
Complex Skeletal Implicit Surfaces

with Levels of Detail

Aurélien Barbier Eric Galin Samir Akkouche

L.I.R.I.S : Lyon Research Center for Images and Intelligent Information Systems

Bâtiment Nautibus, 8 boulevard Niels Bohr

69622 Villeurbanne Cedex, FRANCE

aurelien.barbier@liris.cnrs.fr eric.galin@liris.cnrs.fr samir.akkouche@liris.cnrs.fr

ABSTRACT
Recent research has demonstrated the effectiveness of complex skeletal primitives such as subdivision curves and

surfaces in implicit surface modeling. This paper presents a hierarchichal modeling system with an automatic levels

of detail management for a simpler modeling with an accelerated rendering. We manage levels of detail with smooth

transitions and tree optimizations speeding up visualization by an order of magnitude, which allows an interactive editing

of the shapes.

Keywords
modeling, implicit surfaces, complex skeletal primitives, levels of detail, accelerated rendering.

1 INTRODUCTION

A perenial challenge in implicit surface modeling is to

provide the designer with high level modeling tools and

primitives while maintaining an interactive visualization.

The objective that we have already continued for a few

years is to develop a coherent system of modeling for the

creation of complex virtual environments. These envi-

ronments are composed of manufactured objects, natu-

ral objects and animated characters. Our system is de-

veloped around a skeletal implicit surface model named

BlobTree [WGG99] that we enrich with complex skeletal

primitives. The strategy that we adopted consists in us-

ing traditional models as skeletons of implicit primitives

to benefit from the intuitive and foreseeable aspect. The

field of potential created around these skeletons enables

us to control the operations like blending to increase the

range of the possible shapes.

Past and recent research has demonstrated the effective-

ness of complex skeletal primitives such as curves or sur-

faces [BS91, CH01]. Moreover, complex surface or volu-

metric elements may appear in specific applications such

as metamorphosis [GLA00, BGA03]. In practice, com-

plex skeletons are seldom used because the implicit sur-

face models suffer from a lack of efficient methods for

an interactive or a real-time rendering. Both ray tracing

Permission to make digital or hard copies of all part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3., ISSN 1213-6972
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Figure 1: A complex stone statue defined with LOD -
generalized cylinders skeletal primitives.

and polygonization techniques require hundreds of thou-

sands of potential field function evaluations to generate

an image or create a triangle mesh representation. Unfor-

tunately, potential field evaluations are the more compu-

tationally demanding as the skeletons are the more com-

plex. Generally, a significant number of simple primitives

is used but it so becomes difficult to control a model well.

Thus, there is a need to propose some intuitive complex

skeletal primitives combined with accelerated rendering

techniques to simply create and edit models like the statue

of the figure 1.

We present a framework for modeling complex implicit

surface models with levels of detail primitives. [CH01]

pioneered the use of skeletal primitives with levels of de-

tail by adapting the subdivision level of some curves and

surfaces according to the vizualization requirements. The

model used relies on the convolution surfaces which are

computationnally expensive.

Our approach provides a more general framework and has



been implemented as an extension of the BlobTree mod-

eling system [WGG99]. The BlobTree organizes simple

skeletal primitives in a scene graph. We propose to man-

age high level primitives with levels of detail by creating

instances that are defined as a set of simple atomic prim-

itives organized in a tree structure. The computation of

the distance to the skeleton is optimized for each atomic

primitive so as to ensure an efficient visualization. More-

over, the number and the type of the generated atomic

primitives depend on the required level of detail for the

visualization. We also incorporate levels of detail nodes

in the scene graph to create smooth transitions between

different resolutions. Levels of detail enables us to sim-

plify the model on the fly as needed to accelerate the vi-

sualization step.

Traditionnally, implicit surface vizualisation’s cost has

been lowered by the application of spatial subdivision

techniques, as presented in [FGW01], which are memory

demanding. Our approach consists in preserving the tree

representation of the model by reorganizing the nodes

and balancing the tree structure to optimize the bounding

boxes hierarchy. This process is applied on the fly during

the instanciation process. Moreover, every atomic primi-

tive is highly optimized so that potential field evaluations

should be performed efficiently by taking the spatial co-

herence of queries into account.

Overview

In this paper, we show that complex skeletal primitives

don’t involve a prohibitive computational cost and allow

an intuitive and fast modeling. We present how high level

primitives are managed efficiently in our system of an-

imation of characters thanks to levels of detail and tree

optimization algorithms.

Section 2 presents the BlobTree model and useful nota-

tions. In section 3, we propose a method to define effi-

cient high level primitives with intrinsic levels of detail.

Then, we propose a framework for incorporating levels

of detail nodes in our tree model which create smooth

transitions between the different resolutions of a shape

(Section 4). We finally detail some techniques of tree

optimization to reduce the complexity of the evaluation

of the BlobTree, which enables us to speed-up both ray-

tracing and polygonization (Section 5).

2 BACKGROUND AND NOTATIONS

An implicit surface [BBBR97] is mathematically defined

as the points in space that satisfy the equation S = {p ∈
R

3
, f (p)−T = 0} where f (p) denotes a scalar field func-

tion in space and T a threshold value. Although full

blending of simple primitives (points, line segments) has

been successfully used to create clouds or viscous liq-

uids [DC95], experiments demonstrated that this model

is inadequate for representing complex models. Since,

[PASS95] and [WGG99] have proposed two similar hi-

erarchical models that incorporate boolean operations,

blending and deformation in a unified system.

Union

Hyper−Blend

Blend

Figure 2: A simplified representation of the BlobTree
structure of a tyrannosaurus-rex model.

The BlobTree model [WGG99] is characterized by a hier-

archical combination of skeletal primitives organized in a

tree data-structure (Figure 2). The nodes of the tree hold

boolean, blending and warping operators. Skeletal primi-

tives generate potential field contributions, denoted as fi,

that are decreasing functions of the distance to a skele-

ton: fi = gi ◦ di where gi : R+ → R is the potential field

function, and di : R
3 → R+ refers to the distance to the

skeleton. Both the skeleton and the distance function di

characterize the shape of the element, whereas the po-

tential field function gi defines the way elements blend

together.

Figure 3: Atomic skeletal primitives with an opaque
skeleton and the corresponding transparent potential
field.

Our system implements a large set of primitives of any

dimension (Figure 3). Circle, circular arc, quadric and

cubic polynomial curves extend the familly of curve

skeletons. Surface skeletons include triangle, rectan-

gle, convex polygon, disc, hollow cylinders and cones.

We have implemented primitives with surface of revo-

lution skeletons defined by sweeping a quadric and cu-

bic curve around an axis. Voluminal skeletons include

sphere, hemisphere, cone, box, cylinder, and cylinder-

box. Finally, our system incorporates super-ellipsoids



[Bar81] which are based on Lp metrics, ratio-quadrics

[BS96] whose field function is more efficient to compute,

and rotational and translational primitives described in

[CBS96].

All those skeletal primitives implement a specific and op-

timized distance function di(p). Therefore, they will be

refered to as atomic primitives. More complex primitives

with levels of detail will be instanciated as a combination

of those atomic primitives.

3 HIGH LEVEL PRIMITIVES WITH
LEVELS OF DETAIL

The very issue consist in defining tools offering to the

designer complex primitives while guaranteeing efficient

computing times for an interactive editing. We present

some high level primitives controlled by a small set of

parameters that automatically manage levels of detail and

generate sub-trees of atomic primitives. Indeed, we split

complex skeletons into a union of atomic curve, surface

and voluminal skeletons that may be processed efficiently

to ensure an optimized visualization. Using the union

opertor guarantees that no bulging effect appears. The

subdivision level used to create the BlobTree representa-

tion of the high level primitives is defined as a function

of the input level of detail. The scalar value λ ∈ [0,1]
denotes the level from coarsest to finest. The BlobTree

generation process adapts the generated skeletal atomic

primitives according to the variations of the thickness for

a given level of detail so as to generate atomic primitives

with faster distance computation.

The concept of high level primitives is general within

the framework of our model. Therefore, many classes

of complex primitives may be added. Our current imple-

mentation includes three primitives whose skeletons are

generalized cylinders, surface patches with varying thick-

ness, and volumes of revolution.

Figure 4: A tyrannosaurus-rex and a dragon defined
with LOD - high level primitives.

Curve-based LOD primitives
Generalized cylinders are often used to design tubu-

lar organic shapes of varying radius. We created the

tyrannosaurus-rex (Figure 4 left), the statue (Figure 1)

and the body of the dragon (Figure 4 right) very ef-

ficiently and intuitively by blending a few generalized

cylinder skeletons. A generalized cylinder skeleton is

parameterized by a sweeping curve, denoted as c(t) and

a freely varying radius function, denoted as r(t) along

the support curve (Figure 5). The system discretizes the

curve into a set of n line segments whose vertices are de-

noted as vi, i ∈ [0,n−1], depending on the level of detail

coefficient λ ∈ [0,1]. For each vertex vi, the system com-

putes the corresponding radius parameter ri and creates a

sphere primitive while for each line segment a cone skele-

ton is created. The final potential field is defined as the

union of the potential fields of the generated primitives.

Union

UnionUnion

vi ri

vi+1
ri+1

Figure 5: A LOD - generalized cylinder primitive and
its corresponding BlobTree representation.

Several optimizations have been included in the primi-

tive generation process. If the end radii of a piece are

constant, the system instanciates a cylinder atomic skele-

tal primitive that is faster to process than a cone. In

the same way, if the end radii are null, a line segment

skeleton is generated. Eventually, if the required level of

detail is not very high, a cone with close end-radii val-

ues is approximated by a cylinder whose potential field

function is faster to evaluate. Moreover, when creating

the BlobTree representation, our evaluation engine or-

ganizes primitives into an optimized hierarchy of union

nodes (Figure 5). This approach takes advantage of spa-

tial coherence and reduce computations when performing

potential field computation queries as described later in

Section 5.

The snake-woman statue (Figure 1) involves 257 LOD

generalized cylinders but 176 of them were used to create

the hair style. The final model generated for rendering

at the maximum level of detail features 8600 optimized

atomic primitives. It would be difficult to create such a

complex model by editing each single primitive.

Surface-based LOD primitives
[AC02] recently proposed to use subdivision surfaces as

skeletons in the context of convolution surfaces by adap-

tively meshing the surface into a set of triangles. We have

adapted different types of surfaces to our system. Subdi-

vision surfaces as well as parametric surfaces generate

a set of triangles that approximate the surface at a given

level of detail. Triangles are used to create skeletal atomic

primitives that are unioned in a sub-tree to create the final

approximation of the distance surface.

We have added some extra control by defining a parame-

terized function that represents the thickness of the skele-

ton at each point of the surface which enables us to cre-

ate more complex shapes. Figure 6 shows the BlobTree

representation of this high level primitive. The system

creates a triangle mesh of the surface depending on the



level of detail coefficient λ ∈ [0,1]. Then, for each vertex

vi j the system computes the thickness parameter ti j and a

vertex normal ni j by averaging the normals of the neigh-

bouring triangles. A prism polyhedral primitive whose

six vertices are computed by offsetting the three vertices

of the triangle in the direction ±ti j ni j is generated for

each triangle and the borders are processed as described

for generalized cylinders. The final potential field is de-

fined as the union of the potential fields of the generated

primitives.

Union

UnionUnion

vi j

vi j+1

vi+1 j

ti j ni j

Figure 6: A surface patch with varying thickness
primitives, and its corresponding BlobTree represen-
tation.

Prisms are computationally expensive skeletons. As

for generalized cylinders, several optimizations were in-

cluded in this otherwise simple process. If the thickness

radii at the vertices of the base triangle are the same, then

the prism has parallel faces and the general prism skeletal

element is replaced by an optimized version. Eventually,

the prism primitives simplify to triangles if the thickness

function is null.

Let us inspect the creation of the dragon model (Figure 4).

The body was created by blending 79 generalized cylin-

der skeletons. The end part of the wing has a small thick-

ness, whereas the section near the junction with the body

is thicker. Each wing was designed using surface patches

with variable thickness skeletons. Each patch was con-

trolled by four cubic spline curves and the varying thick-

ness was controlled by four cubic spline functions that

represent the thickness along the splines of the surface

patch. The final model used for the rendering at the

maximum level of detail contains 5337 optimized atomic

primitives.

Volumes of Revolution with LOD
It could be possible to use the preceding high level prim-

itive to create volumes of revolution models but we pro-

pose an optimized method for these shapes. In the general

case, volumes of revolution are generated by sweeping a

two dimensional closed surface around an axis. Here, we

restrict to surface defined as two dimensional generalized

cylinders. The bottle and glass models in Figure 8 were

created using this technique. The BlobTree generation

process is similar to generalized cylinders.

First, the system discretizes the profile curve into a set

of n line segments whose vertices are denoted as vi,

i ∈ [0,n− 1]. For every vertex vi, the system computes

the curve normal denoted as ni and evaluates the corre-

sponding thickness parameter ti (Figure 7).

Union

UnionUnion

vi ti ni

vi+1
ti+1ni+1

Figure 7: A volume of revolution and its corresponding
BlobTree representation.

Then, for every line segment, the vertices of the four

sided polygon vi ± ti ni and vi+1 ± ti+1 ni+1 are computed

and a primitive of revolution is created with this polygon

as revolution skeleton, which is a pieced hollow cone of

varying radii primitive. The system also generates torus

primitives with center vi, major radius ‖ni‖ and minor

radius ri to create smooth junctions between revolution

primitives. The final volume of revolution is defined as

the union of the generated optimized atomic primitives.

Several optimization steps have been incorporated in this

process. If the thickness parameter is null, we create

hollow cones primitives, hollow cylinders primitives and

even surface of revolutions with quadric or cubic polyno-

mial profil curves primitives.

Figure 8: Bottles and glasses of wine and champagne
modeled with LOD - volume of revolution primitives.

4 MANAGING LEVELS OF DETAIL
One of the weaknesses of implicit surface models com-

pared to triangle meshes [MH99] has long been the lack

of methods for generating models at different levels of

detail. Since implicit surfaces are generated by a field

function in space, defining levels of detail is equiva-

lent to generating field functions at different resolutions.

In our model, levels of detail may be handled by high

level primitives as described above, or by specific nodes

in the BlobTree itself. In this section, we propose a

coherent framework for managing levels of detail with

smooth transitions between the representations of an im-

plicit model.

Multi Representation Nodes
In the simplest type of levels of detail, the different repre-

sentations are models of the same object containing dif-

ferent primitives. Thus, our system implements a new

levels of detail node, denoted as L, in the BlobTree’s def-

inition. L is an n-ary node that selects one of its chil-

dren to represent the field function defining an object for

a given input level of detail (Figure 9).



L

λ = 1 λ = 0.5 λ = 0

Figure 9: Multi-representation node describing a cu-
bic structure.

As for meshes, one problem is that popping may occur

when switching between different levels of detail. Inter-

polating two models, i.e summing the weighted contribu-

tion of the two field functions at different resolution may

be used to avoid this problem. However, this process re-

quires that two field functions should be evaluated which

slows down ray-tracing and polygonization significantly.

Therefore, we have developed geomorph levels of detail

models in our system that are faster to evaluate.

Geomorph Levels of Detail
Geomorph levels of detail were first proposed in [Hop96]

as a set of mesh models created by simplification. Instead

of using alpha blending to create a smooth transition from

one model to the next, the vertices of one model move to

the other model’s vertex locations. We adapt the con-

cept of geomorph to the BlobTree by progressively sim-

plifying the primitives and the nodes of a complex model.

Simplifications may be obtained in two ways, either us-

ing automatic techniques, such as skeleton simplification

and field function fading, or using parameterized models

edited by the designer.

λ = 1 λ = 0.5 λ = 0

Figure 10: Smooth transitions between models.

By using a progressive mesh representation for curve and

surface supports of our high level primitives, we can de-

fine them as progressive levels of detail primitives (Fig-

ure 10). In this context, the creation of a multiresolution

model relies on an automatic curve or triangle mesh sim-

plification process as described earlier. Some primitives

however include specific simpler representations. For in-

stance, a cone primitive with a small slope automatically

transforms to a cylinder as the level of detail decreases.

Simplifications are also obtained by smoothly reducing

the influence of the field function of a given primitive or

sub-tree to 0. This may be easily achieved by parame-

terizing the potential functions by a weighting coefficient

that decreases as the required level of detail gets smaller.

In the most general case, our system allows the designer

to freely parameterize skeletal elements and high level

primitives as functions of a given input level of detail

variable. Contrary to previous methods, this technique

requires some modeling skills, but provides a very tight

control over the shape transformation. Figure 11 shows a

column at different levels of detail. The left image show

the column at maximum resolution. The next three mod-

els show progressive simplification, as primitives that add

detail are smoothly removed. The rightmost image shows

a column where small details disappeared. The top and

bottom parts of the column are simple box primitives, and

the cylinder needs to grow to fill the gap created when re-

moving the top and bottom discs.

Figure 11: Column with geomorph levels of detail. See
figure 16 for a use of each level of detail depending on
the distance to the viewer.

Figure 12 represents the dragon model at three different

levels of detail. The small images show the dragon at the

corresponding viewing scales. Figure 13 show the use of

each level of detail with a swarm of dragons. Figure 16

shows a temple with some columns forming a path and

a statue in the back. All the elements of this scene were

created with levels of detail primitives and nodes, which

accelerated ray-tracing process by a factor of 3.

Table 1 reports the timings for ray-tracing different mod-

els at different levels of detail at 704× 396 pixels reso-

lution. Figures show that using models at a low level of

detail accelerates visualization by an order of magnitude,

without noticeable artifacts.

Objects Coarse Medium Accurate

tyrannosaurus-rex 83 208 639
dragon 94 458 770
statue 92 230 706

Table 1: Timings (in seconds) for ray-tracing complex
models at different levels of detail (0,0.5,1).

Figure 13: A swarm of flying dragons.



Figure 12: A dragon at different levels of detail. The wings are modeled with surface patches with varying
thickness skeletons and most of the body with generalized cylinder skeletons.

5 EFFICIENT PROCESSING
The use of the high level primitives allows an effective

and intuitive editing. However the resulting BlobTree

may involve some redundancies in the nodes which leads

to an unbalanced tree. An optimization step is necessary

for an efficient processing. We present some classical ap-

proaches applied to the BlobTree structure to reduce the

computational rendering time. Spatial coherence is used

to reduce the potential field computation either for ray-

tracing or polygonizing the optimized BlobTree.

Tree Optimization
In the general case, the number of primitives that ef-

fectively contribute to the final potential field at a given

point in space is small compared to the overall number of

primitives involved in a particular model. Traditionally,

visualization’s computational cost has been lowered by

the application of spatial subdivision methods. [FGW01]

proposed an algorithm that uses a voxel decomposition

of space to split the model into a set of simpler BlobTree

models located in the cells of the voxel. However, this

approach is only applied as a pre-processing step before

visualization and is memory demanding.

We aim at preserving a unique tree representation of the

BlobTree. The optimization process has to be able to

be invoked at any time, even during the creation of a

shape, so as the optimized model may be further edited

as needed. Our system automatically rewrites the scene

graph of the BlobTree in order to optimize its internal

bounding boxes hierarchy.

First, the system removes the nodes of affine transfor-

mation by integrating them into the parameters of the

skeletal primitives. As prescribed in [FGW01], we use

the following result: Affine(Op{Ni}) = Op{Affine(Ni)}
where Op is a boolean or a blending operator and Ni de-

notes a child node of the considered n-ary operator. Un-

fortunately, warping operators block this otherwise sim-

ple process in the general case. We have optimized the

algorithm so that rotations and translations can be cast

through some warping nodes such as twist.

The second step merges nodes of the same type to reduce

the depth of the BlobTree (Figure 14 (a)). Let N be a

n-ary node of the tree holding boolean or blending oper-

ators. If one of its child node Ni is of the same type, then

we move the children nodes of Ni to N and remove Ni.

This tree merging step is recursively applied throughout

+

+

+

1

2

3 4

5 (a)

+

5 3 1 4 2

(b)

+

+

+ +

1 2 3 4 5

1
2
3
4
5

Figure 14: Optimization of the scene graph: merge the
nodes of the same type to reduce the depth and bal-
ance the tree to create an optimized bounding boxes
hierarchy.

the BlobTree thanks to the previous algorithm that en-

sures that affine nodes do not block the process.

For the third and last step (Figure 14 (b)), we rely on the

algorithm presented in [GS87] to split the boolean and

blending nodes so as to create an optimized hierarchy of

bounding boxes of their child nodes.

Spatial Coherence
One of the most expensive step in the evaluation of the

field function at a given point in space p is the compu-

tation of the distance d(p) to complex skeletons. When

ray-tracing an implicit surface, the ray model intersection

[KB89] is found by sampling the potential field along

the ray to isolate the roots and converge. The queries

could benefit from spatial coherence. The polygonization

[Blo88] using a voxel decomposition of space may also

be rewritten in order to take advantage of the coherence

of samples that are located on the lines of the voxel grid.

Recall that for every ray, we first recursively check if it in-

tersects the bounding box of each node of the BlobTree.

If no intersection occurs for a node, the whole sub-tree

is disabled so as to avoid the propagation of unneces-

sary further queries down the sub-tree. We propose to

speed-up the future potential field computations of the

enabled nodes by pre-computing and caching constant



terms. Skeletal primitives split the ray into different in-

tervals where the distance to the skeleton is unambigu-

ously defined, and compute the closed form equation of

the squared distance to their skeleton d(p(t)) whenever

possible (Figure 15). We identify two classes that rely on

the same pre-processing method explained below: sur-

faces of revolution and polytopes. Note that some other

primitives, such as polynomial curves, may be optimized

in several ways by caching constant terms as well.

�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

Ω1

Ω2

S

p(t)

Figure 15: The ray of the queries is splitted in indepen-
dant intervals. Ω1 and Ω2 are the region of influence
of the primitives. S is the final iso-surface.

Surfaces of revolution as well as the circle, disc, cylin-

der (Figure 15 right), cone, and tube primitives may be

processed by caching the constant terms of the equation

of the projection of the point p(t) on the axis, denoted

as a(t), and by caching those of the equation of the dis-

tance to the axis, denoted as r(t). In the general case,

the computation of the distance function d(p(t)) relies

on the evaluation of the quadric polynomial r(t) and the

linear function a(t), which may be performed by a mere 3

adds and 3 multiplies. This is much faster than the direct

computation of the projection onto the axis a(p) and the

evaluation of the radial distance is r(p) that cost 8 adds

and 7 multiplies. Specific surfaces of revolution such as

cylinders may be optimized even more.

Whatever the dimension of the polytope, the region of in-

fluence Ωi around the skeleton is a rounded polytope de-

fined by sweeping a sphere over the skeleton. We split Ωi

into non-overlapping sub-regions in which the computa-

tion of the distance is straight forward and defined as the

distance to a point, a line or a plane (Figure 15 left). This

decomposition enables us to compute the closed form ex-

pression of the distance d(p(t)) as a piecewise quadric

polynomial in t which greatly speeds up computations.

Timings
We have developed an object oriented class hierarchy that

implements all the features described through out this pa-

per. Tables 2 and 3 report timings for ray-tracing and

polygonizing the models shown in Figures 1, 4, and 8.

The first column of Table 2 report timings without any

pre-processing step. The second column show acceler-

ations obtained after balancing the BlobTree. The third

column reports timings corresponding to a balancing pre-

processing step combined with the optimized potential

field computation algorithm. Timings were performed on

a P-IV processor at 1.6 GHz with 256 Mo of memory.

Objects Standard Balanced Optimized

wine bottle 69 67 25
wine glass 56 53 15
champagne bottle 49 48 21
champagne glass 33 30 5
tyrannosaurus-rex 1786 258 133
dragon 2392 399 241
statue 2841 373 59

Table 2: Ray-tracing - timings in seconds. The tech-
nique is based on an optimized version of the original
Lipschitz based method first described in [KB89]. Im-
ages were generated at 512×512 pixels size.

Objects Balanced Optimized Triangles

wine bottle 23 17 159492
wine glass 16 10 134448
champagne bottle 33 23 213012
champagne glass 15 10 89168
tyrannosaurus-rex 34 22 89888
dragon 54 40 118140
statue 80 43 298796

Table 3: Polygonization - timings in seconds. The tech-
nique relies on a brute force 2563 voxel decomposition
of space.

Timings show that balancing the tree structure of the

BlobTree plays a major part in the acceleration of the

computations for huge models. For instance, the ray-

tracing time for rendering the statue model drops from

2841 seconds to 373 seconds when balancing the Blob-

Tree. In contrast, the balancing process produced almost

no acceleration for models with few skeletal primitives

since they were already almost balanced.

In all cases, the accelerations obtained by preprocessing

complex primitives for every ray are significant. Accel-

erations are the more significant as the skeletal primitives

are complex. For instance, the ray-tracing time for ren-

dering the champagne glass model drops from 30 sec-

onds to 5 seconds by caching constant terms in the eval-

uation of the potential field. In contrast, accelerations are

less important for the dragon model: timings report ray-

tracing time decreasing from 399 seconds to 241 seconds,

as most skeletal atomic primitives are quite simple (trian-

gles, spheres and cones) where accelerations are smaller.

6 CONCLUSION
In this paper, we have proposed high level primitives

that automatically manage levels of detail in a natural

way. Those tools provide a great modeling flexibility and

power to the designer who can easily control the shape.

We also have introduced a new levels of detail opera-

tor that add multi-representation to the BlobTree model



Figure 16: A temple with columns and statue with levels of details.

and we have presented a general framework guaranteeing

smooth transitions between the different levels of detail.

Those modeling tools are used in an interactive environ-

ment thanks to several optimized techniques that speed up

by an order of magnitude the computation of the potential

field for both ray-tracing and polygonization algorithms.

The automatic generation of different models used in a

multi-representation operator will be studied as a future

work. Moreover, even if the techniques of acceleration

which we propose are effective, many ways remain to ex-

plore for a very fast polygonization.

7 REFERENCES
[AC02] Alexis Angeledis and Marie-Paule Cani. Adaptive

implicit modeling using subdivision curves and sur-
faces as squeletons. In Proceedings of Solid Mod-
eling, Saarbrucken, Germany, pages 45–52, 2002.

[Bar81] Alan Barr. Superquadrics and angle-preserving
transforms. Computer Graphics and Applications,
1(1):11–23, 1981.

[BBBR97] Jules Bloomenthal, Chandrajit Bajaj, Jim Blinn,
and Alyn Rockwood. Introduction to Implicit Sur-
faces. Morgan Kaufmann Publishers, 1997.

[BGA03] Aurélien Barbier, Eric Galin, and Samir Akkouche.
Controlled metamorphosis of animated objects.
In Proceedings of Shape Modelling International,
Seoul, Korea, pages 184–196, 2003.

[Blo88] Jules Bloomenthal. Polygonization of implicit sur-
faces. In Computer Aided Geometric Design, vol-
ume 5, pages 341–355, 1988.

[BS91] Jules Bloomenthal and Ken Shoemake. Convo-
lution surfaces. In Computer Graphics (Siggraph
proceedings), volume 25, pages 251–256, 1991.

[BS96] Carole Blanc and Christophe Schlick. Ratio-
quadrics: an alternative method for superquadrics.
The Visual Computer, 12(8):420–428, 1996.

[CBS96] Benoit Crespin, Carole Blanc, and Christophe
Schlick. Implicit sweep objects. Computer Graph-
ics Forum, 15(3):165–174, 1996.

[CH01] Marie-Paule Cani and Samuel Hornus.
Subdivision-curve primitives: a new solution
for interactive implicit modeling. In Proceedings
of Solid Modeling, pages 82–88, 2001.

[DC95] Mathieu Desbrun and Marie-Paule Cani. Ani-
mating soft substances with implicit surfaces. In
Computer Graphics (Siggraph proceedings), vol-
ume 29, pages 287–290, 1995.

[FGW01] Mark Fox, Callum Galbraith, and Brian Wyvill. Ef-
ficient use of the BlobTree for rendering purposes.
In Proceedings of Shape Modelling International,
Genova, Italy, 2001.

[GLA00] Eric Galin, Antoine Leclercq, and Samir
Akkouche. Morphing the blobtree. Computer
Graphic Forum, 19(4):257–270, 2000.

[GS87] Jeffrey Goldsmith and John Salmon. Auto-
matic creation of object hierarchies for ray-tracing.
Computer Graphics and Applications, 7(5):14–20,
1987.

[Hop96] Hugues Hoppe. Progressive meshes. In Computer
Graphics (Siggraph proceedings), pages 99–108,
1996.

[KB89] D. Kalra and Alan Barr. Guaranteed ray intersec-
tion with implicit surfaces. In Computer Graph-
ics (Siggraph proceedings), volume 23, pages 297–
306, 1989.

[MH99] Thomas Möller and Eric Haines. Real time render-
ing. A.K. Peters, Ltd, 1999.

[PASS95] Alexander Pasko, Valery Adzhiev, Alexei Sourin,
and Vladimir Savchenko. Function representation
in geometric modeling: concepts, implementation
and applications. The Visual Computer, 11(8):429–
446, 1995.

[WGG99] Brian Wyvill, Andy Guy, and Eric Galin. Extend-
ing the CSG tree (warping, blending and boolean
operations in an implicit surface modeling system).
Computer Graphics Forum, 18(2):149–158, 1999.


