
Edge-Enhancement – An Algorithm for Real-Time

Non-Photorealistic Rendering

Marc Nienhaus
Hasso-Plattner-Institute for Software

Engineering at the University of Potsdam
Prof.-Dr.-Helmert-Strasse 2-3
D-14482 Potsdam, Germany

nienhaus@hpi.uni-potsdam.de

Juergen Doellner
Hasso-Plattner-Institute for Software

Engineering at the University of Potsdam
Prof.-Dr.-Helmert-Strasse 2-3
D-14482 Potsdam, Germany

doellner@hpi.uni-potsdam.de

ABSTRACT

In this paper, we propose an algorithm for enhancing edges of real-time non-photorealistic renderings. It is based

on the edge map, a 2D texture that encodes visually important edges of 3D scene objects, and includes silhouette

edges, border edges, and crease edges. The edge map allows us to derive and augment a wide range of non-

photorealistic rendering styles. Furthermore, the algorithm is designed to be orthogonal to complementary real-

time rendering techniques. The implementation is based on multipass rendering: First, we extract geometrical

properties of 3D scene objects generating image-space data similar to G-buffers. Next, we extract discontinuities

in the image-space data using common graphics hardware to emulate image-processing operations. In subsequent

rendering passes, the algorithm applies texture mapping to combine the edge map with 3D scene objects.

Keywords

Edge-enhancement, real-time rendering, G-buffer, non-photorealistic rendering, shading

1. INTRODUCTION
Non-photorealistic rendering (NPR) has become a

popular research topic in computer graphics for the

last decade. Its application areas are manifold and

include illustrations, painterly renderings, and

cartoon production. NPR algorithms range from

object-based, image-based, or hybrid approaches

implementing different rendering styles, e.g., edge

enhancement [Ras99a][Nor00a], hatching [Pra01a],

or cartoon-style rendering [Lak00a].

Image-based algorithms represent one of the most

important categories in NPR. As one of the most

important approaches, geometric buffers, known as

G-buffers, preserve geometric properties of scene

objects in image space such as normals, depth, or

object identifiers [Sai90a]. They are evaluated and

combined in a post-processing step using image

processing. Finally, derived image-space information

such as contour lines, is combined with the results of

scene rendering to enhance scene elements that are

important for visual perception. The derived

information is not directly available in object space.

Furthermore, G-buffers are general with respect to

shape type, and can be implemented in a robust way.

Due to its versatility and generality, a challenging

task, therefore, is to find appropriate implementations

of G-buffer techniques in real-time rendering.

Recent developments in computer graphics hardware,

e.g., multitexturing and programmable rendering

pipelines, lead to new rendering algorithms. To

achieve interactive frame rates, NPR algorithms must

be completely accelerated by hardware. The

presented work presents such an algorithm for a

specific application of G-buffers, namely edge

enhancement.

Our edge-enhancement algorithm is based on G-

buffers. To achieve real-time performance, G-buffer

creation and deriving information are both

implemented based on texturing capabilities of

graphics hardware. Texturing is a fundamental

rendering operation, which is deployed to extract

geometric properties, to store intermediate images, to

emulate image-processing, and to combine image-

space data given as 2D texture with 3D scene objects.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.11, No.1., ISSN 1213-6972

WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

crease edge

silhouette edge

Figure 1: The algorithm treats differently

silhouette edges and crease edges. (Model used

with permission)

Our algorithm encodes silhouette edges, border

edges, and crease edges of 3D scene objects in a 2D

texture, called edge map. It is created based on

image-space information derived from G-buffers, and

applied to 3D scene objects as projective 2D texture

[Seg92a] in object space.

The implementation is based on a multipass rendering

algorithm: 1) We extract geometrical properties of

3D scene objects generating image-space data similar

to G-buffers. As a prerequisite, the shapes must

provide per-vertex normals. 2) We extract

discontinuities in the image-space data, stored as 2D

textures, using texturing to emulate image-processing

operations. 3) In subsequent rendering passes, the

algorithm uses projective texturing to combine the

edge map with 3D scene objects. Since fragment

shading can be used to specify in detail how edge

map contents are blended with fragments of scene

objects, various NPR styles can be supported. The

edge map distinguishes between two categories of

edges, profile edges and inner edges – fragment

shading can also handle them differently.

The implementation of the algorithm does not block

framebuffer resources because edge maps are created

by rendering directly into the texture. Hence, it is

orthogonal to other real-time rendering algorithms.

For example, it cooperates with real-time mirroring.

The remainder of this paper is structured as follows.

Section 2 discusses related work. Section 3 gives a

classification of edges. Section 4 describes the

implementation of the algorithm. Section 5 presents

applications. Section 6 draws conclusions.

2. RELATED WORK
Saito and Takahashi [Sai90a] introduced the G-buffer

as a two-dimensional data structure that stores

geometric properties of 3D shapes. Important G-

buffers are the normal-buffer, z-buffer, and Id-buffer.

Furthermore, they describe image-processing

operations used to analyze G-buffer contents to

produce “comprehensible images”, for instance,

edge-enhanced or hatched renderings of 3D scene

objects. Common image-processing operations

applied to 2D images, however, are time consuming

and currently not appropriate for real-time rendering.

We provide a solution for generating and analyzing

G-buffer contents in real-time based on texturing.

Recent research in the field of real-time NPR exploits

current graphics hardware. Praun et al. [Pra01a]

implement a technique for real-time hatching of 3D

shapes. Freudenberg et al. [Fre02a] develop a similar

technique for real-time halftoning. They make

extensive use of the programmable rendering pipeline

and texture blending capabilities of current graphics

hardware. Our work is complementary and can be

combined with these techniques.

NVidia presents an image-space technique to render

edges of 3D shapes onto a screen-aligned quad

[Dom02a]. It samples adjacent texture values to

process encoded normals and detect discontinuities in

the normal-buffer. ATI extends this approach by

detecting discontinuities in the normal-buffer, z-

buffer, and Id-buffer [Mit02a]. This way, edges of 3D

shapes, regions in shadow, and texture boundaries

can be outlined. Our algorithm works in a similar way

but distinguishes different types of edges and uses

projective texturing to be orthogonal to other real-

time rendering techniques and to support different

NPR styles.

Peercy et al. implement an interactive multipass

programmable shading system [Pee00a]. It uses

projective texturing to combine intermediate shading

results with 3D scene objects but does not detect

edges. In our approach, projective texturing is used to

combine edge maps with 3D scene objects.

Gooch et al. [Goo99a] explore technical illustrations

in-depth. We combine their illumination model for

technical illustrations [Goo98a] with our edge-

enhancement algorithm.

Decaudin introduces cartoon-style rendering of 3D

scenes [Dec96a][Dec96b]. His technique uses

normal-buffer and z-buffer to detect discontinuities in

image-space. The results are edge-enhanced cartoon-

style renderings. It is not intended, however, as a

real-time rendering technique. Lake et al. extends

cartoon style rendering to real-time using texture

mapping hardware [Lak00a]. We adapt their

approach and combine it with our edge-enhancement

 A

 F

C

H

Figure 3: Accessing neighboring texels by

shifting texture coordinates diagonally.

algorithm. Claes et al. discusses artifacts that occur

between two consecutive color patches in a cartoon-

style rendering [Cla01a]. A variant of our algorithm

can be applied to create real-time cartoon-style

renderings without these rendering artifacts.

3. EDGE CLASSIFICATION
The edge map is based on the following classification

of edges; we assume that 3D scene objects are

represented by polygonal meshes.

− A silhouette edge is an edge adjacent to a

polygon facing towards the camera (front-facing)

and one polygon facing in the opposite direction

(back-facing).

− A border edge is an edge to exactly one

polygon.

− A crease edge is an edge between two front-

facing (or back-facing, respectively) polygons

whose dihedral angle is above some threshold.

The dihedral angle defines the intensity of a

crease edge.

For a given 3D scene object, both silhouette edges

and border edges outline the profile of that object,

while crease edges outline inner forms of the object.

An example illustrates different types of edges in

Figure 1.

In a typical 3D scene, abrupt changes in the z-buffer

occur at silhouette edges and border edges, i.e., 0
th

order discontinuities of the z-buffer indicate profiles.

A 1
st
 order differential operator in image space will

detect them.

Abrupt changes in the normal-buffer occur typically

at crease edges. A normal-buffer is a three-channel

image containing encoding normalized x, y, and z

coordinates of normals derived from fragments

resulting from 3D scene objects. 0
th

 order

discontinuities of the normal-buffer indicate crease

edges and, furthermore, profile edges if the normal of

the adjacent front-facing polygon varies from the

normal of an underlying polygon. So, profile edges

producing small discontinuities in depth that can

hardly be detected can be detected in the normal-

buffer.

4. EDGE MAP ALGORITHM

Conceptual Structure of the Algorithm
The algorithm is conceptually divided into two parts.

In the first part, it constructs the edge map. For this, it

generates image-space data similar to G-buffers to

geometrical properties of 3D scene objects. Then, the

algorithm applies image-space operations to extract

discontinuities in G-buffer contents. The

discontinuities form edges of 3D shapes.

In the second part, the algorithm combines edges with

any NPR-rendering algorithm using fragment

shading. It uses the intenseness of discontinuities to

blend between edge color and surface shade of 3D

shape. Furthermore, it distinguishes between profile

and inner edges and applies different edge colors.

Detection of Edge Intensities

4.1.1 Generation and Storage of G-Buffers
In the first rendering pass, all 3D scene objects that

are declared in the scene graph to be enhanced are

rendered into a 2D texture with fragment normals and

fragment z-value.

To derive that information, two textures are used for

scene rendering. 1) A normalization cube map

textures 3D shapes and produces eye-space

normalized fragment normals, which are encoded in

the RGB color channels. 2) A 1D alpha-texture,

projected from the camera position along the viewing

direction [Hei99a], textures 3D shapes and produces

fragment z-values, which are stored in the alpha

channel. Note that the alpha-texture produces z-

values that correspond to the linear distance from the

camera position, in contrast to the values stored in the

z-buffer on graphics hardware. So, the accuracy of

discontinuities in z-values is independent from the

position of the shape. Furthermore, no additional

rendering pass is needed to construct z-buffer

contents on graphics hardware to produce fragment z-

values. Unfortunately, the alpha-texture has lower

precision than the z-buffer. To cope with the low

precision, we minimize the viewing frustum in z-

dimension. We adjust the near and far clipping-planes

to exactly match the bounding volumes of shapes to

 A B C

 D X E

 F G H

Figure 2: A-H are neighboring pixel of X.

be enhanced. In the future, graphics hardware will

provide textures of higher precision [Kil02a].

RGB and alpha values encoding normal and depth

information are combined using fragment processing

and rendered into one 2D texture TG. Thus, the

texture stores both G-buffer data in a single texture.

TG and the framebuffer are of equal size and,

therefore, provide a one-to-one relationship between

pixels and texels. The implementation uses the

render-to-texture extension or, alternatively, a P-

buffer canvas [Kil02b] for this rendering pass. They

are one of the reasons for the real-time capability of

our algorithm.

4.1.2 Edge-Detection in Image-Space
Today’s 3D rendering systems (still) do only provide

a limited image processing functionality and is

typically not accelerated by graphics hardware. To

detect discontinuities in image data, linear filtering

can be used, for instance, based on the Sobel filter.

For each pixel to be filtered, linear filtering takes into

account its neighboring pixels (Fig. 2).

Our algorithm implements linear filtering based on

intermediate rendering passes, which render a

textured screen-aligned quad using multi-texturing.

Let us assume to have four texture units available on

graphics hardware, each of which uses TG as texture.

The quad fits completely into the viewport of the P-

buffer. We present two implementation variants.

The first variant considers four neighboring texture

samples, processing discontinuities between values of

the two diagonally opposite sample pairs (A, H) and

(C, F). For this, we shift diagonally texture

coordinates for each texture unit in s and t direction.

Using the reciprocal of width and height of the P-

buffer permits us to access the adjacent texture

samples A, C, F, and H (Fig. 3). The technique

assembles texture color and alpha values and then

filters out discontinuities using fragment processing.

We evaluate the RGB values by:

)expand(F))dot expand(C)(

expand(H))dot expand(A)((
2

1

+

⋅=NI

The dot products correspond to the cosines of the

angles between opposite normal vectors. The

averaged result IN denotes the intensity of

discontinuities in the normal buffer1. The resulting

intensity is stored in the RGB channels of the P-

buffer.

We evaluate the alpha values by:

22)
2

1
1()

2

1
1(FCHAIZ −−⋅−−=

IZ denotes the intensity of discontinuities of z-values;

it is stored in the alpha channel of the P-buffer.

After the first intermediate rendering pass the P-

buffer contains intensity values in the RGB channels

that represent discontinuities in the normal-buffer and

intensity values in the alpha channel that represent

discontinuities in the z-buffer.

The second variant implements a common C1-

discontinuity operator that considers eight

neighboring samples (A-H) and the center texture

sample X. It is only applied to the z-buffer. Saito and

Takahashi as well as Decaudin propose the following

C1-discontinuity operator to detect discontinuities in

the z-buffer:

|)|||2||||2

||2||||2|(|
8

1

XHXGXFXE

XDXCXBXAIZ

−+−+−+−+

−+−+−+−=

We calculate texture coordinates to sample

neighboring values A-H. No shift in texture

coordinates is needed for X. The technique requires

three intermediate passes, each one calculating a

portion of the operator. In the first intermediate pass,

we access A, B, C, and X. Then,

||
8

1
||

4

1
||

8

1
XCXBXA −+−+−

1 A, C, H, and F correspond to the RGB values or the alpha

value, respectively, of each texture sample. expand(c)

evaluates 12)(−⋅= xxf for each component of color

c. Thus expand(A) yields the normal value encoded in the

RGB color channel of texel A.

Figure 4: Blending all three intermediate renderings (left) results in the final edge map (right).

Figure 6: Normal (upper left) and depth

(lower left) discontinuities form edges to

enhance a simply shaded statue.

Figure 5: The C1-operator (upper images) produces

artifacts. The diagonally filtering detects finer

discontinuities and produces anti-aliased edge

intensities.

is processed for each fragment based on the alpha

components. The result is stored in the alpha channel

of the P-buffer. In the second intermediate pass, we

access D, E, and X using equation

||
4

1
||

4

1
XEXD −+−

The result is added to the P-buffer using blending.

Finally, the third intermediate rendering pass

evaluates

||
8

1
||

4

1
||

8

1
XHXGXF −+−+−

and, again, adds it to the P-buffer. Figure 4

demonstrates the described accumulation of

intermediate results.

We observed that the edge intensities calculated by

the first variant are visually superior compared to

those calculated by the second variant (Fig. 5). In

particular, the first variant produces more anti-aliased

edges.

In the final step, we copy the P-buffer RGBA

contents into a texture – the edge map – that can be

used by NPR techniques.

Using the Edge Map for NPR
The edge map is available for subsequent scene graph

rendering passes. As one application, we can project

back the edge map onto 3D scene objects using

projective texturing. In this case, we must use the

same camera settings for both, edge map construction

and scene graph rendering.

Projective texturing permits us to introduce edge

information in the final image by allocating just one

texture unit of the graphics hardware. In addition,

rendering algorithms set up fragment shading

calculations that consider intensity values stored in

the edge map. Figure 6 gives an example of an edge-

enhanced simply shaded statue.

Rendering Passes

The rendering passes that occur using our technique

are summarized below:

1. Scene-graph rendering pass of edge-

enhanced scene objects to generate normal-

buffer and z-buffer.

2. Intermediate rendering pass to generate edge

intensities (1 pass for diagonal filtering, 3

passes for C1-discontinuity operator).

3. Scene-graph rendering passes of the NPR

techniques using the edge map, e.g., as

projective texture.

Intermediate rendering passes are not time consuming

since they just render a single screen-aligned quad.

Since the edge map is stored in a 2D texture, it is

orthogonal to subsequent rendering passes.

Management of framebuffer resources, for instance

the stencil buffer of OpenGL, is not necessary. The

following section discusses edge-enhancement in

combination with extended real-time rendering

techniques.

5. APPLICATIONS OF EDGE MAPS

Technical Illustrations
Gooch et al. study technical illustrations that

communicate shape, structural and material

composition of objects more comprehensibly than

traditional lighting and shading [Goo99a]. Enhancing

differently profile edges and inner edges assists the

illustrative representation of objects.

Figure 7: Gooch Illumination model for

technical illustrations enhanced with different

edge colors using the edge map. (Model used

with permission)

Figure 8: Real-time hatching in combination

with our edge-enhancement algorithm applied

to a statue. The mirrored statue shows enhanced

edges, too, which are perspectively correct.

We implement their illumination model for technical

illustrations using Phong shading based on vertex and

fragment processing. Fragment processing

distinguishes between profile edges and inner edges:

First, for inner edges, we linearly interpolate between

the color given by the lighting model and white as

edge color using intensity values in the RGB channels

of the edge map as weights. Then, for profile edges,

we linearly interpolate between the resulting color of

the previous weighting and black as edge color using

the intensity values in the alpha channel of the edge

map as weights. Altogether, one frame requires two

traversals of the scene graph and one intermediate

rendering pass to implement edge-enhanced technical

illustrations (Fig. 7).

Edge-Enhanced Real-Time Hatching
Halftoning produces a variety of non-photorealistic

renderings, for instance, pen-and-ink style drawings.

Freundenberg et al. introduced a real-time algorithm

for halftoning [Fre02a] that uses a smooth threshold

function to achieve anti-aliased halftone results. We

implement this technique using a prioritized stroke

texture to generate real-time edge-enhanced hatching.

Since it operates on a per-fragment basis, it can be

combined with edge maps in a straightforward way

(Fig. 8). In general, a wide range of edge-enhanced

NPR styles can be derived.

Mirroring & Edge-Enhanced Renderings
Our edge-enhancement algorithm can be combined

with many advanced, multipass real-time rendering

algorithms [Bly99a] such as mirroring, shadow

casting, and bump-mapping.

Figure 8 shows a mirrored, edge-enhanced scene. The

implementation uses the stencil buffer to mask the

mirror surface in screen-space, and requires two

rendering passes, one for the scene without mirror

and one for the mirror. We have to apply the edge-

enhancement algorithm twice, for the original scene

and for the mirrored scene. The scene is rendered

from different viewpoints and, hence, the edges are

detected correctly (Fig. 8). No extension to the

existing scene graph implementation of the mirror

rendering technique needs to be implemented.

Edge-Enhanced Cartoon-Style Rendering
Lake et al. define a 1D texture that stores cartoon-like

shades depending on material and light properties

[Lak00a]. The dot product between the surface

normal and the light direction vector on the surface is

used to index that texture. Nearest filtering produces

edged though jagged transition between colors.

We implement the cartoon-style rendering technique

by Lake et al. and combine it with our edge map to

enhance edges (Fig. 9).

Furthermore, we can reduce artifacts between

consecutive color patches that occur when using

nearest texture filtering. For this, we use a variation

Figure 9: The edge-enhanced, cartoon-shaded “Olaf”. Nearest texture-filtering produces artifacts

between consecutive color patches (left). Sampling neighboring color values smoothes color transition

(right).

of our algorithm.

In the first step, we render the scene in a cartoon-style

using vertex programming and store the RGB

channels of the P-buffer as 2D texture. In the next

step, we sample that texture to anti-alias its contents.

The result is stored in a 2D texture, called cartoon

map. Then, the edge map is created as described

before. In the final step, we render the scene using

both, edge map and cartoon map to generate anti-

aliased cartoon-style renderings in real-time (Fig. 9).

The example demonstrates the versatility of our

approach with respect to sampling and processing

texture values in intermediate rendering passes.

6. CONCLUSION
The presented algorithm handles silhouette, border,

and crease edges. Edge intensities are available as

edge map, a 2D texture that contains the screen-space

information. The edge map is well suited to cooperate

with many real-time rendering techniques, in

particular NPR techniques. Its implementation is

completely accelerated by today’s graphics hardware.

The approach is limited with respect to edge-

enhancement, which is restricted to the geometrical

boundaries of 3D scene objects due to projective

texture mapping and the demanding shading

calculations to enhance edges. Furthermore, edges in

the edge map are determined from 3D shape and are

just a few texel wide. So, artistic silhouettes (e.g.,

[Nor00a]) in the periphery of the surface are not

possible.

Regarding the future development of OpenGL, real-

time rendering techniques based on high-level

shading languages can benefit from the presented

algorithm due to its orthogonality. In particular, non-

photorealistic shaders (e.g., [Fre02b]) could directly

take advantage of edge maps to increase their

expressiveness.

7. ACKNOWLEDGMENTS
Thanks to Florian Kirsch and the other members of

the VRS group at the Hasso-Plattner-Institute for

their cooperation.

8. REFERENCES
[Bly99a] Blythe, D., Grantham, B., Kilgard, M. J.,

McReynolds, T., and Nelson, S. R. Advanced

Graphics Programming Techniques Using

OpenGL. In SIGGRAPH’99 Course Notes,

August, 1999

[Cla01a] Claes, J., Di Fiore, F., Vansichem, G., and

Van Reeth, F. Fast 3D Cartoon Rendering with

Improved Quality by Exploiting Graphics

Hardware. Proceedings of Image and Vision

Computing New Zealand (IVCNZ), pp.13-18,

November 2001.

[Dec96a] Decaudin, P. Rendu de scénes 3D imitant le

style «dessin animé». Rapport de Recherche 2919.

Université de Technologie de Compiègne, France,

1996.

[Dec96b] Decaudin, P. Modélisation par Fusion de

Formes 3D pour la Synthèse d’Image – Rendu de

Scènes 3D imitant le Style”Dessin Animé”. Ph.D.

Thesis, Université de Technologie de Compiègne,

France, December 1996.

[Dom02a] Dominé, S., Rege, A., and Cebenoyan, C.

Real-Time Hatching (Tribulations in). Game

Developers Conference 2002, San Jose, CA,

March 2002.

http://developer.nvidia.com/docs/IO/2648/ATT/G

DC2002_RealTimeHatching.pdf (PDF format)

[Fre02a] Freudenberg, B., Masuch, M., and

Strothotte, T. Real-Time Halftoning: A Primitive

For Non-Photorealistic Shading. 13
th

Eurographics Workshop on Rendering. Pisa, Italy,

pp.1-4, June 2002.

[Fre02b] Freudenberg, B. A Non-Photorealistic

Fragment Shader in OpenGL 2.0. SIGGRAPH

2002 Talk. San Antonio, July 2002.

[Goo98a] Gooch, A., Gooch, B., Shirly, P., and

Cohen, E. A Non-Photorealistic Lighting Model

for Automatic Technical Illustration. In Computer

Graphics (Proceedings of SIGGRAPH’98),

Orlando, FL, pp.447-452, July 1998.

[Goo99a] Gooch, B., Sloan, P. S., Gooch, A.,

Shirley, P., and Riesenfeld, R. Interactive

Technical Illustration. ACM Symposium on

Interactive 3D Graphics 1999, Atlanta, GA,

pp.31-38, April 1999.

[Hei99a] Heidrich, W. High-quality shading and

lighting for hardware-accelerated rendering. Ph.D.

Thesis, Universität Erlangen, February 1999.

[Kil02a] Kilgart, M. (Ed.). NVidia OpenGL

Extension Specification for the CineFX

Architecture (NV30). NVidia Corporation,

August 2002.

http://developer.nvidia.com/docs/IO/3260/ATT/n

v30specs.pdf (PDF format)

[Kil02b] Kilgart, M. (Ed.). NVidia OpenGL

Extension Specifications. NVidia Corporation,

October 2002.

http://developer.nvidia.com/docs/IO/1174/ATT/n

vOpenGLspecs.pdf (PDF format)

[Lak00a] Lake, A., Marshall, C., Harris M., and

Blackstein, M. Stylized Rendering Techniques for

Scalable Real-Time 3D Animation. In

Proceedings of NPAR 2000: First international

symposium on Non-photorealistic animation and

rendering, Annecy, France, pp. 13-20, June 2000.

[Mit02a] Mitchell, J. L., Brennan, C., and Card, D.

Real-Time Image-Space Outlining for Non-

Photorealistic Rendering. SIGGRAPH 2002

Sketch, San Antonio, July 2002.

[Nor00a] Northrup, J.D., Markosian. L. Artistic

Silhouettes: A Hybrid Approach, In Proceedings

of NPAR 2000: First International Symposium on

Non-Photorealistic Animation and Rendering,

Annecy, France, pp.31-37, June 2000.

[Pee00a] Peercy, M. S., Olano, M., Airey, J., and

Ungar, J. P. Interactive Multi-Pass Programmable

Shading. In Computer Graphics (Proceedings of

SIGGRAPH’00), New Orleans, LA, pp.425-432,

July 2000.

[Pra01a] Praun, E., Hoppe, H., Webb, M., and

Finkelstein, A. Real-Time Hatching. In Computer

Graphics (Proceedings of SIGGRAPH’01),

pp.579-584, 2001.

[Ras99a] Raskar, R., and Cohen, M. Image Precision

Silhouette Edges. ACM Symposium on

Interactive 3D Graphics 1999, Atlanta, pp.135-

140. 1999.

[Sai90a] Saito, T. and Takahashi, T. Comprehensible

Rendering of 3-D Shapes. In Computer Graphics

(Proceedings of SIGGRAPH’90), 24(4), pp.197-

206, August 1990.

[Seg92a] Segal, M., Korobkin, C., van Widenfalt, R.,

Foran, J., and Haerberli, P. Fast Shadows and

Lighting Effects using Texture Mapping. In

Computer Graphics (SIGGRAPH’92

Proceedings), 26(2), pp.249-252, July 1992.

