
An Expert System in Speaker Verification Task

Zbyněk Zajı́c, Lukáš Machlica, Aleš Padrta, Jan Vaněk and Vlasta Radová

Department of Cybernetics, Faculty of Applied Sciences,
University of West Bohemia, Pilsen, Czech Republic

{zzajic, machlica, apadrta, vanekyj, radova}@kky.zcu.cz

Abstract
The article introduces an expert system for the speaker ver-

ification task. Our main purpose was to design a tool for the
combination of various speaker verification systems proposed
for various operating conditions. First of all, the essential ideas
are explained that made us design the expert system. Next sec-
tion describes the structure of a rule-based expert system and
subsequently an oriented graph is proposed for the representa-
tion of the topology of the system. The expert rules exploited
by the system are derived automatically from the input data and
we have implemented also a certainty factor to acquire more re-
liable decisions. The experiments show that the proposed sys-
tem has the capability to significantly improve the verification
results in trials with various operating conditions.
Index Terms: speaker verification, expert system, system fu-
sion, certainty factor

1. Introduction
A huge progress has been achieved in the field of the speaker
recognition during the last more than 10 years. A great atten-
tion has been devoted mainly to the development of robust sys-
tems that could work properly in various operating conditions,
i.e. that could work independently of the signal quality, the
length of the recordings being compared, the emotions and/or
health of the speaker etc. [1]. Such a kind of robust systems
has usually an universal setting suitable for various operating
conditions [2]. The main stress is usually laid on the signal pre-
processing [3], [4].

However, it has been demonstrated many times that the
system designed especially for one particular kind of operat-
ing conditions can work far better under these conditions than
an universal robust system. For example, experimental results
with a signal-processing module [5] show that the optimal con-
figuration of the module varies according to specific conditions
and the choice of a proper signal processing module dramati-
cally affects the performance of the whole verification system.
Analogical situations can be expected also for other modules
involved in the verification process. A human expert with ad-
equate knowledge is usually able to choose the proper config-
uration for each module of the verification system. However,
it would be much more convenient, if the verification system
could set up its parameters for each verification trial fully auto-
matically, with respect to current conditions. These reasons lead
us to design an expert system for speaker verification (ESSV)
whose structure is described in Section 2.

In order to generate expert rules automatically, we exam-
ine the space created by detectors of operating conditions in
Section 2.2. In some cases there could be more than one suit-
able configuration of the speaker verification system. In such
situations it is useful to assign a certainty factor (CF) to each

acceptable configuration. The CF should reflect how well the
configuration fits the actual operating condition and it can be
also exploited for a combination of the verifications results as
described in Section 2.3.

The aim of our work is to create an integrated system, which
could handle particular, separately developed, speaker verifica-
tion systems intended for a certain verification set-up and unite
them under a well-designed framework. The realizations of in-
dividual systems are described in Section 3. The experimental
configurations and experimental results can be found in Sec-
tion 4. Conclusions are given in Section 5.

2. Structure of the Expert System
Every speaker verification system consists of several modules,
which are mutually independent, but they are tied together in the
sense of informational relations. The modules can be divided
into four basic groups, namely: modules for signal preprocess-
ing and processing (SPM), modules for modeling of speakers
(MM), verification modules (VM), combination modules (CM)
(if there are several verification modules).

The characteristic sequence of modules is practically the
same in all speaker verification systems. At first, the utterance
is processed in a signal preprocessing and processing module
in order to suppress undesirable phenomenons (e.g. the back-
ground noise) and in order to transform the utterance into a set
of features. Next, the set of features is used to create a model
of the speaker (the modelling module). Usually only models
of reference speakers are created, but in some cases (when the
verification is based on a comparison of models) a model for
the unknown speaker is created too. And finally, a verification
module is used to provide the decision, whether the unknown
speaker is who he/she claims to be, or not. When several ver-
ification modules are used in the expert system, a combination
module has to be included in order to obtain a single decision.

From now on, the term subsystem will denote one specific
sequence of modules (e.g. SPM + MM + VM).

2.1. Expert System Architecture

At first, it is necessary to represent the sequence in which partic-
ular modules take part in the verification trial. The simplest way
would be to construct as many parallel subsystems as configu-
rations we have, whereas only one of the configurations would
be used for each trial (determined by the knowledge stored in
the knowledge base). Loosely speaking, many parallel subsys-
tems would be identical, they would differ only in the settings of
modules (i.e. the number of cepstral coefficients, the number of
gaussian mixture components, etc.). A more advantageous way
is to represent the expert system by an oriented graph [6], avoid-
ing the need of identical copies of modules. The nodes of the



n(s)1

n(s)2

n(s) j
n(t) j

ni

n(t) I

ej

Figure 1: An illustration schema of an expert system represented
by an oriented graph.

graph correspond to the particular modules and the edges deter-
mine the succession of the modules. Identical copies of modules
are replaced by a so-called shared node to which configuration-
dependent edges come in.

The oriented graph used for the representation of the expert
system is defined as a set of nodes N = {n1, . . . , nI} and a set
of data edges E = {e1, . . . , eJ}, i.e.

−→
G =

−→
G(N, E). (1)

The topology of the graph is trial-dependent, because in
some cases it is necessary to choose another proper module
to handle the upcoming situation. Therefore an expert rule
cj (life condition) has to be assigned to each data edge ej ,
j = 1, . . . , J . If the condition cj is not satisfied, then the edge
ej does not exist. Thus, the edge ej is defined as

ej = ej(cj , n(s)j , n(t)j), (2)

where n(s)j , n(t)j stand for the source node and the target node,
respectively. An illustration schema is depicted in Fig. 1.

There are two type of nodes in the system: AND-nodes
and OR-nodes. In order to activate an AND-node all input
edges must exist, whereas only one existing edge is sufficient
to activate an OR-node. For instance, the combination module
(OR-node) can work with one result computed by one verifica-
tion module belonging to one node, but the verification mod-
ule (AND-node) depends on the model and the parametrization,
therefore both edges originating from the nodes with the corre-
sponding modules must exist, see Fig. 2.

Expert rules can be also assigned to each node. The node
ni is then defined as

ni = ni(mi, Ri), (3)

where mi denotes the ith module assigned to the ith node and
Ri = {r1(i), . . . , rKi

(i)} denotes the set of expert rules. Each
expert rule rk(i) has the form: IF [condition] THEN [action].
If the condition in the expert rule rk(i) is fulfilled, an attribute
in the ith module (according to the action part in rk(i)) will be
changed.

The above defined architecture of the expert system enables
to select particular modules, to define the evaluation sequence
of particular modules and to configure modules according to the
actual verification trial. The exact description of the trial flow
through the net can be found in [6].

2.2. Automatic Generation of Expert Rules

The efficiency of the expert system is closely tied with expert
rules. They are used for automatic reconfiguration of the graph
in order to meet the operating conditions of the verification sys-
tem. In order to distinguish between various operating condi-
tions it is necessary to have a suitable set of detectors (spe-
cific realization can be found in Section 3). The construction

of the expert rules is based on the data-driven approach and cor-
responds to a classifier training.

2.2.1. Classifier Training

For every trial, it is necessary to evaluate outputs of detectors
and to compute the verification score for all possible configu-
rations of the system. It is considered only the configuration
which gives the best verification score for the actual trial. This
trial (with its best configuration) can be represented as a point
in the N -dimensional space, N is the number of used detectors
and the output of a detector determines the corresponding coor-
dinate in the space. Thus, the trials (with the same configura-
tion) form a cluster in the detectors space. Our aim is to divide
the space into subspaces, where each subspace represents one
specific and most suitable configuration of the system for actual
conditions. This procedure can be performed by a classifier.

2.2.2. Classification

The classifier determines the most suitable configuration de-
pending on the trial position in the detectors space. The clas-
sification is implemented as a set of rules. The rules are in the
form

iconfig = R(D, C), (4)

where D is the set of outputs of detectors, C is the trained clas-
sifier and iconfig denotes the chosen configuration.

2.3. Subsystem Fusion Based on Certainty Factor

In some cases, it is not possible to obtain an unique and appro-
priate configuration of a module, because the number of suitable
configurations could be more than one. It is useful to define
some certainty measure for each configuration [7]. The cer-
tainty measure can be further utilized in final results fusion1.
In order to quantify the certainty measure, the certainty factor
CF ∈ 〈0, 1〉 may be used, where 0 stands for absolute disbelief
and 1 for absolute confidence. The value of the CF depends on
the evaluation of the expert rule.

In the previous sections, only one suitable configuration of
a module was selected due to the life condition cj of the edges.
The strict existence/non-existence of the edge ej can be now re-
placed by the CFrule(ej) value. The CFrule(ni) value can be
also assigned to every node ni. The presence of several mod-
ules of the same kind but with different CFs will increase the
number of verification results, e.g. several signal processing
modules will produce several different parameterizations with
different CFs (further propagated through the net to the final
node). Thus, several speaker models will be created, thus sev-
eral verification results with different CFs will be obtained.
Therefore a combination module is needed. The propagation is
done via nodes and via edges of the oriented graph2. The overall
certainty factor CF (ej) until the edge ej is evaluated according
to the formula

CF (ej) = CFrule(ej) · CF (n(s)j), (5)

where CF (n(s)j) is the certainty factor of the source node re-
lated to the edge ej and CFrule(ej) is the certainty factor as-
signed to the given edge using the expert rules.

1All configurations can be now considered, thus subsystems must
work in parallel, thus the shared nodes can not be used for the reduction
of the nets topology, see Fig 2.

2In the case that a rule has not assigned any CF to the edge (node),
then CFrule(ej) = 1 (CFrule(ni) = 1).



The overall certainty factor CF (ni) until the node ni is
evaluated according to

CF (ni) = CFrule(ni) · CF
Σ(ni), (6)

where CFrule(ni) is the certainty factor assigned to the given
node using the expert rules and CF Σ(ni) is the overall certainty
factor of all input edges of the node ni determined according to
the type of the used node

OR-node: CF
Σ(ni) = max

n(t)j =ni

CF (ej(n(t)j , ·)), (7)

AND-node: CF
Σ(ni) = min

n(t)j =ni

CF (ej(n(t)j , ·)), (8)

where n(t)j indicates the target node of the edge ej , see Eq. (2).

3. Speaker Verification Modules
The experiments were focused mainly on the choice of a proper
signal processing module (SPM). Thus, the only difference be-
tween parallel subsystems is caused by the SPM. We have in-
vestigated the noise corruption and the channel distortion of sig-
nals. Four configurations of the SPMs were created, each of
them suitable for different operating conditions [5]. All SPMs
were based on Mel Frequency Cepstral Coefficients (MFCCs)
with 24 Cepstral Coefficients (CCs) (without the first coeffi-
cient) plus Delta Coefficients (DCs). The list of the used SPMs:

SP1 – clean utterances – MFCCs with 24 CCs + DCs;

SP2 – utterances contaminated by an additive noise – SP1 ex-
tended with the voice activity detector, the Blackman
window (used to smooth the CCs in the time domain),
the spectral subtraction method;

SP3 – utterances damaged by a channel distortion – SP1

extended with delta-delta coefficients, the cepstral
mean subtraction, the frequency bandwidth set to 200-
3600 Hz;

SP4 – utterances damaged by a channel distortion and an ad-
ditive noise – combination of SP2 and SP3.

The information about the noise level and the channel dis-
tortion in the tested utterance was obtained using the following
detectors:

D1 – the noise level detector – estimates the Signal to Noise
Ratio (SNR) in the training and the testing utterances and
chooses the minimum from both,

D2 – channel distortion detector – estimates the channel dif-
ference as the difference between mean values of CCs in
the training and the testing utterances.

The modelling module was based on Gaussian Mixture
Models (GMMs) that were trained using the Expectation-
Maximization algorithm. The universal background model
(UBM) consisted of 128 mixtures and the speaker models of
64 mixtures.

The results Res(j), j = 1, . . . , JRes, of the verification
modules coming into the combination module along edges ej

are processed to the final result ResFinal:

ResFinal =
1

JRes

∑

j=1,...,JRes

(Res(j)CF (ej)). (9)

The topology of the graph of our system can be seen
in Fig. 2.

P
1.4

P
1.2

P
1.3

P
1.1

W
1

P
2.4

P
2.2

P
2.3

P
2.1

W
2

D
C

M
1

M
2

M
3

M
4

L
1

L
2

L
3

L
4

Figure 2: The expert systems topology. Wi represents an input
wave, D stands for the set of detectors, Pi.j denotes a signal
processing module, Mj is a modelling module, Lj represents a
verification module, and C is a combination module. The use of
the CF is considered, therefore shared nodes can not be used,
see Footnote 1 on the previous page.

3.1. Expert Rules

In our case, the expert rules were assigned just to the edges lead-
ing to SPMs. In order to generate the rules automatically, the
classifier was trained as described in Section 2.2.1. Each clus-
ter (one for each configuration of the SPM, thus four clusters
in common) was represented by its centroid Ci, i = 1, . . . , 4.
The classification was done according to the following steps (we
employed the minimum Euclidean distance):

1. The level of the noise and the channel distortion are de-
tected for the actual verification trial. The results of the
detection can be represented as a point x = [D1, D2] in
the space formed by the outputs of the detectors D1, D2.

2. The index iconfig of the suitable configuration is chosen
according to

iconfig = arg min
i=1,...,4

‖x − Ci‖ (10)

3.2. Certainty Factor

We used the same classifier trained in the same way as described
in Subsection 3.1. Instead of choosing only one nearest cen-
troid (i.e. one configuration), all centroids in a δ-neighborhood
are considered. The neighborhood is defined as the δ-multiple
(δ > 1) of the distance r1 between the point x and the nearest
centroid in the detectors space, see Fig. 3. In order to compute
CFrule(ej) for suitable configurations we used the formula

CFrule(ej) =
1

rj

(

N
∑

i=1

1

ri

)

−1

, (11)

where N is the number of acceptable configurations found in
the δ-neighborhood. In our specific case δ was empirically set
to 1.1. Note: CFrule(ej) were assigned only to the edges lead-
ing to SPMs, thus CFrule(ni) = 1 for all i.

4. Experiments
4.1. Speech data

Utterances from 100 speakers (64 male and 36 female) were
used in our experiments. They were recorded in the same way
as described in [8]. Each speaker read 24 sentences that were
divided into these parts: 11 sentences of each speaker from the



x

r
1

d.r
1

C
1

C
2

C
3

C
4

Figure 3: An illustration of the algorithm which is used to find
appropriate configurations. x represents the point given by the
outputs of the noise and channel detectors, Ci is the centroid
representing the i-th configuration, r is the distance between x
and the nearest centroid, rδ is the δ-multiple of r (δ > 1). An-
other acceptable configurations are searched for in the hatched
area. C1 stands for the best configuration, C4 is another ac-
ceptable configuration.

Set 1 (see below) were used for training the GMM, another 10
sentences of each speaker and from each set were used for train-
ing of the classifier, 2 sentences were used for the construction
of the background model, and 1 sentence was used for the tests.

Four test sets were prepared in order to test different oper-
ating conditions. They were denoted as Set 1, . . . , Set 4. Each
test set represents one typical distortion of the signal as follows:

Set 1 – original data from a close talk microphone were used,

Set 2 – noise with SNR from 15 to 20dB was added to Set 1,

Set 3 – channel distortion was applied to Set 1,

Set 4 – both noise and channel distortions like in Set 2 and in
Set 3 were added.

4.2. Results

Several verification systems were used to recognize test sets
marked as Set 1, . . . , Set 4. These systems differ in the em-
ployed signal processing module only. At first, four subsystems
were tested separately. Each subsystem uses only one type of
the signal processing (SP1, . . . , SP4). Subsequently, two ex-
perts systems consisting of all the subsystems mentioned above
were tested, one system does and another does not use the CF .
The results of particular tests can be found in Table 1. The per-
formance of the speaker verification task is expressed by the
Equal Error Rate (EER). The best results are highlighted for
each test set.

It can be seen from Table 1, that single subsystems work
well in the appropriate operating conditions. However, when
the operating conditions change, other subsystem works better.
The benefits of particular subsystems are exploited in the expert
system. The results of the ESSV in different sets are very simi-
lar to the best results obtained by individual subsystems. How-
ever the advantage of the ESSV is that it chooses the proper
configuration automatically. CF brings further improvement to
the ESSV, as depicted in the last row of Table 1. The proposed
expert system proved to be a convenient approach to speaker
verification tasks dealing with various operating conditions.

5. Conclusions
We have proposed a system for speaker verification task based
on the expert approach. The expert system was described by an
oriented graph and tested in a simple test. The ESSV proved
to be more robust then specific subsystems and to be able to
work in various conditions. Our system was based on GMM,

Table 1: Overview of the experimental results.

Signal Results [EER]
processing Set 1 Set 2 Set 3 Set 4

SP1 1.00% 15.67% 7.10% 18.00%
SP2 2.34% 11.20% 6.00% 18.09%
SP3 1.25% 15.37% 1.93% 15.38%
SP4 2.00% 16.00% 2.00% 16.00%

ESSV 1.84% 13.37% 3.12% 15.38%
ESSV-CF 1.00% 12.37% 2.20% 15.38%

but the proposed framework could employ systems based also
on different principles [9], [10].

We have obtained quite good results in the tests. Further im-
provement could be obtained in use with differently designed
detectors suitable for larger amount of operating conditions
(adding further knowledge). The EER could be reduced using
more sophisticated methods of classification (e.g. MeanShift or
Support Vector Machine). In our specific case the δ-multiplier
in Section 3.2 was fixed, but it could also depend on operating
conditions (e.g. values of detectors). All of the mentioned ideas
will be studied in our future work.

6. Acknowledgements
The work described in this paper was supported by the
Academy of Science of the Czech Republic project no.
1QS101470516, by the Grant Agency of the Czech Republic
project no. 102/08/0707, and by the Ministry of Education of
the Czech Republic project no. LC536.

7. References
[1] J. Navrátil, U. V. Chaudhari and G. N. Ramaswamy, ”Speaker Ver-

ification using Target and Background Dependent Linear Trans-
forms and Multi-System Fusion,” in Proc. Eurospeech 2001,
pp. 1389-1392, Aalborg, Denmark, 2001.

[2] A. Padrta and J. Vaněk, ”Introduction of improved UWB speaker
verification system,” in Text, speech and dialogue. LNAI 3658,
Springer, Berlin, pp. 364–370, 2005.

[3] P. Matějka, L. Burget, P. Schwarz, O. Glembek, M. Karafiát,
F. Grezl, J. Černocký, D. A. van Leeuwen, N. Brummer and
A. Strasheim, ”STBU system for the NIST 2006 speaker recog-
nition evaluation,” in Proc. ICASSP, Hawaii, USA, Apr. 2007.

[4] P. Kenny, G. Boulianne, and P. Dumouchel, ”Eigenvoice mod-
eling with sparse training data,” IEEE Trans. Speech and Audio
Processing, vol. 13, no. 3, pp. 345–354, 2005.

[5] J. Vaněk and A. Padrta, ”Optimization of features for robust
speaker recognition,” in Proc. Speech processing, pp. 140–147,
Academy of Sciences of the Czech Republic, Praha, 2004.

[6] A. Padrta and J. Vaněk, ”A Structure of Expert System for Speaker
Verification,” in Text, Speech and Dialogue. LNAI 4188, Springer,
Berlin, pp. 493–500, 2006.

[7] X. Luo and C. Zhang, ”Proof of the Correctness of the EMYCIN
Sequential Propagation,” IEEE Transaction on Knowledge and
Data Engineering, vol. 11, no. 2, pp. 355–359, Mar./Apr. 1999.

[8] V. Radová, J. Psutka, ”UWB S01 Corpus – A Czech Read Speech
Corpus,” in Proc. ICSLP, pp.732–735, Beijing, China, 2000.

[9] W. M. Campbell, D. E. Sturim, D. A. Reynolds, ”Support Vec-
tor Machines using GMM Supervectors for Speaker Verifcation,”
IEEE Signal Processing Letters, Vol.13, No.5., pp.308–311, 2006.

[10] A. Stolcke, L. Ferrer, S. Kajarekar, E. Shriberg, and A. Venkatara-
man, ”MLLR transforms as features in speaker recognition,” in
Proc. Eurospeech, pp. 2425–2428, Lisbon, Portugal, Sep. 2005.


