
A Task Definition Language for Virtual Agents

Spyros Vosinakis
Department of Informatics

University of Piraeus
80 Karaoli & Dimitriou str.
 Greece, 18534, Piraeus

spyrosv@unipi.gr

Themis Panayiotopoulos
Department of Informatics

University of Piraeus
80 Karaoli & Dimitriou str.
 Greece, 18534, Piraeus

themisp@unipi.gr

ABSTRACT

The use of Virtual Environments as a user interface can be important for certain types of applications, especially

in the fields of education and entertainment. These synthetic worlds are even more attractive for the user when

they exhibit dynamic characteristics and are populated by virtual agents. There is, however, a lack of general-

purpose tools for designing and implementing intelligent virtual environments, and especially in the case of

defining virtual agents’ tasks, where there is a strong dependence between the task execution and the context. In

this paper, we present our approach towards a context-independent definition of tasks using a high-level

language. With the proposed task definition language, one can combine numerous built-in functions and

commands to describe complex tasks as a combination of parallel, sequential and conditional execution of

actions. It can be used to program complicated virtual agent interactions with the environment without going into

much detail on how these tasks are implemented and how parallelism is achieved. The main advantage of the

proposed language is that it enables tasks to be easily constructed and reused by different agents and in different

environments. Our approach has been based on SimHuman, a platform for rendering and animating Virtual

Agents in real-time.

Keywords
virtual reality, virtual agents, virtual environments, intelligent agents, task definition, animation

1. INTRODUCTION
The enormous growth of processing power that we

have witnessed in the last few years, as well as the

powerful features of modern graphics cards, have

enabled the development of complex three-

dimensional environments that no longer need an

expensive workstation or a super computer to run.

Nowadays, even everyday users can have a limited

virtual reality experience on their personal computers

by navigating and interacting with beautiful synthetic

worlds. The use of Virtual Environments as a user

interface should, nevertheless, not be limited to just

browsing a beautiful 3D scene and interacting with

passive objects or other users. However attractive a

synthetic world may be, if there is little or no

autonomy at all, the immersive experience is of

limited interest. Virtual worlds become more

interesting if there is some user-independent action in

the environment, which can be achieved with the use

of virtual agents.

A virtual agent can be defined as an autonomous

entity in a virtual environment. It should not only

look like, but also behave as a living organism

(human [Bad93], animal [Ter94], or other fictional

character [Ayl99]) and be able to interact with the

world and its inhabitants. To enhance a virtual

agent’s autonomy and add more believable

characteristics, one should model the agent’s

functionality and behavior so as to resemble the real

behavior of the creature it represents. This means that

the ideal virtual human in a synthetic environment is

the one that seems to behave as a real human would;

the one whose actions seem to have purpose and

meaning. Virtual Environments can, therefore, benefit

from the advances in Artificial Intelligence, and

especially in the fields of Intelligent Agents, Robotics

and Artificial Life, to increase their autonomy and

become more believable and interesting for the users.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.11, No.1., ISSN 1213-6972

WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

There has been significant research in the field known

as Intelligent Virtual Environments [Luc00, Ayl01]

or Intelligent Virtual Agents, concerning appearance

[Mag96, Bre00, Aub00], motion [Tha96, Bro98,

Kar98] and behavior [Per96, Sil99, Bur01], and even

an integrated system has been proposed, the Agent

Common Environment [Kal02b]. There is, however,

a lack of standard architectures, methodologies and

general-purpose tools, whilst each approach seems to

be using a different configuration of a Virtual

Environment as a basis. It seems that Virtual

Environments can have different levels of detail and

complexity concerning physical laws of the world,

agent visualization and animation, and agent – object

interaction. Therefore, it is hard if not impossible, to

design and build tools that simultaneously satisfy all

cases.

In the existing approaches one may also notice that

there is a strong dependence between the action

definition and the context, i.e. actions depend on both

the agent’s structure and the current environment

settings. In most of the cases, these actions are

described using specific object names and numerical

data, which makes it hard to reuse them in different

scenarios or to be performed by different agents.

Furthermore, one may notice the absence of a tool to

describe action combinations and sequences needed

to achieve specific tasks. In most of the cases, actions

define simple agent-object or agent-agent

interactions, and complex tasks are executed as a

result of higher level decision making, e.g. with the

use of a planner. We believe, nevertheless, that most

everyday tasks are a result of action combinations

and decisions, which can be described with the use of

a procedural language. Tasks could then be instantly

executed avoiding the computational cost of a

planner. The latter can be restricted to higher-level

decisions, e.g. for switching between tasks.

In this paper we present our approach towards a

context-independent definition of tasks for virtual

agents, using a high-level language that enables them

to be reused by different agents and in different

environments. We discuss about the syntax and

functionality of the implemented language and

present detailed examples of task definitions using

everyday scenarios. We also review the related work

concerning programmable agent behaviors.

2. A 3D ENVIRONMENT WITH

VIRTUAL AGENTS
In this section we will discuss about the structure and

functionality of the virtual environment that our

research is based on, since it will aid to the better

understanding of how the proposed task definition

language is working and how it can be used to

describe the agents’ interaction with the virtual world.

The Task Definition Language is based on

SimHuman [Vos01], a tool for the creation of 3D

environments with virtual agents. SimHuman consists

of a programming library and two utilities for

designing the environment and the agents’ animation

sequences. The library allows users to define and

animate three-dimensional scenes with an arbitrary

number of objects, virtual agents and user-controlled

avatars, and has embedded characteristics such as

Inverse Kinematics, Physically Based Modelling,

Collision Detection and Response, and Vision. The

geometry models for the virtual agents can be

imported from Curiouslabs Poser, a commercial

program for modeling, posturing and animating

synthetic characters.

The main object in SimHuman is the world, which

represents the virtual environment itself. It contains

the set of all entities that exist in the environment,

which are either objects or agents. The difference

between an object and an agent is that the latter can

perform actions and perceive the current state of the

world and, therefore, it can have an autonomous

operation. Agents are not necessarily life-like; objects

with reactive behavior (a computer, a car, etc.) could

also be declared as agents.

Entities can be arranged in a tree-structured

hierarchy, where the geometric transformation of an

entity is affected by that of its parent, and affects that

of the children. All entities have a geometry, some

common geometric properties (translation, rotation,

size, etc) and a set of attributes, which are user-

defined variables.

An attribute’s use depends on the environment and

the respective laws, e.g. it could hold the current

speed of an object, percentage of liquid in a bottle,

the state of a button, etc. In the case of human-like

agents, attributes can be used to model emotions,

biological properties, mental states, etc. The world

has also a set of attributes that model the global

properties and can be perceived by all agents, e.g. the

time of the day, the weather, etc. Each attribute is of

the form <name, type, value>, where name is its

unique name, type is the type of data that it holds and

value its current value.

3. THE TASK DEFINITION

LANGUAGE
Our Task Definition Language’s purpose is to fill the

gap between higher-level decision processes and the

agent’s motion and interaction in the environment.

Using this language, one can combine numerous

built-in functions and commands to describe complex

tasks as a combination of parallel, sequential and

conditional execution of actions. Its main advantage

is that it makes it easier for the user to specify action

combinations and scenarios for virtual agents,

without having to explicitly program all

implementation details. Furthermore, it is a way to

define these tasks in a context-independent manner

and, thus, to easily reuse them with different agents

and/or in different environments.

The Task Definition Language consists of a number

of user-defined tasks, each of which has a unique

name and a number of arguments. As a task we define

the combination of virtual agent actions that achieves

a specific result, e.g. having lunch, going to bed,

driving to work, etc.

Actions
An action is a process that causes changes to the

world and its entities. It has a duration, either fixed or

variant, and is executed in continuous timeframes.

We call primitive actions the set of commands that an

agent can perform in one timeframe. In SimHuman

these actions are: changing the geometric properties

of entities (rotation, translation, place in the

hierarchy), adding new entities or removing entities

from the world, and sending messages to other

agents. It is, of course, the world’s responsibility to

apply these actions and, through its laws, to

determine their effects on the entities. Note that an

agent can execute more than one primitive actions in

one timeframe, e.g. rotate both arm and leg, but these

will be visualized simultaneously.

An action is implemented as a sequence of primitive

action sets that are executed in continuous

timeframes. This sequence can be:

• predefined : a1, a2, … an , with duration = n*∆t,

where ai is a set of primitive actions performed in

the timeframe i and ∆t is the duration of a

timeframe

• goal-oriented : ai = f(ai-1,I,G) , where ai is the set

of primitive actions performed in the timeframe

i, I is the set information about the objects and

their properties that the agent receives from its

senses, G is the goal, and f is a function that

returns the next primitive action set based on the

agent’s current action and senses. The sequence

terminates when the agent’s senses indicate that

the goal has been reached.

The Task Definition Language supports a number of

standard actions, both predefined and goal-oriented,

which can be performed by the agent. Of course, all

available primitive actions can be solely called as

well. Supported actions have a unique name and a

number of arguments.

Probably the most important feature an animated

agent should have is keyframing, i.e. the ability to

execute predefined animation sequences. We have

developed a utility to design, test and store keyframed

animations in a visual environment, by selecting the

agent’s body parts and adjusting their rotation. The

set of the user-defined animation sequences forms an

animation library, which is stored in a file and is part

of the agent’s configuration. During runtime, an agent

can execute any of the existing animations with the

action: anim <name>, where name is a string

containing the unique name of the animation

sequence. Before executing the animation, the agent

performs a transition with constant speed from its

existing pose to the initial pose of the animation, and

then starts executing the animation sequence. Global

rotation and translation changes can also be included

in an animation, but they are treated as relative

values, e.g. the agent moves one meter forward and

turns 30 degrees to the left.

Another important feature of virtual agents is

locomotion, i.e. the ability to walk inside the

environment. The Task Definition Language provides

a number of actions for the agent’s locomotion. The

agent is able to walk up to a given position, to rotate

its body until it reaches a certain orientation, to walk

to a certain direction, or to follow a path. Positions

and orientations are given as vectors and a path is a

list of vectors. The locomotion engine is not using

standard limb rotations, because we wanted to

support any type of agent and not just human-like

ones. Therefore, the engine works using a state

machine that switches between several user-defined

animation sequences. The use of the state machine is

to ensure that the movement and rotation of the body

takes place in a correct and believable manner, e.g. in

the case of virtual humans, the agent starts rotating

only when one of its legs is on the ground, and it

rotates around that particular leg.

The interaction between agents and objects cannot

always be based on predefined animations, because

there might be cases, where the agent may have to

rotate its limbs to reach a certain point in space. To

solve such problems, the virtual agent has to use a

form of inverse kinematics. In our approach, it can

perform the action: ik <chain> <position>, where

chain is a kinematic chain of entities and position is a

vector containing the target position. To make the

agent-object interaction easier, the user is able to

define a number of spots (positions in space) in the

object configuration, and assign an object’s spot as a

target position in inverse kinematics actions. This

could assist the agent on how to catch or how to use

an object. After catching an object, one can always

add it to the agent’s hierarchy using the respective

primitive action, so that the object remains attached

to the agent’s hand.

The inverse kinematics action animates the chain so

that the last joint’s position is equal to the target.

Instead of using a generic inverse kinematics solver,

we are using an approach, which tests at every step

the best rotation for each joint to achieve the target.

This continuous correction sequence has the

advantage that the animation looks more natural and

human-like compared to applying a transition from

the current state of the chain to the solution of the

problem. Additionally, it works with moving targets

and can avoid collisions with objects that lie between

the agent and the target.

Instead of calling a single action, it is also possible to

call a full task using the proper arguments. This can

result to higher-level tasks that combine several

subtasks to achieve a goal. Finally, there are actions

that have no effect on the environment, such as those

intended to copy values between variables and to

manipulate the agent’s knowledge base by adding or

removing beliefs.

Literals, Variables and Functions
When an action is called, it should be followed by a

number of arguments, each of which should be of a

certain type according to the action definition.

Arguments can be literals that provide

straightforward values, variables, or even functions.

The user should, of course, ensure that the variable’s

type or the function’s return type is the appropriate.

The available types are: boolean, integer, float, string,

entity, list of entities, vector, list of vectors and

relation. A relation is a composite type, which uses a

string as a name and a list of values of any type, e.g.

person(‘John’, 28, 1.80, ’single’). Relations are

useful for message exchange and knowledge

representation.

There are four different variable sets that can be used.

These are the agent’s attributes, the task arguments,

the task’s internal variables and other entities’

attributes. To refer to a member of one of the first

three sets, one can simply use its name. On the other

hand, to refer to an attribute of another entity, one

should use the notation [<entity name>]<variable

name>.

A very important feature of the task definition

language is the ability to use functions as arguments,

because it allows actions to be called with values that

are adapted to different environments. In that way,

one can define tasks that may be executed even in

highly dynamic worlds, because with the use of

variables and functions, the agent can track the

current state of the world and possible relations

between entities, and use this knowledge to apply the

proper actions. Functions use arguments themselves,

and, therefore, they can be nested, producing even

more useful combinations, as we shall see in the

examples.

There are a number of functions that can detect

spatial relations between entities, a feature that is

important both for conditional execution of actions,

and for managing the agent’s beliefs about the world.

These functions use two entities as arguments and can

be used for the following relations: near, on, front_of,

behind, left_of, right_of, above and below. They are

evaluated using the current geometric properties of

entities (position, size, orientation) and return a

boolean value, e.g. above(e1, e2) returns true if the

entity named ‘e1’ is above the entity named ‘e2’. The

relations front_of, behind, left_of and right_of are

relative to the second entity’s local coordinate

system. All entities have user-defined front and up

vectors, which are used in this case for detecting if

such relations are true. Another important function is

intersect(entity1, entity2), which checks if two

entities collide with each other using the

environment’s built in collision detection engine.

There are also functions that can generate a new

position relative to a given entity or a given position.

This relative position can be one of the following:

left, right, front, behind, above, below and on. In the

case of a given entity, the appropriate function uses

the entity’s own coordinate system, while in the other

case, it uses the agent’s one. There are of course

infinite vectors that satisfy such relations, e.g. there

are infinite places above an entity, but the language is

using a user-defined default distance value to create

the appropriate return vector. Finally, one can use

functions that return the distance between two entities

or the middle position between them.

Besides the functions that deal with spatial properties,

there are also logical ones, such as and, or and not,

which are very useful for defining complex

conditions. Another important function is exists(ent,

f), where ent is a variable of type entity, and f a

function (or a combination of functions) with return

type boolean that uses ent in its definition. The

function returns true if there is at least one entity in

the environment for which f returns true, and in such

a case the variable ent’s value is the first such entity

found. For example, if there is a variable e declared

as entity and the agent’s structure contains a sub-

entity called ‘Hand’, the function exists(e,

intersects(e, Hand)) returns true if there is an entity

that intersects with the agent’s hand, and the value of

e is that entity.

Finally, the task definition language provides

functions for all basic arithmetic operations and

relations between floats, integers and vectors, as well

as a number of utilities for type conversions and list

iterations. At the moment there are 85 predefined

functions already implemented.

Defining Tasks
A task consists of three parts: the task definition, the

variable declaration and the body. The syntax is:

<task definition>

#Variables

<variable declaration>

#Body

<block of commands>

#end

The task definition is as follows: TASK name(type1

arg1, type2 arg2, ..., typen argn), where name is the

task’s name and typei and argi are the type and name

of the i-th argument respectively. In the variable

declaration, the user defines the local variables that

will be used by the task by writing their type, name

and initial value. Finally, the body contains a block of

task commands, which is declared in the form c1; c2;

... cn , where c1, c2, ..., cn are task commands. Possible

task commands are:

• <action> : a single action

• PAR(<block b1>, <block b2>) : Blocks b1 and

b2 are executed in parallel

• DO(<block b>) UNTIL c : Block b is executed

until condition c is true

• IF <bool c> THEN (<block b1>) ELSE

(<block b2>) : If condition c is true, block b1 is

executed, else block b2 is executed

 The simplest body declaration is to have a series of

actions separated with semicolon. The actions are

then executed sequentially and the task execution

terminates when the last action has finished. In the

case of an action failure, e.g. because the inverse

kinematics cannot be solved for the given chain, or

because an unknown animation is requested, the

whole task fails.

Parallel execution of actions is supported, and it can

be achieved using the PAR command. The user

defines two blocks that are executed in parallel until

they are both successfully terminated. The action

parallelism works with resource allocation and de-

allocation. Each of the possible agent actions

animates a number of limbs, some of which may be

critical for the action’s success, while others may not.

When an action starts executing, it allocates the

critical body parts, and no other action is allowed to

use them, until it is over and de-allocates them. Other

actions, may, however take control of the non-critical

parts of that particular action. For example, a walking

animation allocates the legs, feet and global

translation and rotation, but it does not allocate the

arms, although it animates them. It is then possible

for an agent to walk and scratch its head in parallel,

but it is not possible to kick something while walking.

In the second case, where an action tries to allocate a

resource that has already been allocated, the PAR

command fails.

There are cases, where one may wish the agent to

repeat executing the same block of actions until a

certain condition is met. This can be achieved with

the DO – UNTIL command. The difference between

this command and similar ones in classic procedural

programming languages is that the termination

condition value is not only checked at the end of the

block, but also during its execution. This means that

one can instruct an agent to execute a number of

actions to reach a goal, but if that goal condition is

reached earlier, the rest of the actions will be skipped.

The frequency of the condition checking during the

command execution is user-defined.

Finally, the Task Definition Language provides an IF-

THEN-ELSE statement to switch between different

blocks of commands if needed, e.g. the task sit(entity

e) may use different commands according to the type

of e (couch, chair, stool, etc).

4. EXAMPLES
We will present a number of examples to show how

the Task Definition Language can be used to achieve

certain agent – object interactions, or even to

describe more complex agent behaviors.

Interacting with Objects
The first example is an agent that uses its hand to

catch an object. This action can be performed in

various ways, according to the desired level of detail

and complexity, both of the agent and the

environment.

The simplest way of doing it is without grasping.

Supposing that the agent’s fingers do not move, one

can define an end-effector on the surface of the hand

as a dummy joint, and a spot on the surface of the

object. One can then use the inverse kinematics

action with a joint chain that includes the shoulder,

the elbow, the wrist and the defined end-effector, and

use as target position the spot on the object. If the

action succeeds, the next one will be to assign the

object as the end-effector’s child, so that it remains

attached to the agent’s hand. This approach may not

be the most elegant one, but it is suitable for large

environments that may need simplified agent models.

Furthermore, if the spots on the objects have been

carefully chosen, it can achieve pretty good visual

results.

A more elegant way of having an agent catch an

object is to use its fingers and have them grasp the

object. One approach is to define as many spots on

the surface of the object as the fingers that will be

used. An inverse kinematics action can then bring the

hand at the desired position and after that, a number

of parallel IK motions using the PAR command will

move the fingers concurrently towards the defined

spots. Another approach is to constantly rotate all

fingers towards the surface of the object in parallel,

and stop rotating each one when it collides with the

object (using the DO - UNTIL command). Both

approaches need complex agent models and

skeletons, but achieve much better results compared

to the previous one. The second case avoids the

definition of spots, so it is more general, but it has to

make use of constant collision detection checks,

which will increase the computational cost.

Finally, one can use the Task Definition Language to

build more complex interactions, such as to use one

object with another. For example, an agent could

catch a coin and use it on the slot of a machine, just

by using the coin itself as an end-effector of the

inverse kinematics chain (since it has been added to

the agent’s structure after its catching) and use the

slot’s center position as a target.

Observing the Environment
There may be cases, where the agent may not initially

know which object to interact with. In such cases, the

agent may have to observe the state of the world and

select the appropriate objects before performing a

task. Consider the example where an agent walks into

a restaurant and checks for a free table. Let us assume

that there are no reserved tables, so a table is

considered free if all chairs around it are not

occupied. In such a case, the agent can use a

combination of conditions to examine if there is a

free table in the world. First of all, it could examine if

a chair around a table is occupied by checking if there

is an entity Chair of class ‘chair’, which is near the

table, and there is an entity of class ‘Human’ that

intersects with it, so it is probably sitting on it. Using

the above condition, to check if a table is free, one

has to check if there exists an entity Table of class

‘table’, around which no chair is taken. The syntax of

such a task will be:

TASK sit_on_free_table()

#Variables

 entity Table ’’

 entity Chair ’’

 entity Human ’’

#Body

DO (

 task walk_around()

) UNTIL exists(Table, and(

 eq([Table]class, ‘table’),

 not (exists (Chair, and(

 eq ([Chair]class, ‘chair’),

 and(

 near (Chair, Table),

 exists(Human, and(

 eq([Human]class, ‘human’),

 intersect(Human, Chair)))

)))

)

)

);

task go_and_sit(Table)

#end

In the above code, we suppose that there are two

additional tasks: walk_around(), which lets the agent

follow a predefined path and go_and_sit(Entity e),

where the agent walks to the table e and sits on one of

its chairs.

With this approach, the agent can directly draw

conclusions using only the partial information it

receives by its senses. This fact makes even more

sense in highly dynamic environments, where

changes in the world are so rapid that it is almost

impossible to keep track of every one of them.

Consider for example a soccer game played with

agents. It is not effective to constantly add and

remove global beliefs concerning which players are

near the ball and who has taken control of it. Using

the task definition language, one can easily detect if

an opponent has the ball and who that person is, using

a simple condition like:

exists (Human, and (

 and(

 eq ([Human]team, ‘opponent’),

 and(near (Human, Ball),

 front_of (Ball, Human))

),

 not(exists (Other, and (

 eq([Other]team, ‘our’),

 near (Other, Ball))))

)

)

which means that there is a person from the opponent

team, who is near the ball, the ball is in front of him,

and no person from the agent’s team is near the ball.

A Complete Scenario
From the above mentioned examples it becomes

pretty clear that using the language to construct some

basic, parameterized tasks and combining them in

higher level tasks, one can easily build agent

behaviors for complicated scenarios, avoiding the

computational cost of using more complex decision

techniques, such as planning.

Figure 1: The agent is walking in the bar

We have built an example of an agent visiting a bar

(Figure 1) by defining several subtasks and a global

task that controls them. The subtasks are: walking

around until there is a free table, sitting on a chair,

calling the waiter, ordering drink and drinking from a

bottle. The communication between the agent and the

waiter takes place through predefined messages and

information is exchanged between subtasks (e.g.

which table is currently free) with the user-defined

agent attributes. The drinking task also uses

messages. There is an attribute in the bottle

configuration that holds the liquid percentage, which

is decreased every time the agent brings the bottle to

its mouth. To do so, the last action in the drinking

task is sending a message to the world that the agent

drinks from the bottle, and the world is responsible

for subtracting the proper value from the bottle’s

liquid percentage.

5. RELATED WORK
The task execution of agents in intelligent virtual

environments is an important issue and there are a

number of approaches in the literature. In most of

them the agent-environment interaction is context-

dependent and hardwired, and there is little chance of

programming new tasks and adjusting them to

different scenarios. There are, however, three

important approaches that let the user define new

agent interactions in a programmable way: the

Parameterized Action Representation [Bad00], the

Smart Objects approach [Kal02a] and the Improv

system [Per96].

The Parameterized Action Representation is a

language designed to bridge the gap between natural

language instructions and the agents who are to carry

them out. One can use it to give a complete

description of an action by specifying the

applicability conditions, the execution steps and the

termination conditions. Actions can be chained

together using the preparatory specifications, a set of

<condition, action> statements.

The Parameterized Action Representation is a

successful way to design complex action sequences

and thus to define agent behavior. It seems,

nevertheless, that condition checking is restricted to

variable values and symbolic relations, whilst in our

approach one can use spatial relations and inter-

object collisions for action termination and / or

initialization. Furthermore, the ability to use and

manipulate variables and to call tasks from within

other tasks in our language, makes it easier to define

higher-level tasks as combinations of more primitive

ones using separated code, and to adjust them without

having to readjust the preparatory specifications of all

subtasks.

In the smart objects approach, all interaction features

of an object are included within the object

description. Besides the intrinsic object properties

(movement description, physical properties, etc.),

smart objects include information to aid actors to

perform each possible interaction, description of the

object’s reaction for each performed interaction, and

expected actor behavior in order to accomplish the

interaction.

Smart objects are very important for the reusability of

designed objects and the decentralization of the

animation control, but they have the drawback that all

agents interact with an object in the same way.

Furthermore, it restricts the behavioral capabilities of

agents to single agent-object interactions, while a

complex task may involve more than one objects and

agents. It is also specifically designed for human-like

agents, which could be a drawback in some cases.

Improv consists of an Animation Engine that uses

procedural techniques to generate layered, continuous

motion and transition between them, and a Behavior

Engine that is based on rules governing how actors

communicate and make decisions. The combined

system provides an integrated set of tools for

authoring the ‘minds’ and ‘bodies’ of interactive

actors. Improv seems, however, to offer little chance

for action reusability, since all animation scripts are

specified in a low-level manner by explicitly stating

the translation and rotation values.

6. CONCLUSIONS AND FUTURE

WORK
The proposed Task Definition Language can be used

to program complex actions for virtual agents without

going into detail on how these actions are

implemented and how parallelism is achieved. One

can easily program the agent to dynamically check

for environmental changes using the built-in

functions, and to adapt its behavior accordingly. One

has also the freedom to define agent – object and

agent – agent interactions at both symbolic and

physical levels through messages and action

execution, and update the agent’s beliefs to maintain

a coherent world representation. These features make

it easier to define complex agent behaviors in

complicated worlds, and to reuse tasks in different

environments and with different agents.

There are, nevertheless, some issues that still need

improvement, such as the addition of more complex

object interactions (e.g. buttons, handles, etc), as well

as the use of facial animation for expressing the

agents’ emotions and for synchronizing their lips

when speaking. While building the Task Definition

Language, we tried to make it as simple and open as

possible, and it is, therefore, easy to add support for

additional actions, once our agents are enhanced with

new capabilities.

We are working towards a generic platform for

designing and running real-time virtual environments

with virtual agents, and we are planning to use the

task definition language as a medium to connect a

spatio-temporal planner with virtual agents.

Furthermore, we are trying to improve both the action

execution and the world functionality, so that in the

future we will be able to add more bio-mechanical

characteristics to the agents, and test the task

definition language in real world simulation

environments.

7. REFERENCES
[Aub00] Aubel, A., Boulic, R., and Thalmann, D.

Real-time Display of Virtual Humans: Level of

Details and Impostors. IEEE Trans. Circuits and

Systems for Video Technology, Special Issue on

3D Video Technology, 2000.

[Ayl99] Aylett, R., Horrobin, A., O’Hare, J., Osman,

A., and Polshaw, M. Virtual Telebubbies:

reapplying a robot architecture to virtual agents.

Proc. of the Third International Conference on

Autonomous Agents, New York, pp. 514-515,

1999.

[Ayl01] Aylett, R., and Cavazza, M. Intelligent

Virtual Environments, - A State-of-the-art Report.

Eurographics 2001, pp. 87-109, 2001.

[Bad93] Badler, N., Phillips, C., and Webber, B.

Simulating Humans: Computer Graphics

Animation and Control. Oxford University Press,

1993.

[Bad00] Badler, N., Bindiganavale, R., Bourne, J.,

Palmer, M., Shi, J., and Schuler, W. A

parameterized action representation for virtual

human agents. Embodied Conversational Agents,

MIT Press, pp 256-284, 2000.

[Bre00] Bret, M. Virtual Living Beings. Lecture

Notes in Artificial Intelligence, vol. 1834, pp.

119-134, 2000.

[Bro98] Brogan, D., Metoyer, R., and Hodgins, J.

Dynamically Simulated Characters in Virtual

Environments. IEEE Computer Graphics and

Applications, vol. 15, no.5, pp. 58-69, 1998.

[Bur01] Burke, R., Isla, D., Downie, M., Ivanov, Y.,

and Blumberg, B. CreatureSmarts: The Art and

Architecture of a Virtual Brain. Game Developers

Conference, San Jose, CA, pp.147-166, 2001.

[Kal02a] Kallmann, M., and Thalmann, D. Modeling

Behaviors of Interactive Objects for Real-Time

Virtual Environments. Journal of Visual

Languages and Computing vol. 13, pp. 177-195,

2002.

[Kal02b] Kallmann, M., Monzani, J.S., Caicedo, A.,

and Thalmann, D. A Common Environment for

Simulating Virtual Human Agents in Real Time.

Proc.Workshop on Achieving Human-Like

Behavior in Interactive Animated Agents,

Barcelona, Spain (to appear).

[Kar98] Karla, P., Magnenat-Thalmann, N.,

Moccozet, L., Sannier, G., Aubel, A., and

Thalmann, D. Real-time Animation of Realistic

Virtual Humans. IEEE Computer Graphics and

Applications, vol.18, no.5, pp. 42-55, 1998.

[Luc00] Luck, M., and Aylett, R. Applying Artificial

Intelligence to Virtual Reality: Intelligent Virtual

Environments. Applied Artificial Intelligence,

14:3-32, 2000.

[Mag96] Magnetat-Thalmann, N., Carion, S.,

Courchesne, M., Volino, P., and Wu, Y. Virtual

Clothes, Hair and Skin for Beautiful Top Models.

Proc. Computer Graphics International ' 96,

Pohang, Korea, pp. 132-141, 1996.

[Per96] Perlin, K., and Goldberg, A. Improv: A

system for scripting interactive actors in virtual

worlds. Proc. of ACM Computer Graphics Annual

Conf, pp. 205-216, 1996.

[Sil99] Silva, D., Siebra, C., Valadares, J., Almeida,

A., Frery, A., and Ramalho, G. Personality-

Centered Agents for Virtual Computer Games.

Proc. of Virtual Agents 99, Salford, UK, 1999.

[Ter94] Terzopoulos, D. , Rabie, T., and

Grzeszczuk, R. Artificial Fishes: Autonomous

Locomotion, Perception, Behavior, and Learning

in a simulated physical world. Artificial Life, vol.

1(4), pp. 327–351, 1994.

[Tha96] Thalmann, D., Shen, J., and Chauvineau, E.

Fast Human Body Deformations for Animation

and VR Applications. Proc. Computer Graphics

International 96, pp.166-174, 1996.

[Vos01] Vosinakis, S., and Panayiotopoulos, T.

SimHuman: A Platform for Real-Time Virtual

Agents with Planning Capabilities. Lecture Notes

in Artificial Intelligence, vol. 2190, pp.210-223,

2001.

