

Technical University of Košice

Faculty of Electrical Engineering and Informatics

Department of Electric Power Engineering

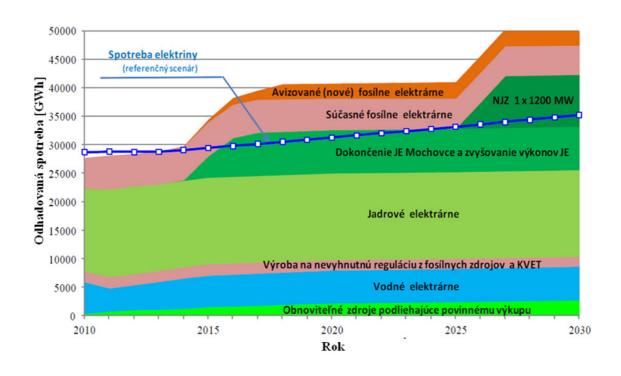
Alexander Mészáros Associate Professor

Katedra elektroenergetiky

Fakulta elektrotechniky a informatiky Technická univerzita v Košiciach Mäsiarska 74.

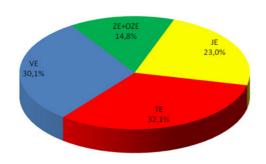
041 20 Košice

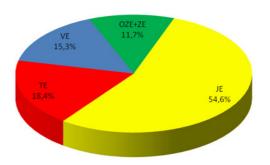
tel.: 00421 55 602 3553


e-mail: Alexander.Meszaros@tuke.sk

Hodnotenie ekonomickej efektívnosti bioplynovej stanice

- Elektroenergetika v SR
- Možnosti OZE v SR
- · Návrh variantných riešení BPS
- · Výpočet ekonomickej efektívnosti


- Záväzky voči EÚ 14 % podiel OZE na hrubej konečnej spotrebe do r. 2020
- Implementácia záväzkov prostredníctvom z. 309/2009 OZE a KVET
- Decentralizácia výroby povaha OZE
- Vplyv na stabilitu sústavy FVE
- Zmena malé zdroje OZE
- Diverzifikácia zdrojov Biomasa, MVE, geotermal.


Prognóza vývoja pokrytia spotreby elektriny v SR do roku 2030

Slovenská republika má v energetickom mixe vyvážený podiel jadrového paliva a fosílnych palív na hrubej spotrebe primárnych energetických zdrojov.

Inštalovaný výkon na Slovensku v roku 2012 - 8 431 MW, Celková spotreba elektriny v roku 2012 - 28 786 GWh.

Podiel inštalovaných výkonov

Podiel výroby

V súvislosti s rozvojom OZE sa vláda SR vo svojej koncepcii rozvoja OZE zameriava na malé zdroje s výkonom do 10 kW. Plánovaná finančná podpora na výstavbu týchto zariadení[12]:

- FV panely (elektrina),
- veterné turbíny (elektrina),
- •solárne kolektory (teplo),
- •kotly na biomasu (KVET),
- •tepelné čerpadlá (teplo).

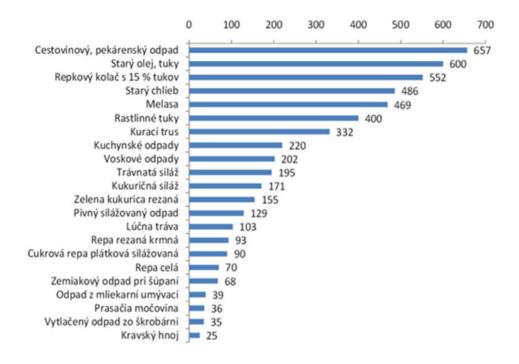
Presmerovanie orientácie na malé zdroje OZE do 10 kW znamená využívať ES (DS) v zmysle záložného zdroja resp. ako akumulátor prebytočnej energie, ktorá sa nespotrebuje v mieste výroby (rodinný dom). Podstatou podpory malých zdrojov je nezaťažovať sústavu nepredikovateľnými OZE.

Technicky využiteľný potenciál OZE v SR [3]

Druh	Technicky využiteľný potenciál			
	GWh/rok	TJ/rok		
Geotermálna energia	6 300	22 680		
Vetemá energia	605	2 178		
Soláma energia	5 200	18 720		
MVE	1 034	3 722		
VVE > 10 MW _e	5 573	20 063		
Biopalivá	2 500	9 000		
Biomasa	11 237	40 453		
Spolu (bez VVE)	26 876	96 753		
Spolu	32 449	116 816		

Technicky využiteľný potenciál biomasy na Slovensku je 11 237 GWh/rok čo by pokrylo takmer 40% ročnej spotreby elektriny na Slovensku.

Výhoda biomasy spočíva v nezanechávaní tzv. uhlíkovej stopy, pretože biomasa počas svojho rastu pri fotosyntéze spotrebuje oxid uhličitý, ktorý sa uvoľní do atmosféry pri jej energetickom využití


V podmienkach SR je možné energeticky zhodnotiť biomasu [3]:

- ·lesnú biomasu palivové drevo, energetické porasty,
- •poľnohospodársku biomasu zvyšky z pestovania a spracovania plodín, záhradná biomasa zo sadov a viníc, výroba kvapalných biopalív, exkrementy hospodárskych zvierat, odpad z potravinárskeho priemyslu,
- odpadovú biomasu odpad drevospracujúceho priemyslu, komunálny odpad, kaly z čističiek odpadových vôd.

Medzi pevné biopalivo patrí lesná biomasa, ktorú je možné priamo spaľovať alebo po spracovaní na drevnú štiepku spaľovať v automatizovaných kotloch. Ďalšou možnosťou je zhutňovanie drevnej štiepky stlačením pri vysokom tlaku a teplote. Výsledným produktom sú drevené brikety alebo pelety, ktorých výhrevnosť je vyššia než výhrevnosť hnedého uhlia (14-16 MJ/kg) a pohybuje v hodnotách 17-19 MJ/kg.

Výhrevnosť bioplynu

Objem CH ₄ v bioplyne	Výhrevnosť v MJ.m ⁻³	Výhrevnosť v kWh.m ⁻³
100%	35,8	9,94
80%	28,6	7,94
67%	24	6,67
55%	19,7	5,47

Výťažnosť bioplynu v m³.t-1

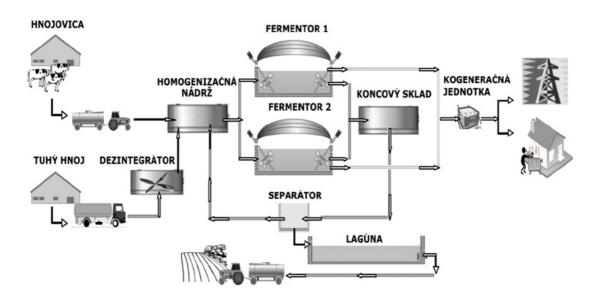
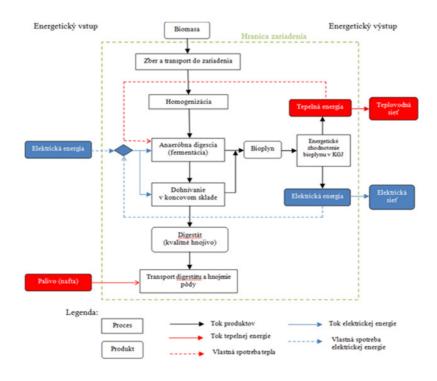
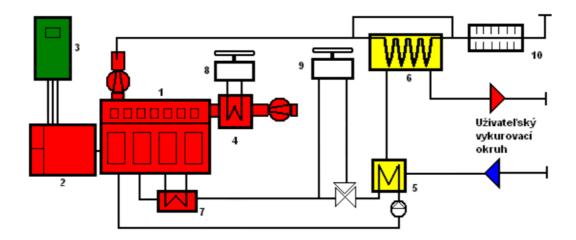




Schéma BPS

Bloková schéma energetickej bilancie BPS

165

Principiálna schéma KGJ

1-Blok spaľovacieho motora, 2-Elektrický generátor, 3-Elektrický rozvádzač s riadiacim systémom (pripojenie k ES), 4-Medzichladič plniacej zmesi, 5-Výmenník tepla voda/voda, 6 -Výmenník tepla spaliny/voda, 7- Chladič mazacieho oleja, 8-Chladiaci ventilátor, 9-Chladiaci ventilátor, 10- Tlmič hluku

Pre návrh bioplynovej stanice sa uvažovali tieto varianty:

- Variant A model BPS, ktorá produkované teplo využíva len na technologické účely, resp. vlastnú spotrebu – objekt v priestoroch poľnohospodárskeho družstva,
- Variant B model BPS, ktorá zvyškové teplo využíva nielen na vlastnú spotrebu, ale odpadové teplo sa dodáva priemyselným prevádzkam na technologické využitie, či vykurovanie objektov – objekt v priestoroch priemyselného parku.

В

Porovnanie množstva vstupných surovín pre variant A a B [2]

Variant	Vstupná surovina	Množstvo t/r	Výťažnosť m³/t	Produkcia m³/r
	Kukuričná siláž	15 500	200	3 100 000
A	Kravský hnoj	4000	80	320 000
	Prasacia hnojovica	Prasacia hnojovica 2000 36		72 000
	Celkové m	nožstvo produkcie b	ioplynu	3 492 000
	Kukuričná siláž	17 000	200	3 400 000
В	Odrezky cukrovej repy	Odrezky cukrovej repy 1675 90		150 750
	Celkové m	nožstvo produkcie b	ioplynu	3 550 750

Tabuľka 3 Základné technologické parametre BPS [2]

	Základné parametre BPS		Variant A	Variant B
Inštalovaný výkon	elektrický	kW	1 000	1 000
16 1660	tepelný	kW	1 340	1 376
Produkcia bioplynu	365	m³/deň	10 080	10 080
Využitie zariadenia		h/r	8 250	8 250
		%	94,17	94,17
Vlastná spotreba BPS		%	4	4
Dodávka elektrickej en	ergie	MWh	7 933	7 933
Výkupná cena elektriny	7	€/MWh	107,53	107,53
Technologická spotreba	a/dodávka tepla	%	15	15
Dodávka tepla		MWh	-	9 872
Cena tepla		€/MWh	-	49
Celkové vyrobené teplo	0	MWh	11 055	11 352

 $\label{eq:tabulika 4} {\it Bilancia elektrickej a tepelnej energie variantov A, B [2]}$

	Variant A	Variant B
elektrický výkon KGJ	1 MW	1 MW
využitie maxima výkonu	8 250 h	8 250 h
množstvo elektriny na svorkách generátora	8 250 MWh	8 250 MWh
straty + vlastná spotreba elektriny (4%)	8 250 x 0,04 = 330 MWh	8 250 x 0,04 = 330 MWh
množstvo elektriny dodanej do siete	7 920 MWh	7 920 MWh
výkupná cena za elektrinu	107,53 €/MWh	107,53 €/MWh
ročné tržby za predaj elektriny	7 920 x 107,53 = 851 637,6 €	7 920 x 107,53 = 851 637,6 €
tepelný výkon KGJ	1,34 MW	1,376 MW _t
množstvo vyrobeného tepla	11 055 MWh _t	11 352 MWh _t
spotreba technologického tepla (15%)	11 055 x 0,15 = 1 658,25MWh	11 352 x 0,15 = 1 703 MWh
nevyužité odpadové teplo	9 391,75 MWh	-
teplo dodané zákazníkovi	-	11 352 - 1703 = 9 649 MWh
výkupná cena tepla	-	49 €/MWh
ročné tržby za predaj tepla	-	9 649 x 49 = 472 811 €
ročné tržby celkom	851 637,6 €	851637,6 + 472811 = 132448,6 €

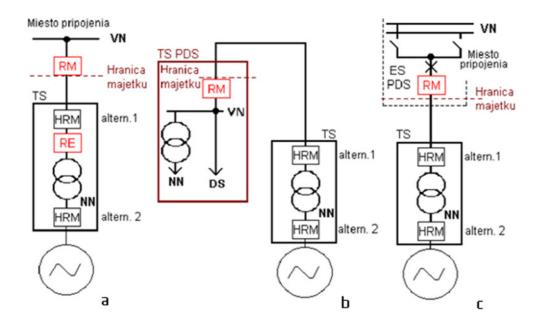
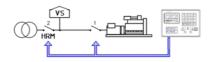
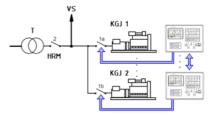




Schéma pripojenia, štúdia pripojiteľnosti

Výber KGJ

Typ KGJ	1250 C	500 C	750 C	
Menovité napätie	٧	3 x 230/400	3 x 230/400	
Menovitá frekvencia	Hz	50	50)
Účinník	cos φ	0,8 ÷ 1	0,8	÷ 1
Menovitý činný výkon	kW	1000	570	430
Menovitý zdanlivý výkon	kVA	1159	703	532
Tepelný výkon	kW	1340	841	535
Normananá anatroba	100%	435	450	
Normovaná spotreba paliva	75%	326,25	337,5	
paliva	50%	217,5	225	
Elektrická účinnosť	η _e (%)	36,3	34,95	
Tepelná účinnosť	η _t (%)	50,05	50,05	
Celková účinnosť	η (%)	86,35	85	

Na účely posúdenia ekonomickej efektívnosti projekty slúžia najčastejšie tieto ekonomické ukazovatele:

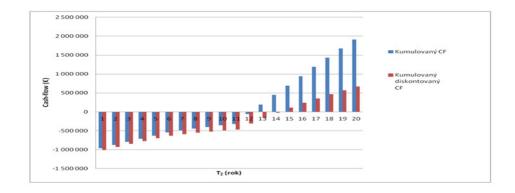
- čistý tok hotovosti po realizácii projektu na báze cash flow (CF),
- diskontovaný tok hotovosti diskontovaná hodnota cash flow (DCF),
- •doba návratnosti investície,
- •čistá súčasná hodnota NPV,
- •vnútorné výnosové percento IRR.

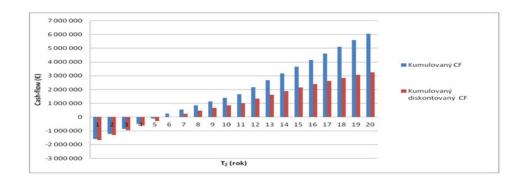
investičné náklady					
Kapitálové výdavky	%	Variant A	Variant B		
Celkové investície	100	3 200 000	3 980 000		
Stavebná časť	45	1 440 000	1 791 000		
Technologická časť	35	1 120 000	1 393 000		
Inžiniering (projektová dokumentácia, povolenia)	5	160 000	199 000		
Zemné práce	15	480 000	597 000		

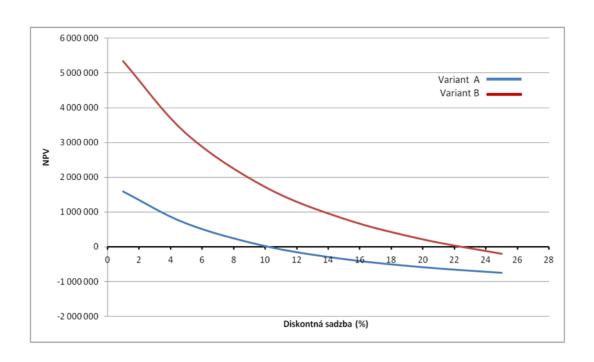
Prevádzkové náklady

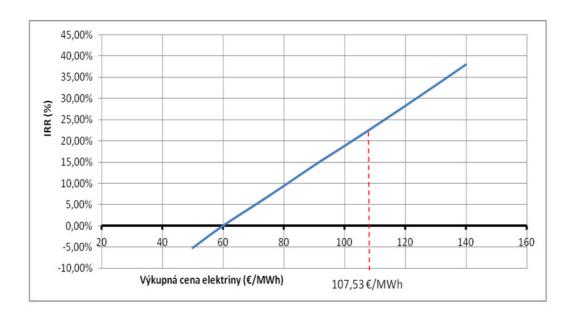
Položka	€/rok
Údržba	5 000
Poistenie	15 000
Servisné náklady (fond opráv)	3 000
Mzdové náklady	12 000
Údržba KGJ	17 000
Ostatné náklady	8 000
Celkom	60 000

Financovanie

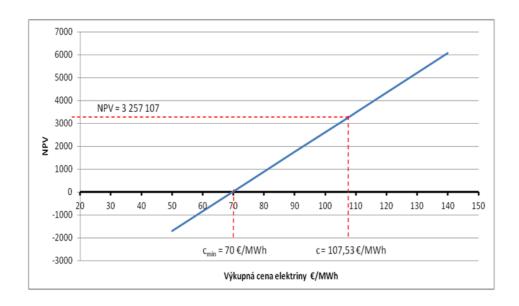

Celkové investičné náklady	3 200 000	3 980 000	
Vlastné zdroje investora	960 000 (30%)	1 592 000 (40%)	
Cudzie zdroje (úver)	2 240 000 (70%)	2 388 000(60%)	
Úroková sadzba	5% p.a		
Doba splatenia	10 rokov		


Tabuľka 6 Ukážka výpočtu toku hotovosti pre variant A [2]


	Rok	2014	2015	2016	 2033
	elektrina	0	851 638	851 638	 851 638
tržby	teplo	0	0	0	 0
	celkom	0	851 638	851 638	 851 638
	OPEX	0	60 000	60 000	 60 000
	substrát	0	465 000	465 000	 465 000
náklady	odpisy	0	294 748	263 247	 7 200
	G-komponent	0	19 720	19 720	 19 720
	celkom	0	839 468	807 967	 551 920
	základ dane	0	12 170	43 671	 299 718
zisk	daň z príjmu	0	0	0	 65 938
	rozdiel	0	12 170	43 671	 299 718
úmor úveru		0	224 000	224 000	 0
investície cel	kom	960 000	0	0	 0
CF bežný rok		-960 000	82 918	82 918	 240 980
kumulovaný CF		-960 000	-877 082	-794 165	 1 914 455
odúročiteľ		1,05	1	0,95238095	 0,42
diskontovaný CF		-1 008 000	82 918	78 969	 100 132
kumulovaný	DCF	-1 008 000	-925 082	-846 113	 671 693


Tabuľka // Ukážka výpočtu toku hotovosti pre variant B [2]

	Rok	2014	2015	2016	 2033
	elektrina	0	851 638	851 638	 851 638
tržby	teplo	0	472 811	472 811	 482 460
	celkom	0	1 324 448	1 324 448	 1 334 098
	OPEX	0	60 000	60 000	 60 000
	substrát	0	636 875	636 875	 543 500
náklady	odpisy	0	205 633	382 964	 17 910
	G-komponent	0	19 720	19 720	 19 720
	celkom	0	922 228	1 099 559	 641 130
	základ dane	0	402 220	224 889	 692 968
zisk	daň z príjmu	0	0	0	 152 453
	rozdiel	0	402 220	224 889	 692 968
úmor úveru		0	238 000	238 000	 0
investície cel	kom	1 592 000	0	0	 0
CF bežný rok		-1 592 000	369 853	369 853	 558 425
kumulovaný CF		-1 592 000	-1 222 147	-852 293	 8 370 792
odúročiteľ		1,05	1	0,95	 0,42
diskontovaný CF		-1 671 600	369 853	352 241	 232 037
kumulovaný	DCF	-1 671 600	-1 301 747	-949 505	 4 989 776



Pri súčasnej výkupnej cene na úrovni 107,53 €/MWh sa v prípade druhého variantu pohybuje IRR na úrovni 22,35 %.

