) are unchanged or deleted: this
depends on the requested Boolean operation but they
can all be neglected during computations.

Building the FBM of the resulting object
We demonstrated in the previous section how to
make the most of the design histories of both
operands of a Boolean operation to perform this
operation faster. However, the Boolean operation
only provides the geometric model of the resulting
object, not its feature-based representation. This
means that the resulting object can not be combined
with any other object using the optimized Boolean
operators. This is the reason why we are trying to
exhibit a feature-based model of the object resulting
from a Boolean combination.
For that purpose, a general extraction algorithm
could be applied to the resulting object. But there is
no reason that the algorithm provides with features
that are mostly the same as the ones the designer
used to create the two operands: there are many
feature-based models of the same part. As the
features the designer inserted in the operands are part
of his design intent, we consider that those which
still appear in the resulting object should also appear
in its feature-based model. This is why, instead of
using a general feature extraction algorithm, we are
trying to maintain the feature-based model in an

incremental way, by re-using as much as possible the
feature-based models of the operands.
The next section gives the proof that the
complementary of a comb is the comb of the
complementary features. The next two sections
deliver our first thoughts on the way to build an
incremental extraction algorithm on the basis of this
result.

4.1.1 Getting the difference and the intersection
combs from the union comb
Intersection and difference can be expressed by
union and complementary as follows:

BABA ∪=∩ (equation 1) and BABA ∪=− (equation
2). We have to calculate the design history (called
comb in this section) of an object that results from a
Boolean operation between two feature-based
objects. We suppose that we are able to calculate the
comb of an object that comes from a union of two
feature-based objects. In this section, we prove that
the design history of the complementary of an object
can be easily deduced from the design history of this
object. For that, the complementary of a feature has
to be defined:
Definition 1: The complementary of a feature F is a
feature F’ which adds (respectively subtracts) matter
when F subtracts (respectively adds) matter. The
useful volume obtained by applying F on an object O
is the same as the one obtained by applying F’ on the
complementary of O (this means that F and F’ may
have the same parameters).
By example, the complementary of a pocket is a
tenon (see Figure 4).

a) b)

Interior Useful
volume

Figure 4: a) a box with a pocket b) a

complementary of a box with a tenon. The
complementary of the complementary of a box

with a tenon is the box with a pocket. A tenon and
a pocket are complementary features.

Let us now prove that the complementary of a comb
is the comb of the complementary features.
First, let us suppose that we have a comb named C
and the last feature added to C is a positive feature
named F whose useful volume is VU. As F is

positive, the last Boolean operation in the tree is a
union between the sub-comb SC and VU. Let us now
calculate the complementary of C.

VUSCVUSCVUSCVUSCC −=−=∪=∪=
according to equation2.
This result means that there exists a negative feature
F’ whose useful volume is VU (so the same as F’s
one) which subtracts matter to the complementary of
SC.
A similar proof can be done if the last feature added
to C is negative. In that case, the starting hypothesis
is a difference between the sub-comb and the useful
volume of the feature:

VUSCVUSCVUSCC ∪=∪=−= according to
equation2.
This result means that there exists a feature F’ whose
useful volume is VU (so the same as F’s one) which
adds matter to the complementary of C.

By recursion, these two cases can be applied to SC
in order to obtain the complementary of C.
In conclusion, as the union operation and the
complementary can express the intersection and the
difference operations, we can suppose that it is
sufficient to only consider the union operation in the
next sections.

4.1.2 Geometric and topological reasoning
It was proved in the previous section that extracting
features in the difference or the intersection of two
objects could be performed through extraction in the
union of two objects. Thus, in what follows, we
focus on feature extraction in the object produced by
the union of two solids. To perform this extraction,
one option consists in writing a particular extraction
algorithm, which makes the most of the fact that the
object to be processed was built by uniting to
feature-based objects. This section briefly presents
the two potential approaches we plan to study, for
this adapted extraction algorithm. Both approaches
are consequences of the following observation:
before the extraction algorithm is run, the boundary
representations of both operands are combined by the
optimized algorithm described in “Getting the
boundary representation of the resulting object”. As
the considered operation is a union, if none of the
faces of a feature in an operand is modified, this
feature also belongs to the resulting object. So all its
faces can be neglected by the dedicated extraction
algorithm; it just has to focus on all remaining faces.
Of course, it is enough that one feature face is
modified to make it necessary to put all its faces in
the list of faces to be processed. In what follows, this
face list is called FL.

First approach:
Each face in FL is a useful face or part of a

useful face. This means that many geometric
constraints and equation link them. For example, if
the side face of a slot was removed, the other side
and the bottom belong to FL and an orthogonal
constraint links them. Then it can be checked what
generic features have constraint sets and face sets
compatible with these hints. In this example, a step
might be a good example.

Of course, it might happen that it is necessary to
combine faces from various previous features to get a
set that can fit a generic feature. So the extraction
algorithm will consist in grouping together all faces
in FL in all possible manners. This provides many
combinations, each one being made up of several
face sets. For each combination, it is checked
whether each face set in the combination can be
matched with a generic feature (see [Gup95] for a
similar approach). A first version of an extraction
algorithm working on this principle is operational.
This algorithm has the following properties: it is
exhaustive, because it produces all interpretations of
a solid as a combination of features of the library; it
is extensible to any type of user-defined feature; it
provides semantically rich information, as each
feature is delivered with its rank, parameters,
orientation, nature, useful volume and accessibilities.
As the underlying principle leads to a combinatorial
explosion, we plan to use several heuristics to
increase the probability to reach a solution earlier:
1) To meet the design intent, it seems reasonable to
first look for occurrences of features which existed in
one of the operands. For example, if only parts of a
feature face were removed, the feature might still
exist in the resulting object. So the combination
which lets together the faces of a previous feature are
generated.
2) The combinations where adjacent faces are
grouped together are generated first. The probability
that some faces make up a feature is larger if they are
adjacent than if they are far one another.
3) If it was not possible to interpret a combination of
features, the face sets that could not be paired with a
feature are re-arranged first, those which could be
matched with a feature are kept as long as all
combinations of remaining faces are not tried.
4) It often happens that a feature, when it loses one
of its faces, derives into another feature. Classic
examples are the slot which becomes a step, the
pocket which becomes an open pocket, a blind slot or
a slot… The fact of knowing several possible
evolutions of usual features and the conditions to get
one evolution or another (such as loosing a side
face), might make things easier: as all face

modifications are provided by the BRep combination
algorithm, it becomes possible to predict with better
probabilities what each modified feature becomes.
Moreover, during a union, there is only added matter.
This means that features in both operands which are
not completely removed can only be added pieces of
matter: in particular, a negative feature can only
decrease, that is it can only be partly filled. So
derivation rules for negative features should focus on
evolutions caused by matter addition. So the slot
which becomes a blind slot and the open pocket
which becomes a pocket are better examples than the
rules listed on top of this paragraph.

Second approach:
Another approach would be to keep all positive
features (i.e. all positive features whose at least one
face belongs to the resulting object) and to reduce the
negative features. We remind that this approach is
valid because we only have to consider the union
operation. In a union, positive features can not create
too much matter in the resulting object. Concerning
the negative features, we know if they still belong
(even partially) to the resulting object. If they are
partially covered, matter of the second operand has
trimmed them. This means that negative features
would subtract too much matter if they were kept as
they are. It is then possible to think to an algorithm
that would limit the useful volume of negative
features. If part of a face of a negative feature exists
in the resulting object, then we can deduce that the
negative feature still exists in the resulting object
with a reevaluation of its parameters. The new values
of parameters can be calculated by using topological
information given by the “sections method”: faces
that cut the remaining faces of negative features are
known. Then by propagation, concavities could be
localized and the useful volumes of negative features
truncated. Nevertheless, the order of appearance in
the comb has to be checked. But this step is not easy
and may not converge. That is the reason why, in the
next section, we keep the same idea (the base is a
union of positive features) but we extract new
negative features from the concavities in the resulting
object.
Instead of designing a new extraction tool, one could
also use an existing algorithm but only within a
limited area. One way to get this area is to build an
object with all positive features of both operands
which are not entirely included in the other operand.
This produces an object O, which is a superset of the
part U resulting from the union. Subtracting U from
O yields a volume corresponding to all extra matter
to which any machining feature extraction algorithm
can be applied. The feature-based model of U is then
the concatenation of all positive features in both

operands and of all negative features recognized in
O.
This method seems to be convenient when both
operands are mostly made up of positive features, as
merging all positive features gives a good outline of
the final part. If operands were designed with a
destructive paradigm, the best would probably be to
apply techniques sketched out in the previous
section.

5. CONCLUSION AND FUTURE
WORKS
This paper has investigated some of the numerous
links between Boolean operations and feature-based
modeling. It has underlined the possibility to reduce
in a significant way the number of Boolean
operations performed during a feature instantiation or
modification. It has also presented how the
complexity of a Boolean operation combining two
feature-based objects could be appreciably reduced.
Finally, we focused on getting the feature-based
model of the resulting object under the assumption
that the Boolean combination of the boundary
representations supplies the faces which are not
changed, those which disappear and those which are
modified. Only the union and complement operations
have been considered as we proved that, provided
that each feature has a complement, the feature-based
representation of an object resulting from the
intersection or difference of two feature-based
objects object is the same as the one of an object
made up of a union and complements. Two possible
research directions have been proposed to deal with
the problem of building a feature-based model for the
object resulting from the union of two feature-based
objects. Whatever the approach we will implement,
Boolean operations appear to be a support of feature
extraction in boundary representations.

6. References
[Bid98] R. Bidarra, K. J. de Kraker, W.F.
Bronsvoort, “Representation and management of
feature information in a cellular model”, Computer
aided design, volume 30, n°4, pp 301-313, 1998
[Bid00] R. Bidarra, W.F. Bronsvoort, “Semantic
feature modeling”, Computer Aided Design, Vol 32,
pp 201-225, 2000
[Che95a] X.Chen, C.M. Hoffmann, “Towards feature
attachment”, Computer aided design, volume 27,
n°11, pp 675-702, 1995
[Che95b] X.Chen, C.M. Hoffmann, “On editability
of feature-based design”, Computer aided design,
27(12):905-914, 1995
[Gar96a] Y. Gardan, E. Perrin, “An algorithm
reducing 3D boolean operations to a 2D problem :
concepts and results”, Computer aided design,
volume 28, n°4, pp 277-287, 1996

[Gar96b] Y. Gardan, C. Minich, C. Poinsignon,
“Proposals for a product model ”, IDMME '96,
Integrated Design and Manufacturing, Nantes,
France, April 15-17, 1996
[Gar99] Y. Gardan, C. Minich, D. Pallez, “On shape
to specifications adequacy”, IV99, July 14-16,
Londres, England, 1999
[Gar00a] Y. Gardan, C. Minich, D. Pallez, E. Perrin,
“Towards a specifications-to-shape translation tool ,
TMCE 2000, pp 373-382, April 18-21, Delft, The
Netherlands, 2000
[Gar00b]Y. Gardan, E. Perrin, “Boolean operations
and feature-based objects”, CISST'2000, pp 563-569,
June 26-29, Monte Carlo Resort, Las Vegas, Nevada,
USA, 2000
 [Gup95] S.K. Gupta, D.S. Nau, “Systematic
approach to analyzing the manufacturability of
machined parts”, Computer Aided Design,
27(5):323-342, 1995
[Ma88] D. Ma, R. Tang, “Realizing the boolean
operations in solid modeling technique via directed
loops”, Computer and Graphics, volume 12, n° ¾,
1988
[Man83] M. Mantyla, M. Tamminen, “Localized set
operations for solid modeling”, Computer and
Graphics, volume 17, n°3, 1983
[Mar87a] D. Martin, P. Martin, “Les algorithmes de
calcul de l'intersection de solides définis par leur
bord”, Revue internationale de CFAO et
d'infographie, volume 2, n°4, 1987
[Mar87b] D. Martin, P. Martin, “Les algorithmes de
calcul de l'intersection de solides définis par leur
bord”, Revue internationale de CFAO et
d'infographie, volume 3, n°2, 1987
[Nav86] I. Navazo, D. Ayala, P. Brunet, “A
geometric modeler based on the exact octtree
representation of polyhedra”, Computer Graphics
Forum, volume 5, 1986
[Pil89] M. Pilz, H.A. Kamel, “Creation and boundary
evaluation of CSG models”, Engineering with
Computers, volume 5, pp 105-118, 1989
[Pla93] N. Pla-Garcia, “Boolean operations and
spatial complexity of face octrees”, Eurographics’93,
volume 12, n°3, 1993
[Ros90] J.R. Rossignac, “Issues on feature-based
editing and interrogation of solid models”, Computer
and Graphics, 14(2):149-172, 1990
[Suh91] H. Suh, R. S. Ahluwalia, J. E. Miller,
“Feature generation in concurrent engineering
environment”, Proceedings of the first symposium on
solid modeling foundations and CAD/CAM
applications, pp 495-502, November 5-7, Austin,
Texas, 1991
[Suh99] H. Suh, R. S. Ahluwalia, “Feature
modification in incremental feature generation”,
Computer aided design, volume 27, n°8, pp 627-635,
1999

