
Bottleneck ANN: dealing with small amount of data
in shift-MLLR adaptation

Zbyněk Zajı́c, Lukáš Machlica, Luděk Müller
Department of Cybernetics, Faculty of Applied Sciences

University of West Bohemia, Plzeň, Czech Republic
Email: {zzajic, machlica, muller}@kky.zcu.cz

Abstract—The aim of this work is to propose a refinement of
the shift-MLLR (shift Maximum Likelihood Linear Regression)
adaptation of an acoustics model in the case of limited amount
of adaptation data, which can lead to ill-conditioned transfor-
mations matrices. We try to suppress the influence of badly
estimated transformation parameters utilizing the bottleneck
Artificial Neural Network (ANN). The ill-conditioned shift-MLLR
transformation is propagated through a bottleneck ANN (suitably
trained beforehand), and the output of the net is used as the new
refined transformation. To train the ANN the well and the badly
conditioned shift-MLLR transformations are used as outputs and
inputs of ANN, respectively.
Keywords: ASR, Adaptation, shift-MLLR, ANN, bottleneck

I. INTRODUCTION

A speaker adaptation of an acoustic model in the task of the
Automatic Speech Recognition (ASR) is a standard approach
how to improve the performance of the speech recognition.
The most used adaptation techniques are methods based on
a linear transformation, where the number of free parameters
to be estimated significantly decreases via clustering of similar
parameters in comparison with other adaptation methods. How-
ever, the number of free parameters of the transformation is
still high to be estimated properly when dealing with extremely
small data sets.

Various solutions to avoid this problem have been proposed,
e.g. lowering the number of free parameters by using diagonal
or block diagonal transformation matrices (1) or finding trans-
formation matrices as a linear combination of basis matrices
(2). Another solution is performing a proper initialization
of transformation matrices (3), (4). In this work we try to
incorporate an Artificial Neural Network (ANN) in order to
refine the poor estimates of the shift-MLLR transformation.
The adaptation approach is described in Section II.

Our idea is based on the principle of information reduction.
The ill-conditioned adaptation matrix estimated on a dataset
containing small amount of adaptation data is propagated
through a bottleneck neural network (a special type of ANN
used for dimensionality reduction, see the Section III), hence
it is transformed in a non-linear fashion in order to map it
to a robust estimate (reduce the influence of bad estimates
of parameters, see the Section III-A). To train the bottleneck
ANN at first shift-MLLR transformations are estimated on suf-
ficiently large datasets, and subsequently these transformations

are used as inputs and outputs of the bottleneck ANN (see the
Section III-B). Tests and their results are given in Section IV,
they are performed on SpeechDat-East Corpus.

II. ADAPTATION BASED ON LINEAR TRANSFORMATION

These adaptation techniques adjust the Speaker Independent
(SI) model so that the probability of adaptation data would
be maximized. Let the SI model be represented by a Hidden
Markov Model (HMM) with output probabilities described by
Gaussian Mixture Models (GMMs) with mean μ jm, covariance
matrix C jm and weight ω jm of each mixture component
m= 1, . . . ,M, and of each state j = 1, . . . ,J of HMM. The mth

mixture component’s posterior of the jth state of the HMM
given an acoustics feature vector ot is

γ jm(t) =
ω jmp(ot | jm)

∑Mm=1 ω jmp(ot | jm)
. (1)

One of the most popular adaptation techniques in cases of
small amount of adaptation data are methods based on Linear
Transformations (LT), e.g. the Maximum Likelihood Linear
Regression (MLLR) (1), which transform the mean of output
probabilities of HMM μ jm by an affine transformation

μ̄ jm =A(n)μ jm+b(n), (2)

where W(n) = [A(n),b(n)] is the transformation matrix com-
posed from the matrix A(n) and the bias b(n), and μ̄ jm is
the adapted mean. The advantage of MLLR is that it can
adapt more HMM components at once (in this work only
means are adapted) using the same transformation matrix.
For this purpose similar model components are clustered into
clusters Kn,n = 1, . . . ,N, hence the number of parameters to
be estimated decreases. Denoting d the dimension of acous-
tics features, the number of free parameters for adaptation
is D = N × (d2 + d). The clusters can be obtained using a
regression tree (5). It is a binary tree where the root (first) node
contains all the means of all the GMM mixture components
contained in the HMM. The splitting of nodes is based upon
the euclidean distance of GMM means belonging to a given
node – two new child nodes are formed so that the distance
of centroids computed from GMM means in these nodes is
maximized. Once a tree is constructed and adaptation data are
avilable an occupation of each node υk = ∑Tt=1 ∑m γ jm(t) in the

978-1-4673-2197-6/12/$31.00 ©2012 IEEE

507

tree is computed. The index m ranges over all the indexes of
GMM means contained in the node k, and T is the number of
feature vectors used for adaptation. A threshold θth has to be
specified, the transformation matrix W is computed only for
the deepest nodes for which the condition υk > θth still holds.
Thus, means in such a node will be transformed by the same
transformation matrix, for detail see (5). Note that the number
of clusters N depends on the amount of given adaptation data
and on the value of the threshold θth. If θth is high and
only a low amount of adaptation data is available than only
one (global) transformation will be used (same transformation
matrix for all the GMM means). Hence, N determines the depth
of the regression tree and it is the upper bound on the number
of clusters that could be acquired if enough data would be
available.

Another popular method based on linear transformations
is called shift-MLLR (6), where only the bias vector b(n) is
utilized (the matrix A(n) is assumed to be the identity matrix)

μ̄ jm = μ jm+b(n). (3)

Thus, the number of free parameters further significantly
decreases (D = N·d). To estimate the bias b(n) Maximum
Likelihood (ML) criterion is used. The auxiliary function,
which is maximized has the form

Q(λ, λ̄) =−
1
2

T

∑
t=1

∑
jm∈Kn

γ jm(t)(log |C jm|+

+(o(t)− μ̄ jm)
TC−1

jm (o(t)− μ̄ jm)).

(4)

The bias b(n) is then given by

b(n) = S
T

∑
t=1

∑
jm∈Kn

γ jm(t)[C−1
jm (o(t)−μ jm)], (5)

where

S = (
T

∑
t=1

∑
jm∈Kn

γ jm(t)C−1
jm)

−1
. (6)

In the case, where the number of clusters N is set using a
regression tree (5), it is possible to choose smaller threshold
θth for shift-MLLR than for the MLLR adaptation. The reason
is that the number of free parameters for shift-MLLR is much
lower since the matrix A has not to be estimated.

III. INFORMATION REDUCTION VIA BOTTLENECK

Bottleneck ANN is frequently used in order to reduce the
dimensionality of feature vectors (7). The bottleneck strategy
consists in distributing the D dimensional input data through
a hidden layer with number of neurons smaller than the
dimension. However, the number of neurons in the output
layer is same as the dimension of input vectors, for details
see Figure 1.

The training of bottleneck ANN is supervised, the output for
each input is supplied by a teacher. The task of the hidden layer
with B neurons is to reduce the dimension of the input space

Fig. 1. Bottleneck ANN

to a smaller dimension B, while requesting the best possible
match with the output vector, for details see (8). The principle
of the bottleneck can be divided into two parts: compression
and decompression of information. The ANN is then used for
the task of data compression. In the task of speech recognition,
the bottlenecks were presented e.g. in the work (9) or (10).

A. Refinement of adaptation

Our goal is not to find the low dimensional representation of
the input data (this is the case of the dimensionality reduction
task), but to filter out the useless and inaccurate information
contained in the adaptation matrices. Estimating the adaptation
matrices with small amount of adaptation data (the insufficient
information for the estimation of all free adaptation parameters)
can lead to the improperly adjusted adaptation parameters.
These parameters contained the bad information for speaker
adaptation and can cause the poor recognition rates.

The input to the ANN is a vector, not a matrix. Hence in
order to cope with matrices (e.g. with MLLR transformation
matrix W = [A,b]) a vector w = vec(W) has to be formed,
where the operator vec concatenates the rows of a matrix so
that a high dimensional vector – supervector – is formed.
Unfortunately, since the matrix W has to be decomposed to a
vector, treated like a vector and again reassembled to a matrix,
the properties of the linear space generated by the matrix W

can be spoiled in a large extent and the matrix multiplication
A(n)μ jm+b(n) in (2) can lead to poor recognition.

The same problem is solved in method (2), where the new
adaptation matrix is constructed as a linear combination of
some basis matrices we = vec(We), but the final matrix Wout
is found using the ML criterion.

To avoid this problem, we turn to the shift-MLLR, where
only bias vectors b have to be processed. These are then used
as the input to the ANN.

B. Bottleneck for shift-MLLR

The proposed approach of the shift-MLLR refinement has
the following steps:

508

• Format of data: ws = [bT
s(1), . . . ,b

T
s(N)]

T is the sth
speaker’s input vector – all the transformation vectors
bs(n),n = 1, . . . ,N from all clusters Kn are concatenated
into one supervector. The number of clusters N is fixed.
Dimension of the supervector is D= N ·d.

• Training: Input supervectors wtrain
s from the training

dataset are estimated for each speaker s utilizing MLLR-
shift adaptation using only one sentence from this given
speaker (to simulate a limited amount of adaptation data).
Output supervectors wtrain−outs (the information from the
teacher - supervised training) are composed from trans-
formations estimated on all available training data from
speaker s. Finally, pairs (wtrain

s ,wtrain−outs),s = 1, . . . ,S
are continuously introduced one-by-one to the bottleneck
ANN in order to train ANN paramaters. Hence, a non-
linear transformation is trained, the ANN learns the rela-
tion between ill- and well-conditioned estimates of the
shift-MLLR biases. The bottleneck should remove the
inconsistency between input and output.

• Testing: After a speaker model was adapted, the su-
pervector wtest is constructed. This supervector wtest is
distributed through the bottleneck ANN so that the output
supervector wtest-out is obtained. The output supervector
wtest-out = [btest-out

(1) , . . . ,btest-out
(N)] (refined transformation) is

than decomposed and utilized to adapt the speaker inde-
pendent model (the previous adaptation is left out).

IV. EXPERIMENTS

A. SpeechDat-East (SD-E) Corpus
For experiment purposes we used the Czech part of the

SpeechDat-East corpus (see (12)). In order to extract the
features Mel-frequency cepstral coefficients (MFCCs) were
utilized, 11 dimensional feature vectors were extracted each
10 ms utilizing a 32 ms hamming window, Cepstral Mean
Normalization (CMN) was applied, and Δ, Δ2 coefficients were
added.

A 3 state HMM based on triphones with 2105 states total and
8 GMM mixture components with diagonal covariances in each
of the states was trained on 700 speakers with 50 sentences for
each speaker (cca 4 sec. on a sentence).

To test the systems performance different 200 speakers from
SD-E were used with 50 sentences for each speaker, however
a maximum of 12 sentences was used for the adaptation. A
language model based on trigrams was used for the recognition
process (13). The vocabulary consisted of 7000 words.

B. Adaptation Setup
In our experiments we used unsupervised shift-MLLR adap-

tation with one global transformation b for each speaker
and with 64 transformations b(n),n = 1, . . . ,64 depending on
classes in the regression tree. The bottleneck ANN was trained
with IRPROP training algorithm (11) and ANN with 3 layers
was used. For the global and shift-MLLR adaptation with
64 transformations the number of neurons in each layer of

ANN was 33, 10, 33 and 2112, 100, 2112, respectively. The
topology of ANN can be seen in Figure 1, in hidden layers the
sigmoid activation function was utilized and linear function
was used in the output layer. In the training of ANN we
utilized 700 speakers (used in the training phase of HMM)
from the SD-E corpus. Input vectors – shift-MLLR biases –
used in the training phase of ANN were estimated on one
and two adaptation sentences from all the 700 speakers to
prepare for cases of small amount of adaptation data. Next, for
each speaker 20 input vectors were collected based on different
sentences. Each output vector (shift-MLLR bias) was estimated
on all available data from one speaker (cca 50 sentences). Note
that to all the 20 input vectors of one speaker the same output
vector was assigned. The task of ANN is to find the relation
between poorly and well estimated transformations.

In the testing phase at first shift-MLLR adaptation was
performed, the supervector was formed and propagated through
ANN, the output vector was decomposed to individual biases
– refined transformation. Finally, the acoustic SI model was
adapted by the refined transformation.

C. Results
The proposed method was tested on varying number of

adaptation sentences. Figure 2 depicts results (Accuracy (Acc)
in %) of ASR using shift-MLLR adaptation with global
transformation and with 64 transformations (denoted as shift-
MLLR-global and shift-MLLR-64, respectively), and results of
refined shift-MLLR adaptation utilizing bottleneck ANN (de-
noted as ANN-shift-MLLR-global and ANN-shift-MLLR-64,
respectively). Also accuracies of MLLR adaptation assuming
only global transformation (MLLR-global) and the unadapted
SI model (baseline) are presented. The selected results are
shown in Table I, the accuracy of SI model is 68.75%. Note
that we chose a global transformation for MLLR, because of
insuffiecient amount of adaptation data.

No.Sentences MLLR-global shiftMLLR-64 ANN-shiftMLLR-64
1 14.04 69.84 70.81
2 56.36 70.56 71.19
3 66.74 70.79 71.17
4 69.58 70.94 71.19
5 70.23 71.16 71.21
6 70.74 71.31 71.53
8 72.30 71.76 71.15
10 72.30 72.14 71.26
12 72.33 71.54 71.25

TABLE I
THE RESULTS (ACC)[%] OF SPEECH RECOGNITION UTILIZING UNADAPTED

SI MODEL, MLLR ADAPTATION, SHIFT-MLLR ADAPTATION, AND
REFINED ANN-SHIFT-MLLR ADAPTATION FOR DIFFERENT NUMBER OF

ADAPTATION SENTENCES.

As we expected ordinary MLLR with only a global trans-
formation matrix W = [A,b] completely failed in the case
of small amount of adaptation data (1-4 sentences, which is
approx. 4-16s of speech without reference transcription). On

509

Fig. 2. Accuracy (Acc)[%] of speech recognition utilizing unadapted SI model
and different types of adaptation dependence on the number of adaptation
sentences.

the other hand the shift-MLLR approach with only a bias vector
used as a transformation (W = [b]) seems to be a good choice
for the adaptation with a few adaptation data. For all different
amounts of adaptation data the performance of the recognition
system is not spoiled, as was the case for MLLR adaptation.
The proposed approach – shift-MLLR refined by ANN (ANN-
shift-MLLR) – improves the accuracy for small amounts of
adaptation data (1-4 sentences) in comparison to shift-MLLR,
however no additional improvement is acquired when more
adaptation data are available. The reason is that ANN was
tuned for cases with small amounts of adaptation data (1-2
sentences).

V. CONCLUSIONS

Presented experiments proved the increase of the accuracy
of the speech recognition utilizing MLLR based adaptation, es-
pecially the involvement of the shift-MLLR refined by ANN in
the task of extremely small data sets. The bottleneck obviously
suppresses the influence of the ill-conditioned parameters of the
adaptation. In future work we would like to extend proposed
methods based on ANN also to MLLR with full transformation
matrix.

VI. ACKNOWLEDGMENTS

This research was supported by the Technology Agency of
the Czech Republic, project No. TA01030476 and by the grant
of the University of West Bohemia, project No. SGS-2010-054.

REFERENCES

M.J.F. Gales, “Maximum likelihood linear transformations for HMM-
based speech recognition”, Computer Speech and Language,
vol. 12, pp. 75–98, 1997.

D. Povey, and K. Yao, “A Basis Representation of Constrained
MLLR Transforms for Robust Adaptation”, Computer Speech
& Language, vol. 26, pp. 35–51, 2012.

Y. Li, H. Erdogan, T. Gao, and E. Marcheret, “Incremental on-line fea-
ture space MLLR adaptation for telephony speech recognition”,
7th International Conference on Spoken Language Processing,
pp. 1417–1420, 2002.

Z. Zajı́c, L. Machlica, and L. Müller, “Initialization of fMLLR with
Sufficient Statistics from Similar Speakers”, Lecture Notes in
Computer Science, vol. 6836, pp. 187–194, 2011.

M. J. F. Gales, “The Generation and use of Regression class Trees
for MLLR Adaptation”, Techreport Cambridge University Engi-
neering Department, 1996.

D. Giuliani, and F. Brugnara, “Acoustic model adaptation with mul-
tiple supervisions”, TC-STAR Workshop on Speech-to-Speech
Translation, pp. 151-154, 2006.

E. Parviainen, “Dimension Reduction for Regression with Bottle-
neck Neural Networks”, Lecture Notes in Computer Science,
vol. 6283, pp. 37–44 , 2010.

Ch. M. Bishop, “Neural Networks for Pattern Recognition”, Oxford
University Press, USA, 1996.

F. Grézl, M. Karafiát, and L. Burget, “Investigation into bottle-neck
features for meeting speech recognition”, Interspeech, vol. 9,
pp. 2947-2950 , 2009.

J. Zelinka, J. Trmal, and L. Müller, “Low-dimensional Space
Transforms of Posteriors in Speech Recognition”, Interspeech,
vol. 2010, pp. 1193–1196 , 2010.

Ch. Igel, and M. Hsken, “Improving the Rprop Learning Algo-
rithm”, Second International Symposium on Neural Computa-
tion, pp. 115–121 , 2000.

P. Pollak, et al., “SpeechDat(E) - Eastern European Telephone Speech
Databases”, XLDB - Very Large Telephone Speech Databases
(ELRA), 2000.

A. Pražák, J. Psutka, J. Hoidekr, et al., “Automatic online subtitling
of the Czech parliament meetings”, Lecture Notes in Artificial
Intelligence, vol. 4188, pp. 501–508, 2006.

510

