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Abstract— Gaussian mixture models (GMMs) are often used in
various data processing and classification tasks to model a con-
tinuous probability density in a multi-dimensional space. In cases,
where the dimension of the feature space is relatively high (e.g.
in the automatic speech recognition (ASR)), GMM with a higher
number of Gaussians with diagonal covariances (DC) instead of full
covariances (FC) is used from the two reasons. The first reason
is a problem how to estimate robust FC matrices with a limited
training data set. The second reason is a much higher computational
cost during the GMM evaluation. The first reason was addressed in
many recent publications. In contrast, this paper describes an efficient
implementation on Graphic Processing Unit (GPU) of the FC-GMM
evaluation, which addresses the second reason. The performance was
tested on acoustic models for ASR, and it is shown that even a low-
end laptop GPU is capable to evaluate a large acoustic model in
a fraction of the real speech time. Three variants of the algorithm
were implemented and compared on various GPUs: NVIDIA CUDA,
NVIDIA OpenCL, and ATI/AMD OpenCL.

Keywords— Gaussian Mixture Models, Full Covariance, Auto-
matic Speech Recognition, GPU, CUDA, OpenCL.

I. INTRODUCTION

Using GPU as a coprocessor becomes quite popular in a
few recent years. GPUs are well suited for highly parallel and
arithmetically intensive tasks. The number of GPU-enabled
applications and libraries grows fast. The reason is not only
the GPU performance. Also the development of high-level
programming languages and other useful tools play a key role.
CUDA [1] is the most favorite development platform in the
scientific community, but it is usable for NVIDIA GPUs only.
An unrestricted open language standard - OpenCL - is more
general [2]. It is now supported by NVIDIA and ATI/AMD
GPUs. However, the last generation of Intel GPUs (Ivy Bridge)
supports the OpenCL as well. It opens a nice scenario that all
computers will support the GPU coprocessing in near future.

The evaluation of GMMs probabilities belongs to well
parallelizable algorithms, especially in cases, where many
GMMs and data can be processed in a parallel (or at least in
a block-parallel) manner. One of these cases is the evaluation
of the acoustic model in ASR. A few recent publications
[3],[4],[5], and [6] describe the GPU implementation of the
model evaluation. However, all the publications deal with DC-
GMMs and NVIDIA GPUs only. Last year we published our
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NVIDIA GPU implementation of DC-GMMs [7]. Our imple-
mentation was significantly faster than previously mentioned
ones. This year we added also ATI/AMD OpenCL variant
and described the kernels in more detail in [8]. This paper
is a continuation where the efficient implementation of the
FC-GMMs evaluation is described in three variants: NVIDIA
CUDA, NVIDIA OpenCL, and ATI/AMD OpenCL. The FC-
GMMs evaluation on GPU was also mentioned in several
recent papers but with a lack of the implementation details
[9] or with only the moderate performance ([10] and [11])
that do not meet the ASR needs.

This paper is organized as follows: At the beginning, the
estimation of full covariance matrices is introduced in Section
II. Then, in Section III, the use of GPU as a coprocessor is
generally described. The description of our implementation is
presented in Section IV. A result Section V shows, compares,
and discusses the performance of the implementation. Finally,
Section VI concludes the paper.

II. FULL COVARIANCE MODELING FOR AUTOMATIC
SPEECH RECOGNITION

For many years, acoustic models based on DC-GMMs rep-
resent the standard in the ASR domain. The feature extraction
part in the ASR produces almost decorrelated feature vectors
and that is the reason why diagonal covariances work fine.
However, a part of a dependency between the dimensions
still remains. A higher number of Gaussians can help to
capture these dependencies, but not completely. In contrast,
applying full covariance matrices increases the number of
parameters to be estimated heavily. With a limited amount
of training data, some of the covariance matrices may become
ill-conditioned. The final acoustic model is not robust and its
evaluation is numerically unstable. However, several methods
were developed to make the estimated covariances more robust
:

• Smoothing, shrinkage [12], [13] The absolute value of
the off-diagonal elements is decreased via multiplication
by positive constant lesser than one. The constant can
be equal for the entire model or it can be set for
each Gaussian/state individually. It may be predetermined
or dependent on amount of training data gathered by
individual Gaussian.

• Covariance matrices sharing [14] To reduce the number
of estimated parameters, a smaller set of covariance
matrices can be selected and shared between Gaussians.



The entire matrix or only the off-diagonal part can be
shared.

• Variable number of Gaussians Instead of set of GMMs
with uniform number of Gaussians, a variable number
of Gaussians for individual GMM can be trained. The
number of Gaussians is set to keep robustness of the
matrices.

III. USING GPU AS COPROCESSOR

GPU is a very powerful processor but it is not designed for
general computing. It is designed for data-parallel processing,
where hundreds or thousands data-parts are processed inde-
pendently in the parallel manner. GPU is equipped with many
cores (therefore GPU is also called many-core processor).
These cores are grouped into multiprocessors, which execute
the same code with different data. It leads to programming
model based on a double-hierarchical parallelization. In first
coarse-grained level, entire data are split between larger
blocks. These blocks are processed by single multiprocessor.
In fine-grained level, the data-part (block) is handled by many
threads in a single-instruction-multiple-data manner. Threads
inside the block can share some limited amount of data and do
local synchronization. The global synchronization is achieved
at the end of the GPU program (kernel). Therefore, splitting
the algorithm into more kernels may be necessary. Atomic
instructions can be also used for synchronization in local
or global domain. The programming model fit to NVIDIA
and ATI/AMD GPUs (and other many-core architectures)
and therefore programming languages CUDA and OpenCL
are practically equivalent. They differ in terminology but the
programming style is identical and transition from CUDA to
OpenCL or vice versa is relatively easy. NVIDIA and AMD
provide many very good guides, tutorials, documents, and
examples [1], [15]. Therefore, broader knowledge about GPU
computing can be easily gathered.

Good knowledge about programming model is necessary to
implement an algorithm on GPU. But, making the program
efficient on target architecture needs much more effort and
experience. In addition, more code variants need to be prepared
for individual GPU architectures or data kinds/sizes [16].
Usually, it is not enough to keep in mind only the recom-
mendations from optimization guides provided by NVIDIA or
AMD.

IV. AN OPTIMIZED KERNEL FOR LIKELIHOOD
CALCULATION

Our implementation is developed for the evaluation of the
acoustic model in the real-time ASR. However, the same
optimization tips and tricks can be used also in other domains.
The model consists of N tied-states, which are modeled as
a GMM with M Gaussians. The evaluation of the model
stands in evaluation of posterior probabilities of GMMs for
given stream of the feature vectors xtxtxt of dimensions D. The
probabilities are computed according to

p(xtxtxt|Θn) =

M∑
m=1

wnm

(2π)N/2|CCCnm|1/2

exp (−1

2

[
(xtxtxt −µµµnm)TCCC−1

nm(xtxtxt −µµµnm)
]
),

(1)

where p(xtxtxt|Θn) is the posterior probability of the feature
vector xtxtxt and given state n , wnm, µµµnm, and CCCnm are
weight, mean vector, and covariance matrix of the Gaussian
m in the sate n, respectively. The probability is computed
in a logarithmic domain in order to bring a better numerical
stability:

log(p(xtxtxt|Θn)) = LogSumM
m=1(Knm − 1/2e(xtxtxt|Θnm)) (2)

e(xtxtxt|Θnm) = (xtxtxt −µµµnm)TCCC−1
nm(xtxtxt −µµµnm), (3)

where LogSum() is a function, which calculate the sum in
a non-log domain while the input and the output is in the
log-domain. Knm is a pre-calculated constant from Gaussians
parameters Θnm and it is a logarithm of the initial fraction
from the Equation (1).

From the definition of the problem above, a large amount
of parallelism is possible due to the independence of states
and feature vectors. A partial independence of Gaussians and
dimensions can be also utilized. Then multiple degrees of
the parallelism offer high number of possible variants how to
implement the algorithm to the target architecture. However,
there are also some constraints and required data sizes, which
need to be met. In the ASR, the typical sizes are thousands
of states, tens or hundreds of Gaussians per state, and the
dimension about 40. The number of feature vectors is also
high, but the decoder in the ASR usually goes through the
time-sequence successively. In tasks of real-time ASR, the
number of the available feature vectors is very limited, because
the larger feature vectors buffer increases the ASR delay.

Although, we have done three variants of the implementa-
tion, which share a common ground. The entire evaluation is
handled by a single kernel. The work is split into blocks of 8
feature vectors and 64 or 128 of states. Threads are mapped
to the states and each thread computes final probabilities for
8 feature vectors in the block. All input data are arranged
in the memory to the order in which they are read by the
threads. It ensures a fast coalesced memory access. In addition,
a texture memory is used for all the read-only data. The
dimension of feature vectors and model parameters is extended
to be dividable by 4 and the additional dimensions are padded
with zeros. It allows to read and to store all the data as a
float4 data type. The loops inside the kernel can be partially
unrolled by factor of 4 also. The kernel pseudo-code is in
Algorithm 1. It consist of three loops. The main loop is
for the Gaussians and the inner loops are going through the
inverse covariance matrix. In fact, it goes only through the



triangular matrix because of the covariance symmetry. The
off-diagonal elements are doubled and only the triangular part
of the matrix is stored in order to reduce memory size and
bandwidth requirements. The addLog() is implemented as
max(x, y) + log(1 + exp( min(x, y) − max(x, y) ) ).

1 set 8 likelihood registers to ”log-zero”

2 for each Gaussian do

3 set 8 accumulators to zero
4 compute address into model texture memory
5 for i, all dimensions, 4 at once do
6 fetch float4 mean(i)
7 for j ≤ i, 4 at once do
8 if i 6= j, fetch float4 mean(j)
9 fetch 4xfloat4 block of inverse covariances

icov(i,j)
10 compute updates for all 8 accumulators with

4x4 submatrix
11 end

12 end
13 fetch K constants for actual Gaussians (a float per

thread)
14 add K const. to all 8 accumulators and do addLog()
15 end

16 store final likelihoods
Algorithm 1: Kernel pseudo-code for FC-GMM likeli-
hoods computation

A. NVIDIA variants
NVIDIA CUDA and NVIDIA OpenCL variants are equiva-

lent. The kernel is the same, only the programming languages
are different. In the CUDA variant, 1D textures are used for
a slightly better performance. 2D textures need to be used
in the OpenCL because large 1D textures are not supported.
It is suitable to use the NVIDIA fast local memory. We use
it to store the entire set of 8 feature vectors. The data are
preloaded on the beginning of the kernel and than shared
between all the threads. All threads access the same place
in the local memory. Therefore, no bank conflict arises. All
other variables (likelihoods, accumulators, temporary means
and inverse covariances) are in the register memory. To reduce
the number of used registers, the computation of 4x4 inverse
covariances (icov) submatrix accumulators is split to 4 parts
and the float4 icov variable is reused. 64 states/threads in the
block was the optimal value for tested NVIDIA GPUs.

B. ATI/AMD variant
ATI/AMD GPUs differ from NVIDIA GPUs in the archi-

tecture, mainly in following features:
• Entire core has the same clocks (NVIDIA has higher

clocks for the computing core, excluding new Kepler-
based GPUs).

• Each stream core is equipped with five or four stream pro-
cessors. This is why ATI/AMD GPUs have a higher raw
computational performance than comparable NVIDIA
GPUs.

• On chip local memory (32kB) is relatively slow in
comparison with the register (note that HD 4000 and
older have no local memory).

• Relatively large (256kB) register space is available.
• Best performance is obtained when using vectorized data

types (as float4).
We use no local memory, because of it’s limited bandwidth.

The feature vectors are read through the texture cache and
stored in float4 registers. All the needed data for new i, j
coordinates are fetched at once at the beginning of the most
inner loop. ATI/AMD performance is sensitive to interposing
branches or memory fetches into computing block of code.
Therefore, it is advisable to make the memory-related and
the computing blocks of the code as large as possible. Also
indexes needed to memory operations should be computed in
advance because they may violate the memory-related block.
ATI/AMD variant uses 128 threads/states in the block.

C. Variable number of Gaussians

If the number of Gaussians per state is constant, the al-
gorithm and data preparation becomes simpler. However, only
minor changes need to be done to support the variable number
of Gaussians. Because 64-states (or 128-states) are computed
together in the independent blocks, a constant number of
Gaussians per state has to be ensured within individual blocks
only. Therefore, states of the acoustic model are sorted in
advance according to the number of Gaussians per state and
divided into 64-state blocks. Usually, some virtual Gaussians
need to be added, but the total number of virtual Gaussians is
negligible. Only an additional memory-offset vector needs to
be passed into the kernel because 64-states data-blocks vary
in size size.

V. RESULTS

The performance of the GPU implementation is often pre-
sented as a speed-up of baseline CPU variant. But the speed-up
value depends on both implementations. It is always simpler to
use a slower baseline than really speed-up the GPU variant. In
[17], a group of researchers from Intel optimized 14 popular
algorithms for both platforms (Core i7 960 CPU and NVIDIA
GTX 280 GPU) and they found out that the average speed-up
was 2.5x only. Note that not all of the tested algorithms fit
to the GPU architecture well. We use rather some absolute
metrics to present the implementation performance.

We make a benchmark, which evaluates a FC-GMM based
acoustic model. We also chose two metrics. The first one
is an inverted real-time-factor (1/RTF), which compares the
total length of processed speech with the total elapsed time
including CPU-GPU memory transfers. It means that if we
process a minute of speech during one second we get 1/RTF



Fig. 1. Performance result achieved with six tested GPUs. GFLOPS and inverted real-time factors (1/RTFs) of our three implementation variants. Tested
on model with 80k FC-Gaussians in total, 36 dimensions. 1/RTF calculation is based on 100 vectors per second rate. GPU elapsed time includes CPU-GPU
memory transfers.

60x (with respect to 100 feature vectors per second). The
second performance metrics is GFLOPS (billions of floating-
point operations per second). The total number of needed
floating point operations in the task is a product of the number
of the feature vectors, the total number of the Gaussians, and
the number of flops needed to evaluate one Gaussian and one
vector, which we defined as 5 flops for each of D(D−1)/2 off-
diagonal (triangular-half) covariance elements, plus 4 flops for
diagonal D elements, and 9 flops for addLog function. Note
that the potential virtual Gaussians are not included into the
total flops count.

We tested three GPUs from each of both vendors:

• NVIDIA GTX 580 (512cores, 1,560 MHz)
• NVIDIA GT 240 (96 cores, 1,340 MHz)
• NVIDIA FX 770M laptop (32 cores, 1,250 MHz)
• ATI Radeon HD 5870 (1600 cores, 850 MHz)
• ATI Radeon HD 5670 (400 cores, 775 MHz)
• ATI Mobility Radeon HD 5470 laptop (80 cores,

750 MHz)

We used Windows 7 64bit with CUDA 4.0, NVIDIA 285.86
and ATI Catalyst 11.6 drivers.

We tested our implementation on an acoustic model with

80k Gaussians in total (5k tied states, 16 Gaussians each),
dimension of feature vectors was 36. The total GPU elapsed
time included CPU-GPU memory transfers of data and results.
The initialization of GPU and the initial upload of model
parameters were not included. GPU kernel was called for
256 feature long blocks of vectors. The achieved results are
given in Fig. 1. The 1/RTF are in a range from 1.4x to
59x. It means up to 59-times faster than the real processed
speech length. Even the slowest laptop GPU meets the real-
time constraint. The ATI/AMD GPU architecture fits well
to this algorithmically intensive task and the performance of
ATI GPUs is better than the performance of the comparable
NVIDIA GPUs. The difference between the NVIDIA CUDA
and the OpenCL variant is also interesting. Although the
kernels are identical the performance of OpenCL variant is
significantly better. In our previous paper [7], we compared
the NVIDIA CUDA and the OpenCL variant on diagonal
covariance GMMs and there was no difference between them.
We also tried cross-tests: NVIDIA OpenCL variant running on
ATI hardware and vice versa. A significant performance drop
between 15% and 50% was observed on the cross-tests.



A. ASR experiments

We have done also some preliminary results with our ASR
system. In this case, the acoustic model evaluation is off–
loaded to GPU and CPU does the decoding part. Double
data/result buffering is used and GPU is called asynchronously.
GPU evaluates the entire model - all the states, not only the
active ones. The overhead of the active states selection is
bigger than using our fast implementation to compute all the
states. This experiments are not focused on the speed of the
GMMs evaluation. Since the CPU decoder part is slower than
GPU part, the GPU performance is hidden. We would like
to show that the full covariance models can outperform the
diagonal ones in word error rate (WER) of the entire ASR
system without increasing the elapsed time.

For the training of acoustic models, a Czech read-speech
database consisting of the speech of 800 speakers (384 males
and 416 females) was used. The total length of training data
was 220 hours. The front-end consisted of PLP features with
delta and delta-delta coefficients followed by a cepstral mean
normalization. The total dimension of feature vectors was
36. Am initial diagonal single Gaussian acoustic model was
trained. It consisted of 4,922 tied-states. On the basis of the
initial model, two models were trained: A diagonal model with
120k Gaussians, 24 Gaussians per each state, excluding non-
speech states that had 128 Gaussians. A higher number of
Gaussians did not reduce WER further, 24 Gaussians was the
optimal number. The second - full covariance model - used the
variable number of Gaussians and had 45k Gaussians in total.
The training methodology is still under development and it is
going to be published soon, this results are only preliminary.

The test consisted of 2 hours of speech from 12 speakers
(6 males, 6 females). A trigram language model with 140k of
words was enriched with all words from testing utterances
to have no OOV (out of vocabulary) word. The diagonal
model achieved WER 7.92%. The use of full covariance model
reduced the WER to 6.65% without increasing the elapsed
time. Also the CPU memory requirements stayed the same,
since the model was off-loaded to the GPU memory, where
400 MB was occupied.

VI. CONCLUSIONS

In this paper we presented the GPU implementation of
the FC-GMMs evaluation algorithm. We described and com-
pared three variants: NVIDIA CUDA, NVIDIA OpenCL, and
ATI/AMD OpenCL with six GPUs, three from each vendor.
The results show that the implementation is close to the peak
of the GPU performance and even the slow laptop GPUs meet
real-time constraints. We have shown that the full covariance
model can outperform a standard diagonal model. A 14%
relative WER reduction was achieved in our preliminary ASR
experiment. In addition, there is no increase of elapsed time
of ASR.
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