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ABSTRACT 

In this paper, we propose an algorithm for enhancing edges of real-time non-photorealistic renderings. It is based 

on the edge map, a 2D texture that encodes visually important edges of 3D scene objects, and includes silhouette 

edges, border edges, and crease edges. The edge map allows us to derive and augment a wide range of non-

photorealistic rendering styles. Furthermore, the algorithm is designed to be orthogonal to complementary real-

time rendering techniques. The implementation is based on multipass rendering: First, we extract geometrical 

properties of 3D scene objects generating image-space data similar to G-buffers. Next, we extract discontinuities 

in the image-space data using common graphics hardware to emulate image-processing operations. In subsequent 

rendering passes, the algorithm applies texture mapping to combine the edge map with 3D scene objects. 
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1. INTRODUCTION 
Non-photorealistic rendering (NPR) has become a 

popular research topic in computer graphics for the 

last decade. Its application areas are manifold and 

include illustrations, painterly renderings, and 

cartoon production. NPR algorithms range from 

object-based, image-based, or hybrid approaches 

implementing different rendering styles, e.g., edge 

enhancement [Ras99a][Nor00a], hatching [Pra01a], 

or cartoon-style rendering [Lak00a]. 

Image-based algorithms represent one of the most 

important categories in NPR. As one of the most 

important approaches, geometric buffers, known as 

G-buffers, preserve geometric properties of scene 

objects in image space such as normals, depth, or 

object identifiers [Sai90a]. They are evaluated and 

combined in a post-processing step using image 

processing. Finally, derived image-space information 

such as contour lines, is combined with the results of 

scene rendering to enhance scene elements that are 

important for visual perception. The derived 

information is not directly available in object space. 

Furthermore, G-buffers are general with respect to 

shape type, and can be implemented in a robust way. 

Due to its versatility and generality, a challenging 

task, therefore, is to find appropriate implementations 

of G-buffer techniques in real-time rendering. 

Recent developments in computer graphics hardware, 

e.g., multitexturing and programmable rendering 

pipelines, lead to new rendering algorithms. To 

achieve interactive frame rates, NPR algorithms must 

be completely accelerated by hardware. The 

presented work presents such an algorithm for a 

specific application of G-buffers, namely edge 

enhancement. 

Our edge-enhancement algorithm is based on G-

buffers. To achieve real-time performance, G-buffer 

creation and deriving information are both 

implemented based on texturing capabilities of 

graphics hardware. Texturing is a fundamental 

rendering operation, which is deployed to extract 

geometric properties, to store intermediate images, to 

emulate image-processing, and to combine image-

space data given as 2D texture with 3D scene objects.  
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crease edge 

silhouette edge 

Figure 1: The algorithm treats differently 

silhouette edges and crease edges. (Model used 

with permission) 

Our algorithm encodes silhouette edges, border 

edges, and crease edges of 3D scene objects in a 2D 

texture, called edge map. It is created based on 

image-space information derived from G-buffers, and 

applied to 3D scene objects as projective 2D texture 

[Seg92a] in object space.  

The implementation is based on a multipass rendering 

algorithm: 1) We extract geometrical properties of 

3D scene objects generating image-space data similar 

to G-buffers. As a prerequisite, the shapes must 

provide per-vertex normals. 2) We extract 

discontinuities in the image-space data, stored as 2D 

textures, using texturing to emulate image-processing 

operations. 3) In subsequent rendering passes, the 

algorithm uses projective texturing to combine the 

edge map with 3D scene objects. Since fragment 

shading can be used to specify in detail how edge 

map contents are blended with fragments of scene 

objects, various NPR styles can be supported. The 

edge map distinguishes between two categories of 

edges, profile edges and inner edges – fragment 

shading can also handle them differently.  

The implementation of the algorithm does not block 

framebuffer resources because edge maps are created 

by rendering directly into the texture. Hence, it is 

orthogonal to other real-time rendering algorithms. 

For example, it cooperates with real-time mirroring.  

The remainder of this paper is structured as follows. 

Section 2 discusses related work. Section 3 gives a 

classification of edges. Section 4 describes the 

implementation of the algorithm. Section 5 presents 

applications. Section 6 draws conclusions.  

2. RELATED WORK 
Saito and Takahashi [Sai90a] introduced the G-buffer 

as a two-dimensional data structure that stores 

geometric properties of 3D shapes. Important G-

buffers are the normal-buffer, z-buffer, and Id-buffer. 

Furthermore, they describe image-processing 

operations used to analyze G-buffer contents to 

produce “comprehensible images”, for instance, 

edge-enhanced or hatched renderings of 3D scene 

objects. Common image-processing operations 

applied to 2D images, however, are time consuming 

and currently not appropriate for real-time rendering. 

We provide a solution for generating and analyzing 

G-buffer contents in real-time based on texturing.  

Recent research in the field of real-time NPR exploits 

current graphics hardware. Praun et al. [Pra01a] 

implement a technique for real-time hatching of 3D 

shapes. Freudenberg et al. [Fre02a] develop a similar 

technique for real-time halftoning. They make 

extensive use of the programmable rendering pipeline 

and texture blending capabilities of current graphics 

hardware. Our work is complementary and can be 

combined with these techniques. 

NVidia presents an image-space technique to render 

edges of 3D shapes onto a screen-aligned quad 

[Dom02a]. It samples adjacent texture values to 

process encoded normals and detect discontinuities in 

the normal-buffer. ATI extends this approach by 

detecting discontinuities in the normal-buffer, z-

buffer, and Id-buffer [Mit02a]. This way, edges of 3D 

shapes, regions in shadow, and texture boundaries 

can be outlined. Our algorithm works in a similar way 

but distinguishes different types of edges and uses 

projective texturing to be orthogonal to other real-

time rendering techniques and to support different 

NPR styles.  

Peercy et al. implement an interactive multipass 

programmable shading system [Pee00a]. It uses 

projective texturing to combine intermediate shading 

results with 3D scene objects but does not detect 

edges. In our approach, projective texturing is used to 

combine edge maps with 3D scene objects.  

Gooch et al. [Goo99a] explore technical illustrations 

in-depth. We combine their illumination model for 

technical illustrations [Goo98a] with our edge-

enhancement algorithm. 

Decaudin introduces cartoon-style rendering of 3D 

scenes [Dec96a][Dec96b]. His technique uses 

normal-buffer and z-buffer to detect discontinuities in 

image-space. The results are edge-enhanced cartoon-

style renderings. It is not intended, however, as a 

real-time rendering technique. Lake et al. extends 

cartoon style rendering to real-time using texture 

mapping hardware [Lak00a]. We adapt their 

approach and combine it with our edge-enhancement 
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Figure 3: Accessing neighboring texels by

shifting texture coordinates diagonally. 

algorithm. Claes et al. discusses artifacts that occur 

between two consecutive color patches in a cartoon-

style rendering [Cla01a]. A variant of our algorithm 

can be applied to create real-time cartoon-style 

renderings without these rendering artifacts. 

3. EDGE CLASSIFICATION 
The edge map is based on the following classification 

of edges; we assume that 3D scene objects are 

represented by polygonal meshes.  

− A silhouette edge is an edge adjacent to a 

polygon facing towards the camera (front-facing) 

and one polygon facing in the opposite direction 

(back-facing).  

− A border edge is an edge to exactly one 

polygon.  

− A crease edge is an edge between two front-

facing (or back-facing, respectively) polygons  

whose dihedral angle is above some threshold. 

The dihedral angle defines the intensity of a 

crease edge.  

For a given 3D scene object, both silhouette edges 

and border edges outline the profile of that object,  

while crease edges outline inner forms of the object. 

An example illustrates different types of edges in 

Figure 1. 

In a typical 3D scene, abrupt changes in the z-buffer 

occur at silhouette edges and border edges, i.e., 0
th

 

order discontinuities of the z-buffer indicate profiles. 

A 1
st
  order differential operator in image space will 

detect them.  

Abrupt changes in the normal-buffer occur typically 

at crease edges. A normal-buffer is a three-channel 

image containing encoding normalized x, y, and z 

coordinates of normals derived from fragments 

resulting from 3D scene objects. 0
th

 order 

discontinuities of the normal-buffer indicate crease 

edges and, furthermore, profile edges if the normal of 

the adjacent front-facing polygon varies from the 

normal of an underlying polygon. So, profile edges 

producing small discontinuities in depth that can 

hardly be detected can be detected in the normal-

buffer. 

4. EDGE MAP ALGORITHM 

Conceptual Structure of the Algorithm 
The algorithm is conceptually divided into two parts. 

In the first part, it constructs the edge map. For this, it 

generates image-space data similar to G-buffers to 

geometrical properties of 3D scene objects. Then, the 

algorithm applies image-space operations to extract 

discontinuities in G-buffer contents. The 

discontinuities form edges of 3D shapes.  

In the second part, the algorithm combines edges with 

any NPR-rendering algorithm using fragment 

shading. It uses the intenseness of discontinuities to 

blend between edge color and surface shade of 3D 

shape. Furthermore, it distinguishes between profile 

and inner edges and applies different edge colors. 

Detection of Edge Intensities 

4.1.1 Generation and Storage of G-Buffers 
In the first rendering pass, all 3D scene objects that 

are declared in the scene graph to be enhanced are 

rendered into a 2D texture with fragment normals and 

fragment z-value. 

To derive that information, two textures are used for 

scene rendering. 1) A normalization cube map 

textures 3D shapes and produces eye-space 

normalized fragment normals, which are encoded in 

the RGB color channels. 2) A 1D alpha-texture, 

projected from the camera position along the viewing 

direction [Hei99a], textures 3D shapes and produces 

fragment z-values, which are stored in the alpha 

channel. Note that the alpha-texture produces z-

values that correspond to the linear distance from the 

camera position, in contrast to the values stored in the 

z-buffer on graphics hardware. So, the accuracy of 

discontinuities in z-values is independent from the 

position of the shape. Furthermore, no additional 

rendering pass is needed to construct z-buffer 

contents on graphics hardware to produce fragment z-

values. Unfortunately, the alpha-texture has lower 

precision than the z-buffer. To cope with the low 

precision, we minimize the viewing frustum in z-

dimension. We adjust the near and far clipping-planes 

to exactly match the bounding volumes of shapes to 
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Figure 2: A-H are neighboring pixel of X. 



be enhanced. In the future, graphics hardware will 

provide textures of higher precision [Kil02a]. 

RGB and alpha values encoding normal and depth 

information are combined using fragment processing 

and rendered into one 2D texture TG. Thus, the 

texture stores both G-buffer data in a single texture. 

TG and the framebuffer are of equal size and, 

therefore, provide a one-to-one relationship between 

pixels and texels. The implementation uses the 

render-to-texture extension or, alternatively, a P-

buffer canvas [Kil02b] for this rendering pass. They 

are one of the reasons for the real-time capability of 

our algorithm. 

4.1.2 Edge-Detection in Image-Space 
Today’s 3D rendering systems (still) do only provide 

a limited image processing functionality and is 

typically not accelerated by graphics hardware. To 

detect discontinuities in image data, linear filtering 

can be used, for instance, based on the Sobel filter. 

For each pixel to be filtered, linear filtering takes into 

account its neighboring pixels (Fig. 2). 

Our algorithm implements linear filtering based on 

intermediate rendering passes, which render a 

textured screen-aligned quad using multi-texturing. 

Let us assume to have four texture units available on 

graphics hardware, each of which uses TG as texture. 

The quad fits completely into the viewport of the P-

buffer. We present two implementation variants. 

The first variant considers four neighboring texture 

samples, processing discontinuities between values of 

the two diagonally opposite sample pairs (A, H) and 

(C, F). For this, we shift diagonally texture 

coordinates for each texture unit in s and t direction. 

Using the reciprocal of width and height of the P-

buffer permits us to access the adjacent texture 

samples A, C, F, and H (Fig. 3). The technique 

assembles texture color and alpha values and then 

filters out discontinuities using fragment processing. 

We evaluate the RGB values by: 

 )expand(F))dot  expand(C)(            
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The dot products correspond to the cosines of the 

angles between opposite normal vectors. The 

averaged result IN denotes the intensity of 

discontinuities in the normal buffer1. The resulting 

intensity is stored in the RGB channels of the P-

buffer. 

We evaluate the alpha values by: 
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IZ denotes the intensity of discontinuities of z-values; 

it is stored in the alpha channel of the P-buffer. 

After the first intermediate rendering pass the P-

buffer contains intensity values in the RGB channels 

that represent discontinuities in the normal-buffer and 

intensity values in the alpha channel that represent 

discontinuities in the z-buffer. 

The second variant implements a common C1-

discontinuity operator that considers eight 

neighboring samples (A-H) and the center texture 

sample X. It is only applied to the z-buffer. Saito and 

Takahashi as well as Decaudin propose the following 

C1-discontinuity operator to detect discontinuities in 

the z-buffer: 
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We calculate texture coordinates to sample 

neighboring values A-H. No shift in texture 

coordinates is needed for X. The technique requires 

three intermediate passes, each one calculating a 

portion of the operator. In the first intermediate pass, 

we access A, B, C, and X. Then, 

||
8

1
||

4

1
||

8

1
XCXBXA −+−+−  

                                                           

1 A, C, H, and F correspond to the RGB values or the alpha 

value, respectively, of each texture sample. expand(c) 

evaluates  12)( −⋅= xxf  for each component of color 

c. Thus expand(A) yields the normal value encoded in the 

RGB color channel of texel A. 

 

Figure 4: Blending all three intermediate renderings (left) results in the final edge map (right). 



 

 
Figure 6: Normal (upper left) and depth 

(lower left) discontinuities form edges to 

enhance a simply shaded statue. 

   

   

Figure 5: The C1-operator (upper images) produces

artifacts. The diagonally filtering detects finer

discontinuities and produces anti-aliased edge

intensities. 

is processed for each fragment based on the alpha 

components. The result is stored in the alpha channel 

of the P-buffer. In the second intermediate pass, we 

access D, E, and X using equation 

||
4

1
||

4

1
XEXD −+−  

The result is added to the P-buffer using blending. 

Finally, the third intermediate rendering pass 

evaluates 

||
8

1
||

4

1
||

8

1
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and, again, adds it to the P-buffer. Figure 4 

demonstrates the described accumulation of 

intermediate results.  

We observed that the edge intensities calculated by 

the first variant are visually superior compared to 

those calculated by the second variant (Fig. 5). In 

particular, the first variant produces more anti-aliased 

edges. 

In the final step, we copy the P-buffer RGBA 

contents into a texture – the edge map – that can be 

used by NPR techniques. 

Using the Edge Map for NPR 
The edge map is available for subsequent scene graph 

rendering passes. As one application, we can project 

back the edge map onto 3D scene objects using 

projective texturing. In this case, we must use the 

same camera settings for both, edge map construction 

and scene graph rendering. 

Projective texturing permits us to introduce edge 

information in the final image by allocating just one 

texture unit of the graphics hardware. In addition, 

rendering algorithms set up fragment shading 

calculations that consider intensity values stored in 

the edge map. Figure 6 gives an example of an edge-

enhanced simply shaded statue. 

Rendering Passes 

The rendering passes that occur using our technique 

are summarized below: 

1. Scene-graph rendering pass of edge-

enhanced scene objects to generate normal-

buffer and z-buffer. 

2. Intermediate rendering pass to generate edge 

intensities (1 pass for diagonal filtering, 3 

passes for C1-discontinuity operator). 

3. Scene-graph rendering passes of the NPR 

techniques using the edge map, e.g., as 

projective texture. 

Intermediate rendering passes are not time consuming 

since they just render a single screen-aligned quad. 

Since the edge map is stored in a 2D texture, it is 

orthogonal to subsequent rendering passes. 

Management of framebuffer resources, for instance 

the stencil buffer of OpenGL, is not necessary. The 

following section discusses edge-enhancement in 

combination with extended real-time rendering 

techniques. 

5. APPLICATIONS OF EDGE MAPS 

Technical Illustrations 
Gooch et al. study technical illustrations that 

communicate shape, structural and material 

composition of objects more comprehensibly than 

traditional lighting and shading [Goo99a]. Enhancing 

differently profile edges and inner edges assists the 

illustrative representation of objects. 



 

Figure 7: Gooch Illumination model for

technical illustrations enhanced with different

edge colors using the edge map. (Model used

with permission) 

Figure 8: Real-time hatching in combination

with our edge-enhancement algorithm applied

to a statue. The mirrored statue shows enhanced

edges, too, which are perspectively correct. 

We implement their illumination model for technical 

illustrations using Phong shading based on vertex and 

fragment processing. Fragment processing 

distinguishes between profile edges and inner edges: 

First, for inner edges, we linearly interpolate between 

the color given by the lighting model and white as 

edge color using intensity values in the RGB channels 

of the edge map as weights. Then, for profile edges, 

we linearly interpolate between the resulting color of 

the previous weighting and black as edge color using 

the intensity values in the alpha channel of the edge 

map as weights. Altogether, one frame requires two 

traversals of the scene graph and one intermediate 

rendering pass to implement edge-enhanced technical 

illustrations (Fig. 7). 

Edge-Enhanced Real-Time Hatching 
Halftoning produces a variety of non-photorealistic 

renderings, for instance, pen-and-ink style drawings. 

Freundenberg et al. introduced a real-time algorithm 

for halftoning [Fre02a] that uses a smooth threshold 

function to achieve anti-aliased halftone results. We 

implement this technique using a prioritized stroke 

texture to generate real-time edge-enhanced hatching. 

Since it operates on a per-fragment basis, it can be 

combined with edge maps in a straightforward way 

(Fig. 8). In general, a wide range of edge-enhanced 

NPR styles can be derived. 

Mirroring & Edge-Enhanced Renderings 
Our edge-enhancement algorithm can be combined 

with many advanced, multipass real-time rendering 

algorithms [Bly99a] such as mirroring, shadow 

casting, and bump-mapping. 

Figure 8 shows a mirrored, edge-enhanced scene. The 

implementation uses the stencil buffer to mask the 

mirror surface in screen-space, and requires two 

rendering passes, one for the scene without mirror 

and one for the mirror. We have to apply the edge-

enhancement algorithm twice, for the original scene 

and for the mirrored scene. The scene is rendered 

from different viewpoints and, hence, the edges are 

detected correctly (Fig. 8). No extension to the 

existing scene graph implementation of the mirror 

rendering technique needs to be implemented. 

Edge-Enhanced Cartoon-Style Rendering 
Lake et al. define a 1D texture that stores cartoon-like 

shades depending on material and light properties 

[Lak00a]. The dot product between the surface 

normal and the light direction vector on the surface is 

used to index that texture. Nearest filtering produces 

edged though jagged transition between colors. 

We implement the cartoon-style rendering technique 

by Lake et al. and combine it with our edge map to 

enhance edges (Fig. 9). 

Furthermore, we can reduce artifacts between 

consecutive color patches that occur when using 

nearest texture filtering. For this, we use a variation 



      

 

            

Figure 9: The edge-enhanced, cartoon-shaded “Olaf”. Nearest texture-filtering produces artifacts 

between consecutive color patches (left). Sampling neighboring color values smoothes color transition

(right). 

of our algorithm. 

In the first step, we render the scene in a cartoon-style 

using vertex programming and store the RGB 

channels of the P-buffer as 2D texture. In the next 

step, we sample that texture to anti-alias its contents. 

The result is stored in a 2D texture, called cartoon 

map. Then, the edge map is created as described 

before. In the final step, we render the scene using 

both, edge map and cartoon map to generate anti-

aliased cartoon-style renderings in real-time (Fig. 9). 

The example demonstrates the versatility of our 

approach with respect to sampling and processing 

texture values in intermediate rendering passes. 

6. CONCLUSION 
The presented algorithm handles silhouette, border, 

and crease edges. Edge intensities are available as 

edge map, a 2D texture that contains the screen-space 

information. The edge map is well suited to cooperate 

with many real-time rendering techniques, in 

particular NPR techniques. Its implementation is 

completely accelerated by today’s graphics hardware.  

The approach is limited with respect to edge-

enhancement, which is restricted to the geometrical 

boundaries of 3D scene objects due to projective 

texture mapping and the demanding shading 

calculations to enhance edges. Furthermore, edges in 

the edge map are determined from 3D shape and are 

just a few texel wide. So, artistic silhouettes (e.g., 

[Nor00a]) in the periphery of the surface are not 

possible. 

Regarding the future development of OpenGL, real-

time rendering techniques based on high-level 

shading languages can benefit from the presented 

algorithm due to its orthogonality. In particular, non-

photorealistic shaders (e.g., [Fre02b]) could directly 

take advantage of edge maps to increase their 

expressiveness. 
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