
Progressive transmission of polyhedral solids 

using a hierarchical representation scheme  
 

Pedro Cano        Juan Carlos Torres        Francisco Velasco 
 

Dpto. Lenguajes y Sistemas Informáticos 

E.T.S. Ingeniería Informática - Universidad de Granada  
C/ Periodista Daniel Saucedo Aranda s/n 

18071 - GRANADA (Spain) 

{pcano, jctorres, fvelasco}@ugr.es 

 

ABSTRACT 

In the last years several 3D model compression methods for multiresolution applications have been presented, 

most of them using 3D meshes.  Octrees are a natural multiresolution representation scheme, although it is 

approximate. Extensions of classical Octrees that represent polyhedral object exactly have been proposed. One 

of them are the SP-Octrees, that incorporates boundary information of the represented object in the internal 

nodes of the octal tree, and  include new terminal node types that contain boundary information of the solid. 

This new scheme can represent polyhedral objects exactly with a smaller storage requirement, and can 

accelerate basic operations with the model. In this work we present the use of this new representation scheme 

for progressive transmission of polyhedral solids. 

Keywords 

Solid modelling, Hierarchical modelling, Octree, Multiresolution, Visualization, Progressive transmission. 

 

1. INTRODUCTION 

One of the consequences of the increase on 

processing and visualization capacity of the present 

systems is the increase of the complexity of the 

geometric models that we use. In addition, the 

development of the distributed systems allows us to 

transfer those models through networks, making it 

necessary to increase the speed of transmission and 

to reduce the storage cost. 

Multiresolution models based on triangle meshes 

[Gar99][Tau99] can solve the model transmission 

problem, building different levels of detail and 

transferring in each case the desired level.  

 

Some of the schemes used to represent solids and 

volumes are based on the decomposition of the 

space, and use hierarchical structures to store the 

model.  

An Octree is the representation of a model by means 

of an octal tree structure obtained by recursive 

divisions of the bounding box of the solid to codify 

[Mea82] [Fuj84] [Gar82]. The Octrees representation 

allows us to perform boolean operations and 

properties calculation in a simple way, but it is an 

approximated representation of the solid.  

The Binary Space Partition trees (BSP) divide 

recursively the space using a plane in two separated 

half-spaces. Initially created to improve the hidden 

parts removal process [Fuc80], it has also been used 

to represent polyhedral objects exactly [Thi87]. This 

scheme offers an unambiguous, but not unique 

representation. 

In previous works an extension of the classical 

Octrees was proposed by means of the inclusion of 

information of the boundary of the solid not only in 

the terminal nodes, but also in the internal nodes of 

the tree [Can02]. In this way, we avoid traversing the 

tree to the lowest level to accede to that information 

and we are able to accelerate basic operations on the 

model. 

Permission to make digital or hard copies of all or part of 

this work for personal or classroom use is granted without 

fee provided that copies are not made or distributed for 

profit or commercial advantage and that copies bear this 

notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute 

to lists, requires prior specific permission and/or a fee.  
 

Journal of WSCG, Vol.11, No.1, ISSN 1213-6972 

WSCG’2003, February 3-7, 2003, Plzen, Czech Republic. 

Copyright UNION Agency – Science Press 



In this work we present an improvement of this 

scheme that allows us to represent any polyhedral 

object exactly. We also present its use for 

progressive transmission of the represented solid. In 

the following section the general statement of the 

scheme is presented. In section 3 we describe the 

visualization process of a model in the proposed 

scheme. In section 4 we describe the progressive 

transmission of solids using the proposed scheme. 

 

2. SP-OCTREE 

In classical Octrees the internal nodes are those that 

are not homogeneous with respect to the 

classification criteria. So, in these nodes the only 

information appearing is the references to their 

children. 

To improve the classical Octrees, hierarchic schemes 

have been proposed that allow us to obtain an exact 

representation of polyhedral objects by means of the 

inclusion of new types of terminal nodes that contain 

part of the surface of the object, obtaining thus a 

more compact representation [Bru85] [Bru90] 

[Car85]. 

These extensions include information of the solid 

boundary in terminal nodes. So, the same boundary 

plane can appear in several neighbouring terminal 

nodes that share the boundary faces.  

The idea of the proposed scheme, SP-Octrees 

[Can02] (Space Partition Octrees), is based on the 

inclusion of boundary information in internal nodes 

that partially defines the object represented in each 

node of that level. Thus, the information of the 

boundary faces appears in the upper levels of the tree 

and it is not necessary to repeat the information in 

neighbouring nodes that share a face.  

When a node is completely out or in of the 

represented solid we classify it as WHITE or 

BLACK (figure 1, left and centre).  

When the intersection of the solid and the voxel is 

convex, we use a CONVEX node. Formally, a 

CONVEX node is the intersection of the half-spaces 

defined by the planes Pi included in it with its 

bounding box (figure 1, right).  

When the intersection of the voxel and the solid has 

one concavity we use a CONCAVE node. Formally, 

a CONCAVE node is the difference of the bounding 

box of the node with the intersection of the 

complement of the half-spaces included in it (fig. 2). 

When concavities and convexities exist at the same 

voxel, we classify the node as GREY, dividing it in 

eight equals octants, but maintaining in the node the 

information of the planes that are in the convex hull 

of the part of the solid in the node. Thus, in the 

children we only need to represent the boundary 

planes that are not in that convex hull and which 

form the existing concavities.  

Thus, the solid represented by a GREY node will be 

the union of the solid represented by each child, but 

restricted to the convex hull represented in the node. 

  

But with this criteria, if only one vertex of the 

represented solid exists in the voxel and concave ec
i 

and convex ex
i edges converge in it (figure 4), we 

always will have a GREY node although we descend 

in the tree. Therefore, in order to represent this 

polyhedral exactly, we needed to include a new type 

of terminal node. 

Figure 3. GREY node and its tree. 

2 

1 

5 

7 

4 

6 

3 

Subdivision P2 
P4

P0

P5

P6

P7

P1 

P3

P0 P1 P2 P3 P4 P5 

P6 P7 P6 P7

* * * * * * * *

* restricted to the intersection of CONCAVE node  the half-spaces in father node.

Figure 2. CONCAVE node 

P0 P1

P1

P0

Figure 1. WHITE, BLACK and CONVEX nodes

P0 

P1



Figure 4. VERTEX nodes 

Image 1. Bunny head model: adaptative 

visualization by levels 

In these cases we classified the node as VERTEX, 

storing information on what concave and convex 

edges appear between the existing planes in the node. 

So, we know the boolean operations to be made with 

the corresponding half spaces. 

Any node is bounded by the planes that are included 

in any of its ascendant nodes. The BLACK nodes can 

be clipped by the planes in their ancestors. The 

WHITE nodes have an empty set of planes.  

For VERTEX nodes, we treat separately the planes 

that share concave edges from those that share 

convex ones. The process itself is similar to the one 

followed for CONVEX and CONCAVES nodes. 

An important aspect of the proposed scheme is that 

the geometry of the represented object is not stored 

explicitly, which enables the representation obtained 

to be compact and reduces storage requirements. 

 

3. ADAPTATIVE VISUALIZATION 

One of the advantages of the classical Octrees is the 

inherent arrangement in the scheme, which facilitates 

the visualization process defining the order of 

visualization of the nodes. In our case we continue 

maintaining that arrangement. 

In order to visualise an object represented by means 

of the proposed scheme, we traverse the tree level by 

level, drawing for each node the intersection of the 

planes that appear in it with its surrounding box and 

with the planes that appear in its ancestors. In this 

way, as we have information of the boundary of the 

object in the upper nodes, the higher levels of the 

tree allow us to obtain quickly the convex part of the 

boundary of the object.  

To draw the object faces it is necessary to trim the 

planes in one node against those in its descendants. 

This can be done while drawing is carried out or we 

can modify the data structure to store also the 

geometry on the solid faces in each node of the tree. 

This can be easily obtained using a secondary B-Rep 

scheme to accelerate the process.  

This mechanism allows us to make an adaptative 

visualization according to the level of the tree that we 

represent.   

As we maintain boundary information of the solid in 

the internal nodes of the tree (that it is part of the 

convex-hull of the represented solid in each node), 

we have an approximated representation of the 

modelled solid in each level of the tree. 

The quality of the approximation improves as we are 

descending in the tree until arriving at the leaf nodes, 

where we have the exact representation of the solid. 



Image 2. Mechanical piece: visualization in 

each step of transmission 

In image 1 we have the visualization obtained for 

each level in the representation of a bunny head. The 

first image is the original solid (B-rep), and from the 

left to the right and from top to down we have the 

representation of each level. Faces color indicate the 

type of the node containing the face. Color grey 

shows planes in GREY nodes, colors green and blue 

show CONVEX and CONCAVE nodes respectively, 

and colors yellow and red show planes stored in 

upper levels of the tree but displayed in CONCAVE 

and CONVEX nodes respectively. 

In this example we can see how the zones of the 

boundary that need a greater division in the model 

are those in which a greater concentration of concave 

edges exists.  

 

4. PROGRESSIVE TRANSMISSION 

Based in the previous visualization process, we can 

use this structure to make a progressive transmission 

of the tree level by level, so that the receiver of the 

model can visualize it and operate with it from the 

beginning of the transmission, without having to 

receive the complete model. 

For each level, we transmit the nodes of the Octree 

that represent the model and the information of the 

boundary planes that appear in each node of that 

level (the equation of the planes). 

The next algorithm shows the global process of 

transmission of the model: 

 

Send (Level, BoundingBox)Send (Level, BoundingBox)Send (Level, BoundingBox)Send (Level, BoundingBox)    
Send (Planes in RootNodeSend (Planes in RootNodeSend (Planes in RootNodeSend (Planes in RootNode, NodeType, NodeType, NodeType, NodeType))))    
    
If (RootNode=GREYNODE)If (RootNode=GREYNODE)If (RootNode=GREYNODE)If (RootNode=GREYNODE)    

Next_Level<Next_Level<Next_Level<Next_Level<----RootNodeRootNodeRootNodeRootNode    
ffffor each Levelor each Levelor each Levelor each Level        
{{{{    

   Actual_Le   Actual_Le   Actual_Le   Actual_Level = Next_Levelvel = Next_Levelvel = Next_Levelvel = Next_Level    
   Empty (Next_Level)   Empty (Next_Level)   Empty (Next_Level)   Empty (Next_Level)    
                
            while (Actualwhile (Actualwhile (Actualwhile (Actual____Level ¡= EMPTY) Level ¡= EMPTY) Level ¡= EMPTY) Level ¡= EMPTY)     
            {{{{    
        Node<        Node<        Node<        Node<----Get(Actual_Level)Get(Actual_Level)Get(Actual_Level)Get(Actual_Level)    
        for each Child of Node         for each Child of Node         for each Child of Node         for each Child of Node     
                            {{{{    
                                                    Send (Planes in ChildSend (Planes in ChildSend (Planes in ChildSend (Planes in Child, NodeType, NodeType, NodeType, NodeType))))    
                                                    if (Child=NODEGREY)if (Child=NODEGREY)if (Child=NODEGREY)if (Child=NODEGREY)    
                                                                        NextNextNextNext_Level<_Level<_Level<_Level<----ChildChildChildChild    
        }        }        }        }    
            }   }   }   }       

}}}}    
 

Next_LevelNext_LevelNext_LevelNext_Level is a list that stores the GREY nodes 

sended in the actual level whose children must be 

send in the next level. 

GetGetGetGet function obtain a pending GREY node in the 

actual level that has been just transmitted to send the 

information of its children. 

EmptyEmptyEmptyEmpty function initializes the list of pending GREY 

nodes to send in the next level.  

The reception process is similar to this one, building 

the corresponding data structure for every received 

node. 

In image 2 we can see a solid represented by a tree of 

7 levels, for which at the first level we need only to 

transmit the information of 13 planes of the 43 which 

form the boundary of the solid. In level 1, the 

information of 2 new planes will be transmitted plus 

the nodes of the tree of that level.  



Image 3. Bunny  model: adaptative 

visualization by levels 

The next table show the information transmitted at 

each level and the total size transmitted at this level 

for the mechanical piece. 

 

Level Transmitted size Global size 

0 724 724

1 104 828

2 572 900

3 636 1536

4 884 2420

5 1512 3932

6 596 4528
 

Table 1. Mechanical piece transmission (bytes) 

 

In image 3 we can see a model of a bunny 

represented using a tree of 11 levels, we have an 

approximated representation of the modelled solid in 

each level of the tree. 

The following table show the information transmitted 

at each level and the total size transmitted at this 

level for the bunny model. 

 

Level Transmitted size  Global size 

0 37194 37194

1 201 37395

2 507 37902

3 2827 40729

4 14038 54767

5 28196 82963

6 25819 108782

7 5804 124586

8 11455 136041

9 11498 147539

10 10613 158152
 

Table 2. Bunny model transmission (bytes) 

 

We must notice that at no moment we need to 

transmit geometric information of the polygons that 

form that boundary, but only the equation of the 

planes. In this sense, we need a decoding postprocess 

to reconstruct the geometry from the set of planes 

transmitted in each level.  

As we can see in the examples, in the internal levels 

of the tree, where it only appears part of the 

information of the solid boundary, we have 

represented the solid with different levels of detail. 

This allows us to accelerate operations on the model 

(for example point's classification or intersection test 

with a ray). 

Finally, another advantage is that this approach can 

be applied not only with triangular meshes, but also 

with any polyhedral mesh. 

5. CONCLUSIONS  

In this work, the use for progressive transmission of 

a new solid representation scheme has been 

presented. This scheme is based on an extension of 

the concept of classical Octree, introducing part of 

the boundary information of the represented object, 



both in the terminal and in the internal nodes. The 

proposed method allows an exact representation of 

polyhedral objects. 

Its use in progressive transmission allows the 

receiver of the model to visualize it and operate with 

it from the beginning of the transmission, without 

having to receive the complete model.  

The number of levels that appear in the tree depends 

only on the concave edges that appear in the solid, 

whereas in other extensions of classical Octrees the 

number of nodes depends on the number of vertex 

and edges of it. 

In addition, we continue maintaining the properties 

of arrangement of the classical Octrees, and, due to 

the own orientation of the planes inserted in each 

node, it is easy to make the interrogation and 

visualization of the model. 

We are making a detailed comparative study with 

other representation schemes, in space, computation 

time and operations complexity. Also, we are 

studying the possibility of using the scheme for 

objects whose boundary is not plane. 

Finally, we are studying the utility of the scheme as 

an indexing method to accelerate the calculations and 

the operations in B-Rep representation scheme. 

 

6. ACKNOWLEDGMENTS 

This work has been supported by the "Ministerio de 

Ciencia y Tecnología" (Spain) and by FEDER under 

contract TIC2001-2099-C03-02. 

 

7. REFERENCES 

[Bru85] Brunet, P.; Navazo, I.: Geometric modelling 

using exact octree representation of polyhedral 

objects. Eurographics’85, (1985). 

 

[Bru90] Brunet, P.; Navazo, I.: Solid Representation 

and Operation Using Extended Octrees. ACM 

Transactions on Graphics, Vol. 9, nº 2. (1990). 

[Can02] Cano, P.; Torres, J.C.: Representation of 

Polyhedral Objects using SP-Octrees. Journal of 

WSCG, vol. 10 (1) pp: 95-101. (2002). 

[Car85] Carlbom, I.; Chakravarty, I.; Vanderschel, 

D.A.: A hierarchical data structure for 

representing the spatial decomposition of 3D 

objects. IEEE Computer Graphics & Applications 

5,4, pp:24-31 (1985). 

[Fuc80] Fuchs, H.; Kedem, Z.; Naylor, B.: On 

Visible Surface Generation by a Priori Tree 

Structures. ACM Computer Graphics, 14(3), 

(1980). 

[Fuj84] Fujimura, K.; Yamaguchi, K.; Kunii, T.: 

Octree-related data structures and algorithms. 

IEEE Computer Graphics and Applications, pp: 

53-59, (1984). 

[Gar99]  Garland, M.: Multiresolution Modelling: 

Survey & Future Opportunities. 

EUROGRAPHICS’99 State of the Art Report. 

EG, (1999).  

[Gar82] Gargantini, I.: Linear octrees for fast 

processing of three-dimensional objects. 

Computer Graphics and Image Processing, 20, 

(1982). 

[Mea82] Meagher, D.: Geometric modelling using 

octree encoding. Computer Graphics and Image 

Processing, 19(2):129-147, (1982). 

 [Tau99]  Taubin, G.: 3D Geometric Compression 

and Progressive Transmission. 

EUROGRAPHICS’99 State of the Art Report. 

EG, (1999). 

[Thi87] Thibault, W.C.; Naylor, B.: Set Operations 

on Polyhedra Using Binary Space Partitioning 

Trees. ACM Computer Graphics, 21(4), pp: 153-

162, (1987).  

 

 


