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Abstract—This paper deals with the traditional problem of
the occurrence of audible discontinuities at concatenation points
at diphone boundaries in the concatenative speech synthesis.
While most of the related studies put stress on the spectral
component, we focused on the pitch contours and their role
as predictors of the discontinuities. To measure the amount of
information contained in the pitch contours, we trained SVM
classifiers using perceptual data collected in listening tests. The
results have shown that the fine grained pitch contours ex-
tracted from a vicinity of the concatenation points carry enough
information for classifying continuous and discontinuous joins
with a high accuracy.

Index Terms—speech synthesis, unit selection, concatenation
cost, pitch contours.

I. INTRODUCTION

DESPITE the increasing popularity of HMM based
speech synthesis methods, the unit selection concatena-

tive systems still represent the mainstream in many practical
applications, especially in limited domains where synthesized
chunks are combined with pre-recorded prompts. In such
applications, the ability of the unit selection to deliver highly
natural and to the recordings well fitting output are the key
factors. Not surprisingly, the unit selection also remains the
first choice for eBook reading applications, which have been
acquiring a lot of interest over recent years.

Among the unit selection related issues that continue to
be non-resolved, the audible discontinuities appearing at
concatenation points play an important role. According to
the original idea [1], the amount of discontinuity introduced
by concatenating successive units should be reflected by a
concatenation (join) cost function. Since phase, pitch and
spectral envelope mismatches are believed to be the main
sources of the discontinuities [2], ideal concatenation cost
function should cover all these aspects.

In our previous work [3] dealing with vowels, and also
in an informal analysis of concatenation artifacts present in
the outputs of our TTS system [4], it was found out that
a large number of audible discontinuities tend to appear at
joins where units having originally incoherent F0 contours
in the area of the prospective concatenation points are put
together. Other possible sources of discontinuities were also
identified but not in such an extend.

Many studies have been published over last one and a
half decades focusing on the spectral mismatches in the
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first place while eliminating the other sources of discontinu-
ities [5], [6], [7], to name but a few. Despite the considerable
amount of efforts, none of them unfortunately succeeded
to provide a clear answer on how to measure the discon-
tinuities at concatenation points. The presented results have
even sometimes been in contradiction. Another interesting
study [8] showed that the discontinuity detection rates hardly
reach 50% (at 5% false alarm rate) when using spectrum
oriented methods.

In line with the observations mentioned above, we decided
to extract pitch contours from the vicinity of concatenation
points and use them as predictors in the discontinuity de-
tection task performed by SVM classifiers. Four different
sets of F0 based predictors, described in Sec. III-B, were
used to answer the question of how much information is
contained in concatenated F0 contours (their slopes, shapes,
static differences, etc.) with respect to the discontinuities
perceived by listeners.

A hypothesis under question was that the incoherent
concatenated F0 contours lead to perceived discontinuities,
which should be learned by the classifier, whereas coherent
F0 contours are not sufficient condition for perceptually
smooth concatenations, which should be decreasing the clas-
sifiers’ sensitivity.

The perceptual data used for training and evaluation of
the classifiers were collected in listening tests described
in Sec. II. The classification experiment set up and the
SVM models are described in Sec. III, the results are then
summarized in Sec. III-D. Finally, we discuss some of our
observations in Sec. IV, and draw conclusions and outline
our future work in Sec. V.

II. PERCEPTUAL DATA COLLECTION

In order to collect data that can be used for the evaluation
and design of the concatenation cost functions, we had
conducted two listening tests in the past—one to collect
male voice data, one for female voice data. In the following
subsections, the content and the evaluation procedure of these
listening tests are briefly described. More details may be
found in [9], [10].

A. Test Material

The recordings covering five Czech short vowels in
all consonantal contexts were made in an anechoic
room by two professional speakers—male and female.
The recorded scripts were composed of three word sen-
tences containing CVC word in the middle each, e.g.
/kra:lofski: kat konal/ (Czech SAMPA notation).
Recorded data were re-synthesized using the “half sentence”
method [3]. This method consists in cutting the sentences in
the middle of the vowels in the central words and combining
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the left and right parts, which results in a large set of
sentences containing only one concatenation point in the
middle of the central CVC word each and covering the
vowels in all possible consonantal contexts. Note that the
concatenations were done pitch synchronously to avoid phase
mismatches, but no smoothing algorithm was applied.

Since the whole set of synthesized sentences is too large
to be entirely used as listening test stimuli, and we did not
want to make a random selection, different concatenation cost
functions were applied to collect a limited set of sentences,
which were then included to the listening tests stimuli.

The motivation for using different concatenation cost
functions was to gain control, albeit limited (due to unre-
liability of the the traditional concatenation cost functions),
over the listening test results without having any a priori
knowledge about the distribution of audible discontinuities
in the synthesized data. The selection was done with the
expectation to obtain from listeners slightly larger number
of discontinuous ratings.

The total number of sentences presented to the listeners
in each listening test was 1310, including some natural and
revision sentences.

B. Subjects

The subjects were university students, all native speakers
of Czech. A few listeners stated that they had some back-
ground in phonetics. There were 29 subjects who finished the
first listening test (male voice) and 27 subjects in the second
one (female voice). Approximately half of the subjects were
the same across the two tests. All subjects were paid upon
completion of the tests.

C. Procedure

The task of the listeners was to assess the concatenations
on both the five-point scale (no join at all, unnatural but
not disturbing, slightly perceived join, highly perceived join,
and highly disturbing join), and the binary scale (perceived
join or not perceived join). To make the task easier, natural
versions of the middle words containing the concatenation
points were played to the listeners prior to the synthesized
sentences. Note that in the classification experiment pre-
sented in this paper only the binary scale ratings were used.

Both listening tests were conducted using a web interface
allowing the listeners to work from home. It was, however,
stressed in the test instructions that the tests shall be done
in the silent environment and using headphones. To gain
more control over the listeners, we have not only analyzed
logs from our test server but also included some control
mechanisms into the tests themselves [9]. To help the listen-
ers calibrate for the more fine grained scale, a preparation
phase was included containing various examples of audible
discontinuities. It was allowed to listen to the calibration
sentences at any time during the listening test. There were
no restrictions on how many times the listeners played each
sentence before assessing it.

D. Listening Test Evaluation and Results

In order to identify listeners who did not show good
agreement with the majority, a rigorous analysis of the
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Fig. 1. The “facts” collected in the listening tests sorted by vowels—the
left bar in each pair represents the male voice results.

TABLE I
AGREEMENTS SCORES (1) OF THE THREE LEAST AGREEING LISTENERS

PARTICIPATING IN THE LISTENING TESTS.

Male Female

List1 0.84 0.82
List2 0.87 0.83
List3 0.88 0.84

listeners’ ratings has been performed [9]. We ranked the
participants according to the scores obtained by the analysis,
and 9 and 6 participants were excluded from the male and
female voice listening tests, respectively. The ratings of these
listeners were not used to create a set of “facts” and to
calculate agreement scores as described below.

As the next step, we have collected two sets of “facts”,
i.e. sentences that were assessed by more than 80% of the
listeners in the same way on the binary scale, either as
containing an audible join or being natural. The set of “facts”
can be formally described as:

senti ∈ FACTS ⇔ N+
i

Ni
≥ 0.8 ∨ N−

i

Ni
≥ 0.8,

where senti is the i-th sentence of the test stimuli, FACTS
stands for the set of “facts”, N+

i , N−
i are the numbers of

continuous (i.e. not perceived join) and discontinuous (i.e.
perceived join) ratings given to the i-th sentence, respec-
tively, and Ni is a total number of ratings given to the i-th
sentence.

The total numbers of the collected “facts” were 494 for the
male voice and 887 for the female voice. Fig. 1 shows the
distributions of the “facts” for each vowel and both speakers.

The next step was to calculate an agreement score of each
listener using the following formula:

AGR SCOREi =
NUM AGRi

FACT COUNT
, (1)

where AGR SCOREi is the agreement score of the i-th lis-
tener, NUM AGRi is a number of ratings of the i-th listener
in agreement with the “fact” rating and FACT COUNT is
the number of the collected “facts”.

The agreement scores (1) of the three least agreeing lis-
teners for each voice, which may serve as a reference for the
evaluation of the classifiers’ performance, are summarized in
Tab. I. The score of the least agreeing listener in each test is
also depicted in Fig. 3.
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Fig. 2. Annotation scheme used for labeling the F0 contours. As an
example, let [L−4 . . . L4] be the F0 contour extracted from the central part
of the vowel /a/ in the word /t Sak/ and [P−4 . . . P4] the contour of /a/ in
the word /mas/. Then, the sequence [L−4 . . . L−1, P1 . . . P4] represents the
central part of the concatenated F0 contour of the word created as /t Sa-as/
(in Czech SAMPA notation).

III. CLASSIFICATION EXPERIMENT

A. Motivation

As already mentioned in Sec. I, the experiment presented
in this paper was aimed at answering the question of how
much information is contained in pitch contours with respect
to the discontinuities perceived by the listeners. The task was
formulated as a binary classification problem using the pitch
contours extracted from the vicinity of concatenation points
and/or their parametrization as predictors.

The SVMs were chosen as the classification model due to
their proven feasibility for different classification tasks, and
the availability of the training framework.

B. Collection of Predictors

1) Sets of Predictors: Since the continuous “facts” col-
lected in the listening tests were in some sets rather underrep-
resented compared to the discontinuous “facts” (see Fig. 1),
we decided to include some natural sentences in order to
make the experimental data better balanced.

As a preparation for collecting the sets of predictors,
the recorded sentences were pitch marked using the robust
multi-phase pitch marking algorithm [11]. Since no pitch
smoothing method was applied during synthesis, the pitch
marks remained preserved in the synthesized sentences. The
F0 contours were then calculated, and the following sets of
predictors were created:

• Reg : [M−1,M1,KL,KR]
• SReg : [K̂L, Q̂L, K̂R, Q̂R],
• Syn : [L−4 . . . L−1, P1 . . . P4]
• Nat : [L−4 . . . L−1, L1 . . . L4, P−4 . . . P−1, P1 . . . P4],

where Li and Pi represent i−th point of natural F0 con-
tours pitch synchronously extracted from the vicinity of a
prospective concatenation points from the vowels that were
concatenated (see Fig. 2), the values M−1 and M1 were
calculated as:

M−1 = (L−2 + L−1)/2

M1 = (P1 + P2)/2

The values KL and KR are the slopes of linear regression
lines fitted to the left and right natural F0 contours, respec-
tively, and the pairs K̂L, Q̂L (K̂R, Q̂R) were obtained as

parameters of linear regression lines fitted to the sequences
[L−2 . . . L2] ([P−2 . . . P2]), which were first smoothed by a
median filter.

2) Rationale: The Reg set was included to address the as-
sumption that static differences in pitch at the concatenation
points together with slopes of the concatenated F0 contours
represent the key predictors of the audible F0 discontinuities.

Since the estimated slopes of the F0 contours may be sig-
nificantly affected by gross pitch marking errors, the SReg
set was included. Considering the results of the evaluation
of the accuracy of the pitch marking algorithm [11], no big
differences were expected when comparing the performance
of the classifiers trained on the Reg and the SReg sets of
predictors.

The Syn set only contained synthesized F0 contours.
These contours do not contain any information about the
elements of the F0 sequences following the left part, or
preceding the right part of a synthesized vowel in the
natural data. Since no pitch smoothing was applied during
concatenating halves of the recorded sentences, there might
have been considerable F0 jumps at the concatenation points.
At the same time, the synthetic F0 contours may also appear
to be very smooth, even in cases where the original natural
contours have rather different slopes as shows the example
depicted in Fig. 2.

To get a full description of the concatenated F0 con-
tours, the Nat set composed of both natural concatenated
F0 contours extracted from the vicinity of the prospective
concatenation points was added.

C. Training the Models

As suggested in [12], we decided to first try the linear
kernel, which may serve as a baseline, and then compare the
results with a non-linear kernel—the Gaussian (RBF) in our
case.

To find the best SVM hyperparameters, we conducted a
grid search using the grid points distributed on a logarithmic
scale. In the first step, we used a coarse grid to find a
promising region, and then we further searched for better
hyperparameters’ values using a finer grid. The K-fold cross-
validation technique, with K set to the value 5, was used to
estimate the classifiers’ performance in each point on the
grid.

Note that the cross-validation should help to prevent the
overfitting problem.

D. Classification Results

1) Linear Kernel Models: We turn first to the results of the
classification using the linear kernel SVMs. The classifiers’
performance rates in terms of accuracy (ACC), sensitivity
(recall rate, SENS) and specificity (SPEC) averaged across
all vowels are presented in Tab. II. The sensitivity and
specificity were in our case defined as follows:

SENS =
TRUE CONT

TRUE CONT+ FALSE DISCONT
(2)

SPEC =
TRUE DISCONT

TRUE DISCONT+ FALSE CONT
, (3)
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TABLE II
CLASSIFICATION RESULTS—LINEAR KERNEL SVMS (AVERAGE ACROSS

ALL VOWELS)

Male Female
Predictors ACC SENS SPEC ACC SENS SPEC

Syn 0.74 0.73 0.71 0.62 0.35 0.84
Nat 0.79 0.87 0.68 0.72 0.76 0.69
Reg 0.73 0.78 0.65 0.65 0.56 0.72
SReg 0.76 0.83 0.68 0.66 0.47 0.82

TABLE III
CLASSIFICATION RESULTS—GAUSSIAN KERNEL SVMS (AVERAGE

ACROSS ALL VOWELS)

Male Female
Predictors ACC SENS SPEC ACC SENS SPEC

Syn 0.89 0.92 0.86 0.90 0.87 0.91
Nat 0.93 0.96 0.91 0.92 0.95 0.91
Reg 0.91 0.93 0.88 0.92 0.91 0.93
SReg 0.90 0.90 0.90 0.92 0.93 0.90

where TRUE CONT is a number of continuous
“facts” classified as such, FALSE DISCONT is a num-
ber of discontinuous “facts” classified as continuous,
TRUE DISCONT is a number of correctly classified dis-
continuous “facts”, and FALSE CONT is a number of
continuous “facts” classified as discontinuous.

These measures were calculated in order to get more
insight into the performance of the classifiers as well as to
address the hypothesis formulated in Sec. I. In Sec. IV, we
will further discuss the obtained results.

It can be seen that the accuracy of the SVMs using
linear kernel is not very high. It is, however, a promising
result, taking into account the difficulty of the classification
task. The classifiers performed significantly worse on the
female voice data than on the male voice data. Regarding the
different sets of predictors, the Nat set seems to be giving
the best results. This observation may be attributed to the
fact that using the whole F0 contours increases the variance
in the data, which may help the linear kernel SVMs to find
better separation between the two classes.

2) Gaussian Kernel Models: Having obtained the results
by the linear kernel SVMs, the question was how much we
can improve by introducing the non-linear kernel. The values
presented in Tab. III show that all sets of predictors lead to
comparatively higher performance rates.

By contrast, no significant difference was found between
the averaged results for the male and the female voice data.
The Nat predictors lead to the best classification results,
and the Syn set shows, comparatively to the linear kernel
SVMs, the worst results. This suggests that the knowledge
of the whole concatenated F0 contours is beneficial.

If we look at the variance of the classifiers’ performance
across different vowels (see Fig. 3), we can see that the
accuracy of the classification was significantly lower for the
vowel /i/, especially for the female speaker.

3) Summary of Models’ Hyperparameters: For complete-
ness’ sake, we present in Tab. IV the values of the SVM
models’ hyperparameters obtained during training on the
Nat set of predictors. In can be seen that the hyperparameter
values of most of the models are relatively small suggesting

/a/ /e/ /i/ /o/ /u/
0.8

0.85

0.9

0.95

1

P
ro

p
o

rt
io

n

 

 Accuracy (male)
Accuracy (female)
Sensitivity (male)
Sensitivity (female)
Specificity (male)
Specificity (female)

Vowels

Fig. 3. Comparison of the classification results across all vowels and both
speakers—Nat set of predictors. The dotted black and solid gray lines show
the lowest agreement scores (1) obtained from the listeners participating in
the listening tests (see Sec. II) for the male and female voice, respectively.

TABLE IV
HYPERPAREMETER VALUES OF THE SVM MODELS.

Linear RBF
Speaker/Vowel C C γ

Male

/a/ 0.0385 5.6569 0.0412
/e/ 1.0718 1.7411 0.2679
/i/ 1.6245 0.5743 0.1340
/o/ 8.0000 10.556 0.1649
/u/ 2.6390 2.8284 0.3536

Female

/a/ 8.0000 6.0629 1.3195
/e/ 8.5742 6.9644 0.7579
/i/ 2.4623 64.000 0.0292
/o/ 24.252 3.2490 1.7411
/u/ 1.4142 6.4980 0.4061

that the models should be capable of generalization. The
exception is the Gaussian kernel SVM model for the female
voice vowel /i/ where it tends to overfit, which also explains
the lower accuracy estimate obtained by the cross-validation.

IV. DISCUSSION

Based on the assumption that concatenating coherent F0
contours is necessary but not sufficient condition of percep-
tually smooth concatenations (not applying any smoothing),
and that concatenating incoherent F0 contours leads in most
cases to perceptually discontinuous joins, the sensitivity was
expected to be comparatively lower than specificity.

As can be seen from Tab. III, our expectation was rather
not supported by the actual measurements showing that
different sets of predictors lead to different results. The Nat
set, for which we achieved the highest classification accuracy,
shows the opposite of what we were originally expecting. If
we look more closely at Fig. 3, we can see that the sensitivity
and specificity rates may vary from vowel to vowel, and even
inconsistently when comparing the two speakers.

This observation does not necessarily disconfirm the as-
sumption that coherent F0 contours are the necessary con-
dition for the perceptually smooth concatenations. Since
the models were trained with respect to their accuracy, of
which we believe we obtained quite robust cross-validation
estimates, and the specificity and sensitivity rates may to
some extend vary depending on the randomization of the
training data, it may suggest that there are some clusters
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of F0 contours, which are not well separable. It is than
the matter of training, into which class these clusters are
ranked, which results in the variance of sensitivity and
specificity measures. These clusters must however be rather
non-dominant in our data since the models’ accuracy remain
high.

As a matter of fact, the construction of confidence inter-
vals around cross-validation estimates is considered to be
a difficult problem. Nevertheless, if we look at the models’
classification accuracy, assuming that the bias of its estimates
is rather towards a poorer fit (which is believed to be true for
cross-validation estimates), and make the comparison with
the agreement scores listed in Tab. I, which are slightly bi-
ased in the direction of higher values (due to the participation
of each listener in the creation of the “facts”), we can see that
the SVM classifiers perform very well, and the high obtained
accuracy is clearly exceeding our expectations.

It is, however, important to mention at this point that
the presented results are not meant to question the role
of the spectral envelope and/or phase mismatches in the
perception of the concatenation discontinuities. They should
rather suggest that the discontinuities can be detected with
a high accuracy using the F0 contours as predictors, and
this knowledge is beneficial for improving the concatenative
speech synthesis.

Putting more stress on the F0 contours during unit se-
lection and improving their modeling may be a promising
way to improve the output of our TTS system [4], which
currently uses the combination of Mel-frequency cepstral
coefficients (MFCCs), static F0 and energy differences at the
concatenation points as the components of the concatenation
cost function.

V. CONCLUSIONS AND FUTURE WORK

This paper presented the results of audible discontinuity
detection task performed by the SVM classifiers trained
on the F0 contours extracted from the vicinity of con-
catenation points and/or their parametrization. The results
suggest that the information contained in the contours is
sufficient to detect audible concatenation discontinuities with
a high accuracy falling into the range around 90%, which is
unquestionably a very good result.

The Gaussian kernel SVMs were found to be giving
better classification results than the linear kernel SVMs. The
best classification accuracy was achieved using all points
of the F0 contours extracted pitch synchronously from the
vicinity of prospective concatenation points. Nevertheless,
the parametrization of the contours by linear regression (no
matter if the contours are pre-smoothed or not) does not
significantly decrease the models’ accuracy. Using only the
synthesized F0 contours seems to be slightly inferior.

The results have also shown that the specificity and
sensitivity measures may vary across vowels from speaker
to speaker, and also for different set of predictors, which
does not support, neither disconfirm, the assumption that
concatenating coherent F0 contours is necessary but not
sufficient condition of perceptually smooth concatenations.

Future work will focus on the incorporation of the learned
knowledge into our TTS system. The challenge will be to find
out to what extend the models trained in the limited prosodic
context may be generalized to cover large scope of prosodic

environments without the need to perform additional costly
listening tests, as well as to what extend they may be used for
different speakers in the same contexts. We will also more
closely inspect the sentences which lead to classification
errors, in order to find clusters of the F0 contours, which
are difficult to classify.
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