
Optimization of the Gaussian Mixture Model Evaluation on GPU

Jan Vaněk, Jan Trmal, Josef V. Psutka, Josef Psutka

Department of Cybernetics, University of West Bohemia
Univerzitni 8, 306 14 Plzen, Czech Republic

vanekyj@kky.zcu.cz, jtrmal@kky.zcu.cz psutka j@kky.zcu.cz, psutka@kky.zcu.cz

Abstract
In this paper we present a highly optimized implementation of
Gaussian mixture acoustic model evaluation algorithm. Eval-
uation of these likelihoods is one of the most computationally
intensive parts of automatics speech recognizers but it can be
well-parallelized and offloaded to GPU devices. Our approach
offers significant speed-up compared to the recently published
approaches, since it exploits the GPU architecture better. All
the recent implementations were programmed either in CUDA
or OpenCL GPU programming frameworks. We present results
for both; CUDA as well as OpenCL.

Results suggest that even very large acoustic models can
be utilized in real-time speech recognition engines on com-
puters and laptops equipped with a low-end GPU. Optimiza-
tion of acoustic likelihoods computation on GPU enables to use
the remaining GPU resources for offloading of other compute-
intensive parts of LVCSR decoder.

Other possible use of the freed GPU resources is to eval-
uate several acoustic models at the same time and use fusion
techniques or model selection techniques to improve the quality
of resulting conditional likelihoods under diverse conditions.
Index Terms: CUDA, GPU, OpenCL, Gaussian Mixture Mod-
els

1. Introduction
Large vocabulary continuous speech recognition (LVCSR) is
a highly computationally intensive task. The acoustic model
likelihoods computation accounts for the largest processing
part. In a few recent papers [1], [2], and [3] a GPU was em-
ployed as a coprocessor to compute these likelihoods. The
speed-up 4× – 6× was achieved for the full acoustic model
evaluation itself. This leads to LVCSR system speed-up by fac-
tor 1.3× – 3×, depending on individual task and setup, while
keeping the accuracy untouched. For real-time applications,
CPU-only recognizer implementations have to often employ
simplified (i.e. smaller) models, (acoustic model) pruning, and
computational approximations, or combinations of these tech-
niques to fit into the real-time constrains. Thus, by using a hy-
brid CPU-GPU implementations, an increase of accuracy can
be achieved since even low-end GPUs are powerful enough to
evaluate significantly larger models in real-time; without ne-
cessity of any additional acceleration or complexity reduction
techniques.

We are interested in real-time speech applications (e.g.
generation of automatic captions, dialog systems). The well-
utilized GPU power enables us to evaluate a set of speaker-
specific (or speaker-cluster-specific) acoustic models at once
in real-time and combine the individual models likelihoods to-
gether using a fast fusion method [4]. In addition, a com-
bination of full speaker-cluster-specific models with speaker-

specific feature-transformation matrices gives us an opportu-
nity to prepare several tens of models, which in turn enables
the recognizer to handle large inter- and intra- speaker variabil-
ity. Only the well-optimized GPU implementation has enough
performance to deal with such large amount of models in real-
time.

2. General Purpose Computation on GPU
The tasks suitable for processing on GPU are characterized by
high parallelism, low dependency between individual work ele-
ments and rather numerical character with minimal branching.
Such tasks are commonly known as data-parallel algorithms.

Due to the distinctive characteristics of GPU architecture
(high speed, high latency main memory, limited caching ca-
pabilities, limited communication with CPU, minimal thread
switching and planning overhead), the common CPU program-
ming models (and programming languages based on this pro-
gramming models) are not suitable for GPU programming. In
order to achieve close-to-peak performance, the programmer
must consider many low level specifics of the given target ar-
chitecture and therefore, the programming model as well as
the programming language must support explicit expression of
programmer’s intentions.

NVIDIA’s CUDA (Compute Unified Device Architecture)
has gained a wide acceptance, however the CUDA standard is
proprietary and the intellectual property concerns led to devel-
opment of an open standard OpenCL (Open Computing Lan-
guage). The OpenCL standard was developed in cooperation
with teams from ATI/AMD, IBM, Intel, NVIDIA and others
and many HW vendors and SW producers announced support of
OpenCL in their products. Unfortunately, this wide acceptance
does not dislodge the burden of hand-tuning the computational
kernels for individual distinct HW architectures.

The NVIDIA GPU consists of many processing elements
(PEs) called multiprocessors. Older NVIDIA GPUs have 8
stream processors in each PE together witch 16kB on-chip local
memory (called shared memory). Single PE offers 8k or 16k
32-bit registers, depending on GPU series. The Fermi-based
PEs are bigger and contain 32 or 48 stream processors. The
64kB on-chip memory can be set to two configurations: 16kB
L1 cache and 48kB local memory or vice versa. The peak mem-
ory bandwidth from global memory can be achieved only via
coalesced access, where consecutive 16 work-items (half-warp)
access consecutive addresses1. Another example is using of lo-
cal memory where one should omit bank-conflicts which can
significantly degrade the kernel performance. These issues are
discussed in more detail in [5].

1full-warp is needed on Fermi-based cards

3. Implementations Review
The first use of a GPU for acoustic model likelihoods compu-
tation was briefly noticed in [6]. The following year a more
detailed paper was published ([1]). Both approaches share
the same common ground – computation of likelihoods per-
formed by means of matrix dot-products. The entire acoustic
model is represented as a matrix A in which each row is a log
weighted Gaussian component with diagonal covariance matrix.
The i-th component of J dimensional mixture model is repre-
sented as a vector aT

i

ai
T =

{
Ki,

µi1
σi1

, . . . ,
µij
σij

,− 1

σ2
i1

, . . . ,− 1

σ2
ij

}
(1)

where

K = logwi −
J

2
log 2π − 1

2

∑
j

log σ2
ij −

1

2

∑
j

µ2
ij

σ2
ij

(2)

The feature vector xT is then expanded to

xT
e =

{
1, x1, . . . , xJ , x

2
1, . . . , x

2
J

}
(3)

The evaluation of score of every Gaussian can be performed
as the matrix-vector multiplication y = Axe. The output
vector y is a vector containing log weighted scores of every
Gaussian component of the mixture (given the input vector x of
the feature-vector for every Gaussian component). An evalua-
tion of n following feature vectors can be performed as a single
matrix-matrix multiplication Y = AXe, where the columns
of the (2J + 1) × n matrix Xe are the expanded feature vec-
tors. The final mixtures likelihoods are obtained by logarithmic
summation of all the relevant Gaussians.

The evaluation of likelihoods can be implemented in two
ways. The first possibility is to create a single kernel that com-
putes the dot product as well as the logarithmic addition. This
approach can decrease required memory bandwidth and reduce
the overhead of executing two separate kernels. On the other
hand, it is much more difficult to propose optimal block/grid ar-
chitecture for both parts of the kernel. The second way is to
create a standalone kernel for each part of the algorithm. The
dot product part (i.e. matrix multiplication) can be evaluated
efficiently using the sgemm from the CUBLAS library from
CUDA SDK2. The efficient logarithmic addition implementa-
tion can be adopted from parallel sum algorithm. The native log
and exp functions should be used to get maximum performance.
This two-kernel approach is simple and can achieve a satisfac-
tory performance, especially, if the overhead is marginalized by
using of a large block of feature-vectors at once (i.e. large n).

4. Description of the proposed
implementation

Our implementation is based on the single-kernel approach to
avoid storing and re-reading the intermediate data. Each block
manages all Gaussians of 64 states together with 8 feature-
vectors. Therefore, the grid is 2D. Columns are composed by
stripes of 8 feature vectors and rows are stripes of 64 states.
Number of rows is given by the model states number and
number of columns depends on feature-vector window length,
which can be controlled by the decoder (according to real-
time/offline scenario). Number of threads per block is equal

2http://developer.nvidia.com/object/cuda_3_2_
downloads.html

to the number of evaluated states. Optimal number is 64 in
most cases. To ensure memory addresses alignment (required
to coalesced memory access) all dimensions (model as well as
feature-vectors) are padded to be multiples of 4. This padding
also enables usage of float4 textures that are the fastest solution
for read-only memory. All the data are rearranged in advance
to be in the order they will be read. This step ensures the maxi-
mal cache-hit ratio. Entire 8-feature-vector data are loaded into
a shared memory buffer in the beginning of the kernel together
with squares calculation according to eq. (3). It maximizes
the data reuse. The shared memory buffer size is defined just
before the kernel is executed according to the feature-vector di-
mension aligned by 4. During the computation, only the model
parameters are fetched through the texture cache.

1 fetch all entire 8 feature-vectors to shared memory buffer
2 compute squares to the second half of the buffer

according to eq. (3)
3 syncthreads()
4 set 8 likelihood registers to ”log-zero”

5 for each Gaussian do
6 set 8 accumulators to zero
7 compute address into model texture memory
8 pre-fetch model parameters for the first 4

dimensions (u4, v4)
9 for all dimensions do

10 copy pre-fetched u4 and v4 to another
registers u4, v4

11 adjust address
12 pre-fetch next u4, v4
13 compute unrolled block of 64 MAD instructions

8 vectors x 4 dimensions x 2 (u,v) = 64 MAD
instructions use #pragma unroll or manual
unrolling

14 end
15 fetch K constants for actual Gaussians (a float per

thread)
16 finalize all 8 accumulators and do addLog()
17 end
18 store final likelihoods

Algorithm 1: An optimized kernel for GMM likelihoods
computation

The pseudo-code of the kernel is depicted as Algorithm 1.
The kernel consists from an initialization part where the feature-
vectors are loaded and xe is calculated. Also, the likeli-
hood registers for all 8 feature-vectors are defined and set to
”log-zero” which means predefined big-enough negative value.
Thereafter, a loop for all Gaussians begins. At first, the set of 8
accumulators is initialized (set to zero). Then, access address to
texture memory is computed using the grid, block, and thread
build-in variables. Pre-fetching the model parameters is a good
way how to conceal the global memory latency. The computa-
tional loop of the body is unrolled by factor 4 to improve the al-
gorithmic intensity and it fits nicely to the used float4 texture
data-type. The part of the loop consists of 64 MAD (multiply-
and-add) instructions that accumulate four dimensions from 8
feature-vectors multiplied by the appropriate model parameters
u4 and v4.

The large block also ensures an efficient hiding of global
memory latency. In our case, one MAD operand is loaded from

http://developer.nvidia.com/object/cuda_3_2_downloads.html
http://developer.nvidia.com/object/cuda_3_2_downloads.html

shared memory. The same 32-bit word is loaded by all threads.
Therefore, no bank-conflicts can arise. An instruction with
shared-memory operands is slower than registers-only instruc-
tion. In our case, the MAD instruction takes 6 clocks instead
of 4 clocks for registers-only variant. This of course reduces
the maximal throughput to 2/3 in the MAD part of the kernel but
there is no other faster solution than using shared memory, since
register count is highly limited. A similar architecture is used in
an optimized matrix-matrix multiplication algorithm [7]. After
the inner loop, accumulators for actual Gaussian are finalized
with addition of fetched constant K from eq. (2) above. Then,
the likelihoods for all feature-vectors are updated by logarith-
mic addition function.

At the end of the kernel, the final likelihoods are stored
back into the global memory. To achieve the maximum perfor-
mance, the input model parameters memory layout must match
the fetching order. The memory ordering is the same for µij

σ2
ij

texture (marked as u4 in kernel pseudo-code) as well as for
values − 1

2σ2
ij

(marked as v4). Each thread fetches four 32-

bit floats as single float4 data-type. It is a vector of consecu-
tive four-dimensions. The model parameters are read by all 64
threads running in actual block. These threads access a con-
secutive memory addresses, therefore the memory access is co-
alesced. These blocks are read in the inner loop sequentially
for all the dimensions, therefore they must be stored in memory
consecutively according to dimension. This larger blocks are
also ordered in the way that match the fetching order.

4.1. Variable number of Gaussians per state

Our implementation can easily support also acoustic models
with variable number of Gaussians per state. Only a minor
changes need to be done. Because the 64-states blocks are com-
puted independently, a constant number of Gaussians per state
has to be ensured within the individual blocks only. Therefore,
model states are sorted in advance according to theirs Gaussians
per state numbers and divided into 64-state blocks. Only an ad-
ditional memory-offset vector needs to be passed into the kernel
because 64-states memory-blocks do not have a constant size.

4.2. Final tuning

Number of threads in block (number of evaluated states) can be
tuned. Low number of threads (one warp) exhibit low memory-
latency hiding ability. In contrast, too large number of threads
(128 and more) limits the number of active blocks per multipro-
cessor because of limited number of registers. According to our
experience, the 64-thread-block is optimal in most cases.

The pre-fetching technique helps to hide the memory la-
tency but consume additional registers. Therefore, it performs
better on cards with higher register count per stream processor.
From our experience, Fermi-based cards obtain better results
without pre-fetching technique.

The Fermi-based cards also suffer from lower memory
bandwidth to computing power ratio. It means that total kernel
performance is limited by memory bandwidth even if the mem-
ory latency is hidden well. This limit can be elicited by in-
creased data reuse. We have implemented a 16-vectors kernel
version. This kernel computes 16 feature-vectors at once so one
phase of model parameters reading is eliminated. The 16-vector
kernel outperforms the 8-vector kernel by 15–20 % on Fermi-
based cards. The performance does not change on other cards.

Figure 1: Real-time factors (RTFs) of our optimized implemen-
tation for several NVIDIA GPUs with CUDA and OpenCL im-
plementations. Tested on model with 1,280k Gaussians in total.
RTF calculation is based on 100 vectors per second rate.

5. Results
In addition to analysis of the described implementations within
the speech decoder, we measured the speed of AM likelihoods
evaluation only. For performance comparison, we use RTF
measure which is a ratio between elapsed time and length of
processed speech. Elapsed time includes the host-device mem-
ory transfers.

At first, we tested CUDA as well as OpenCL implementa-
tion with several GPUs available to us. We’ve choosen a very
large model together with a large feature-vector window to sup-
press the CPU-GPU communication overhead during the im-
plementation performance evaluation. We have chosen a 5000-
states model with 256 Gaussians per state (i.e. ≈ 1.3M Gaus-
sians in total) and feature vector dimension 36. The feature-
vector window length was 256. RTFs were calculated on 100
vectors per second basis. Results are shown in Fig. 1.

The measured RTFs suggest that even a laptop GPU is able
to process this very large model in less than a half of the real-
time. Desktop models are much faster and achieved elapsed
times from 7 to 50 times shorter than real-time. Results indicate
that practically any GMM-based acoustic model can be used in
real-time applications even with a low-end office PC GPU or
even a laptop GPU. Also, the offline recognizers speed-up can
be significant, if the decoder part will be powerful enough. The
results also shows that OpenCL implementation is a little slower
for this high window-size than CUDA.

We compared performance of CUDA and OpenCL imple-
mentations in more detail for various feature-vector lengths on
GeForce GT 240 GPU. Results are shown in Fig. 2. Six win-
dow sizes in range from 8 to 256 were tested on a smaller
acoustic model with 16 Gaussians per state and 5000 states.
The results shows us that OpenCL is a little slower for longer
window-sizes but the overhead is significantly smaller which
causes lower elapsed times for small window-sizes. The dis-
tinct part of the overhead is not caused solely by the CPU-GPU
memory transfers. The kernel-only times are also significantly
higher; more than double in our 8-vectors case. In our case,
the total overhead varies between 0.3 and 1 millisecond per ker-
nel run. In the case of real-time speech recognition, the over-
head is not a major problem anyway as the bottleneck in this
case is the decoder part.

Figure 2: Elapsed time per feature-vector on GT 240 GPU for
various vector-window sizes. Both CUDA and OpenCL imple-
mentations were tested and total as well as kernel-only elapsed
times were measured.

5.1. Comparison of the Existing Implementations

Direct comparison of the aforementioned implementations is
problematic. Each implementation was developed and bench-
marked on different devices, different model complexities and
different feature vector sizes, etc. The implementation [1] eval-
uates only one feature vector at a time, therefore the per-
formance is hampered by communication overhead. The im-
plementation [3] was intended primarily for completely dif-
ferent task. The fastest competing implementation ([8], [2])
achieves RTF = 0.15, whereas our implementation bench-
marked on similar device and with about 1.5× larger acoustic
model achieves RTF = 0.08.

5.2. Real-life task LVCSR experiments

We have done also experiments with real recognizer. The recog-
nizer was designed for both off-line as well as real-time applica-
tions. For evaluation, we used data that are used for automatic
captioning of parliamentary sessions. The task itself as well as
the LVCSR system setup is described in [9].

For our experiments we used acoustic models with 81k and
194k Gaussians (5k states, each consisting of 16 or 36 Gaus-
sians). The smaller model is the largest one that, when evalu-
ated on CPU using a fast Gaussian prunning algorithm, fits into
the real-time constraints. When no prunning method is used, its
RTF is about 2. The large model performs about 1 % abs. better
(approx. 91 % vs. 92 %), however its RTF is about 5.

In our experiment, we tested the both acoustic models. The
experiments were performed on Intel Core2 Quad 2.83GHz
CPU together with GTX 260 GPU. The decoder part of the rec-
ognizer uses all four cores of the CPU. Using the GPU during
the recognition, we were able to fit within the RTF constraints
even with the big model.

Therefore, employing of GPU opens two sources of ac-
curacy improvement in real-time systems. The first source is
the full acoustic model processing without need of any pruning
or approximations. The second source is the possibility to use
of much larger models. In many speech recognition tasks, it is
possible now to process in real-time bigger model with the aid
of GPU than we are able to train reliably.

6. Conclusion
In this paper we described our GPU implementation of acoustic
model likelihoods computation that achieves close to peak per-
formance on tested GPUs and is significantly faster than the pre-
viously published implementations. We presented CUDA and
OpenCL implementations optimized for NVIDIA GPUs and we
compared them to each other. The results of tests with the rec-
ognizer suggest that during speech recognition it is now possi-
ble to use as large acoustic models as can be reliably trained.
Also fusion techniques together with evaluation of a large set of
models are now possible even in real-time recognition.

7. Acknowledgements
This research was supported by the Ministry of Education of
the Czech Republic, project No. 2C06020, by the Technology
Agency of the Czech Republic, project No. TA01011264 and
by the University of West Bohemia, project No. SGS-2010-054.
The access to the MetaCentrum computing facilities, provided
under the programme LM2010005 funded by the Ministry of
Education, Youth, and Sports of the Czech Republic, is highly
appreciated.

8. References
[1] P. Cardinal, P. Dumouchel, G. Boulianne, and M. Comeau,

“GPU accelerated acoustic likelihood computations,” in
Proceedings of Interspeech 2008. Causal Production, Ltd.,
23–26 September 2008, pp. 964–967.

[2] P. R. Dixon, T. Oonishi, and S. Furui, “Harnessing graph-
ics processors for the fast computation of acoustic likeli-
hoods in speech recognition,” Computer Speech & Lan-
guage, vol. 23, no. 4, pp. 510 – 526, 2009.

[3] P. Kveton and M. Novak, “Accelerating hierarchical acous-
tic likelihood computation on graphics processors,” in Pro-
ceedings of Interspeech 2010. Causal Production, Ltd.,
26–30 September 2010, pp. 350–353.

[4] J. Vaněk and J. Psutka, “Gender-dependent acoustic mod-
els fusion developed for automatic subtitling of parliament
meetings broadcasted by the Czech TV,” in Text, Speech
and Dialogue. Springer Berlin / Heidelberg, 2010.

[5] (2010, August) The CUDA C best practices guide,
version 3.2. NVIDIA Corporation. [Online]. Avail-
able: http://developer.download.nvidia.com/compute/cuda/
3 2 prod/toolkit/docs/CUDA C Best Practices Guide.pdf

[6] P. R. Dixon, D. A. Caseiro, T. Oonishi, and S. Furui, “The
Titech large vocabulary WFST speech recognition system,”
in Proc. ASRU Automatic Speech Recognition & Under-
standing IEEE Workshop, 2007, pp. 443–448.

[7] V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune
dense linear algebra,” in Proc. Int. Conf. for High Perfor-
mance Computing, Networking, Storage and Analysis SC
2008, 2008, pp. 1–11.

[8] P. R. Dixon, T. Oonishi, and S. Furui, “Fast acoustic com-
putations using graphics processors,” in Proc. IEEE Int.
Conf. Acoustics, Speech and Signal Processing ICASSP
2009, 2009, pp. 4321–4324.

[9] A. Pražák, J. V. Psutka, J. Hoidekr, J. Kanis, L. Müller, and
J. Psutka, “Automatic online subtitling of the czech parlia-
ment meetings,” in Text, Speech and Dialogue. Springer
Berlin / Heidelberg, 2006.

http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf

	 Introduction
	 General Purpose Computation on GPU
	 Implementations Review
	 Description of the proposed implementation
	 Variable number of Gaussians per state
	 Final tuning

	 Results
	 Comparison of the Existing Implementations
	 Real-life task LVCSR experiments

	 Conclusion
	 Acknowledgements
	 References

