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ABSTRACT 
Person recognition using ear biometric has received significant interest in recent years due to its highly 

discriminative nature, permanence over time, non-intrusiveness, and easy acquisition process. However, in a real-

world scenario, ear image is often partially or fully occluded by hair, earrings, headphones, scarf, and other objects. 

Moreover, such occlusions may occur during identification process resulting in a dramatic decline of the 

recognition performance. Therefore, a reliable ear recognition system should be equipped with an automated 

detection of the presence of occlusions in order to avoid miss-classifications. In this paper, we proposed an efficient 

ear recognition approach, which is capable of detecting the presence of occlusions and recognizing partial ear 

samples by adaptively selecting appropriate features indices. The proposed method has been evaluated on a large 

publicly available database containing wide variations of real occlusions. The experimental results confirm that 

the prior detection of occlusion and the novel selection procedure for feature indices significantly improve the 

biometric system recognition accuracy. 

Keywords 
Biometric images, occlusion detection, ear recognition, partial occlusion, classifier selection, adaptive feature 

selection. 

1. INTRODUCTION 
Biometric authentication offers advantage over 

traditional PIN (Personal Identification Number) or 

password-based security since it is harder to forge, 

steal, transfer, or lose biometric data. At present, 

biometric based person recognition has enormous 

demand in government services as well as commercial 

sectors due to availability of biometric data, enhanced 

recognition accuracy and non-invasive nature of 

authentication. Over the last few years, ear biometric 

has received growing attention and proven to be useful 

for an automated person recognition [Cha03a], 

[Che07a]. Unlike face biometrics, ear has no 

sensitivity to facial expression changes [Kum12a] and 

it remains almost unchanged throughout the lifetime 

of a person [Yua12a]. Ear biometric is not only a 

powerful feature to identify individuals, but also to 

recognize identical twins [Nej12a]. Moreover, ear has 

high user acceptance because of its nonintrusive 

nature and a passive acquisition process [Jai99a]. 

Similar to other passive biometrics, the recognition 

performance of ear biometrics may deteriorate 

significantly due to natural constraints such as 

occlusion, lightning, pose difference etc. [Bus10a]. 

Among all natural constraints, occlusion happens to be 

the most common scenario, since ear is often partially 

or fully occluded by hair, earrings, headphones, scarfs 

etc. Information loss due to occlusion is irrevocable. 

Unlike lightning or pose variations, where some image 

enhancement techniques can be applied to retrieve 

partially lost information, the occlusion information 

loss results in a complete disappearance of a portion 

of ear. Moreover, distortions of important global 

features of ear biometrics such as shape and 

appearance occur, which further undermine the overall 

system recognition performance. For those reasons, 

occlusion is one of the most detrimental degrading 

factors of ear recognition. It has been reported that 

consideration of un-occluded regions during matching 

increases recognition accuracy [Yua12a], [Yua12b]. 

In order to determine the un-occluded portion of ear it 

is necessary to detect occluded regions. However, 

detection of occlusions in ear biometrics remained 

understudied at present.  Detection of real occlusions 

is a very challenging problem since occurrence, 

locations, proportion, and reasons of occlusion are 

uncertain. For instance, different regions of an ear may 

be occluded by different objects such as hair or 

earrings at the same time. Also, during identification 

stage, an ear sample may be occluded partially or 

fully, or may not be occluded at all. In addition, 

determining the proportion of occlusion is important 

to make a decision whether the sample is sufficient for 

recognition process or needs to be reacquired. Last but 
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not the least, not every method performs equally on 

different proportions and different regions of 

occlusions. For example, global features such as 

shape-based descriptor may perform well in cases of 

partial occlusion by earrings, while local or block-

based features may work better on distorted shapes 

due to occlusions by hair. Thus, prior detection of the 

location and proportion of occlusion could help in 

selecting the appropriate features as well as feature 

extraction methods. For these reasons, it is important 

to develop an ear recognition method that is capable 

of prior detection of occlusion and can select 

appropriate features for classification at identification 

stage. In a recent review paper, Pflug and Busch 

[Pfl12a] pointed out the lack of studies on real-world 

ear occlusions. This paper fills this niche and provides 

a solution to this problem by investigating how real 

occlusion factors such as hair, accessories etc. affects 

the recognition performance. The novel contributions 

of this paper are three fold:  

1. We propose a novel method for ear occlusion 

detection and estimation of occlusion degree 

using skin-color model.  

2. We analyze the impact of real ear occlusions (hair 

and accessories) on recognition performance. 

3. We propose a novel index-based partial ear 

recognition method that utilizes occlusion 

information adaptively to obtain consistent 

recognition rate. 

The rest of the paper is organized as follows. Section 

2 summarizes some existing researches on ear 

recognitions. The proposed methodology for 

occlusion detection and ear recognition is described in 

Section 3. Section 4 demonstrates experimental results 

of the performance and effectiveness of the proposed 

method. Finally, concluding remarks and future works 

are presented in Section 5. 

2. RELEVANT WORK 
Person identification using ear biometric has drawn 

significant attention of many researchers over the last 

decade. Ear biometric has the advantage of a non-

intrusive acquisition in a less controlled environment. 

However, there has always been a tradeoff between 

the non-invasiveness of image acquisition and its 

impact on its quality. Restricting the acquisition 

environment of ear biometric compromises its 

noninvasive nature and wide acceptance of users. 

Moreover, noninvasive biometrics are mostly 

acquired by surveillance cameras, where environment 

cannot be controlled. Therefore, instead of imposing 

tight controls on the acquisition environment, the 

recent research is focused on developing robust 

biometric systems that can obtain high recognition 

rates under less than ideal conditions. Occlusion has 

been studied for face biometrics to some extent 

[Lin07a], [Taj13a]. However, occlusion conditions, 

type, area, proportion etc. of ear are very different than 

face. There is a lack of study on real occlusions of ear 

biometrics during identification stage. In this section, 

we will discuss some contemporary ear recognition 

methods. 

In 2010, Bustard and Nixon [Bus10a] proposed a 

robust method for ear recognition using homographies 

calculated from the Scale Invariant Feature Transform 

(SIFT) points. Authors also showed that performance 

of this method degraded with an increasing proportion 

of occlusions. However, the method did not include an 

automated occlusion detection as well as proportion 

calculation.  Experimentation was conducted on 

simulated occluded conditions and the effect of real-

world occlusions remained uninvestigated. Efficient 

feature extraction of an ear biometric has been 

investigated in many recent works. For instance, 

Huang et al. [Hua11a] proposed Uncorrelated Local 

Fisher Discriminant Analysis (ULFDA) method for 

ear recognition, which obtained better performance 

than benchmark Principle Component Analysis (PCA) 

and Linear Discriminant Analysis (LDA) [Mar01a]. In 

2012, Kumar and Wu [Kum12a] proposed an ear 

recognition method based on gray-level shape features 

which outperformed Gabor and log-Gabor based 

methods.  Sparse representation of local texture has 

been proposed by Kumar and Chan [Kum13a] in 2013, 

which obtained high recognition rates on different 

databases. However, none of the aforementioned three 

methods was evaluated under occluded conditions.  

Occlusion has been considered by Yuan and Mu 

[Yua12a], where a local information fusion method 

was proposed to obtain robustness under partial 

occlusion. In this work, experimentation was 

conducted in the simulated occluded condition, i.e. a 

specific amount of occlusion has been applied 

artificially to a certain location of the ear images. 

However, results showed that the recognition 

performance of this method varied according to the 

location as well as amount of occlusion. In another 

work, Yuan et al. [Yua12b] proposed a sparse based 

method to recognize partially occluded ears. 

Experimentation was conducted by adding synthetic 

occluded regions to the original unoccluded images. 

Results showed that this method obtained 70% 

recognition rate for 30% occluded regions, whereas 

performance dropped below 15% with the increase of 

the occluded portion up to 50%. In another recent 

work, Morales et al. [Mor13a] showed that 

performance of SIFT and Dense-SIFT based feature 

extraction methods also degraded significantly due to 

the presence of real-world occlusions. In their work, 

recognition error rate of SIFT and Dense-SIFT 

features were 2.78% and 2.03%, respectively on IITD 

Database.  However, the corresponding error rates 

increased to 20.52% and 25.76% under real-world 

occlusions on West Pomeranian University of 

Technology Ear Database [WPUTED]. The above 
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discussion demonstrates that existing ear recognition 

methods lack the following: 

1. Detection of occlusion remained uninvestigated, 

although recognition rate highly depends on the 

presence of occlusion. 

2. Recognition rate varies with location and 

proportion of occlusion. There is a lack of study 

on automated localization and proportion 

calculation of occlusion. 

3. Existing methods are mostly experimented on 

simulated or synthetically occluded ear samples 

in predefined locations. The robustness of ear 

recognition methods need to be evaluated under 

real occlusions since type, location, and 

proportion of real-world occlusions might be very 

different than the simulated cases. 

The above points indicate that there is a gap 

between real-world occlusion detection and occluded 

ear recognition methods. In this paper, our main goal 

is to bridge the gap between occlusion detection and 

occluded ear recognition by proposing a novel ear 

recognition method that can detect real occlusions and 

utilize occlusion information adaptively during 

recognition stage. 

3. PROPOSED METHOD 
In this paper, we presented an automated approach of 

occlusion detection, estimation, and un-occluded 

region extraction. We also proposed a novel index-

based ear recognition method, which can efficiently 

utilize the extracted un-occluded portion of ear. In the 

real scenarios, enrolled or template images are mostly 

obtained under human supervision. Therefore, if 

occlusion occurs, human supervisor can direct the 

person to reacquire the sample. On the other hand, 

identification stage is mostly unsupervised and the 

system process occluded image in case of the absence 

of automated detection mechanism, which may 

eventually lead to a false match.  This is why we were 

interested in measuring occlusion during 

identification stage. A basic flow diagram of the 

proposed system is shown in Fig. 1. During enrollment 

index-based features are extracted and stored in 

feature database along with corresponding indices. 

During test, occluded and un-occluded portion of the 

ear are detected automatically. Next, index-based 

features are extracted from un-occluded portion of test 

ear sample and similarity is measured with the 

corresponding features of enrolled images. The final 

decision has been obtained from the maximum 

similarity matching score of the test and enrolled 

samples. Detailed explanation of the proposed method 

can be found in the following subsections.  

3.1 Types of Occlusion 
Occlusion in ear images may occur anytime during 

identification stage due to the presence of hair, 

scarf/hat, earring, headphones, dust, and so on. Both 

shape and appearance of ear vary in a very different 

way based on the type, location, and proportion of 

occlusions. 

 

Figure 1. Flow diagram of the proposed ear 

recognition system. 

One reason for the lack of investigation on real 

occlusions is the unavailability of public database. 

Researchers [Fre10a] of West Pomeranian University 

of Technology have created an ear database containing 

ear samples with different types of real occlusions to 

facilitate proper validation of ear recognition 

algorithms. Fig. 2 shows different occluded conditions 

of ear samples from West Pomeranian University of 

Technology Ear Database. From Fig. 2, one can see 

that location, type, and proportion of occlusion are 

very uncertain and cannot be predefined. Therefore, 

proper detection of occlusion is indispensable to 

extract un-occluded features from ear.  

 

Figure 2. Different types of ear occlusions; a) 

occlusions by hair; b) occlusions by earrings, 

scarf, hat, headphones, etc. [WPUTED] 

3.2 Ear Enrollment 
In this paper, occlusion is considered during test phase 

to resemble the identification stage. Generally, 

enrollment is accomplished under human supervision. 

If occlusion occurs during enrollment human 

supervisor can reject the biometric sample and 

reacquire it. Therefore, in this paper, we considered 

the case that enrolled images are not occluded. 

Initially, all enrolled images are preprocessed using 

histogram equalization method and downsampled to 

100×80 pixels. Each enrolled image is then partitioned 

into 10×10 blocks, total 80 blocks. Fig. 3 shows a 

visual representation of partitioning an ear image into 

blocks. Next, we applied two-dimensional (2D) Haar 
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Discrete Wavelet Transform (DWT) to extract local 

texture features [Sul14a] from each block. Haar 

wavelet transform decomposes an input block into 

four sub-bands, one low frequency component (LL) 

and three detail components (LH, HL, HH). 

Decomposition to low frequency subband (LL) 

smoothens image thus reduces noise. Decimated DWT 

is a popular mathematical tool for image compression 

since it efficiently reduces image dimensionality at 

different levels, whereas ensuring seamless 

reconstructions [DeV92a]. Thus, DWT preserves 

important information of image while discarding 

dimensionality.  Moreover, DWT is computationally 

efficient and less sensitive to illumination changes 

[Sul14a]. The low frequency subband (LL) of DWT 

contains most of the information of an image. In this 

work, we applied 1st level Haar DWT to all blocks and 

considered the low frequency subband of each block 

as local features. The features of each block are then 

stored along with its index in feature database.  

 

Figure 3. An example of partitioning enrolled ear 

into indexed-blocks. 

3.3 Ear Occlusion Detection 
Real-world occlusion detection is a very challenging 

task because it is uncertain that when and what type of 

occlusion would arise. There is also no certainty in 

which portion and what proportion the occlusion 

would occur. In this section, we propose a novel 

method of ear occlusion detection and estimation 

using skin color model. The process in outlined in 

Algorithm 1. 

In our method, the skin color regression model 

[Pau10a] has been applied for occlusion detection.  

We utilized skin color model for ear occlusion 

detection because occlusion obscures skin color 

information and detection of skin color will allow us 

to separate occluded and un-occluded regions in ear. 

The proposed occlusion detection method has four 

steps: 1) conversion to chromatic color space r and g, 

2) detection of skin regions in r and g color spaces 

using skin color likelihood (eq. 5), 3) fusion of r and g 

color space images and fill skin regions using 

morphological operation, and 4) masking un-occluded 

skin portion from original occluded image. A flow 

diagram of the steps is depicted in Fig. 5. 

 

Algorithm 1: Occlusion detection and estimation. 

Input: Test ear image Y of size 𝑀 × 𝑁. 

Output: (BIj, Ij), un-occluded blocks in Y and 

corresponding indices. 

Step 1: Preprocess Y using histogram 

equalization method and downsample  𝑀 × 𝑁 to 

100×80.  

Step 2: Transform image from RGB color space 

to chromatic color space. Find the value of r and 

g as follows [Pau10a]: 

 𝑟 =
𝑅

𝑅+𝐺+𝐵
     (1) 

 𝑔 =
𝐺

𝑅+𝐺+𝐵
     (2) 

Step 3: Find skin color distribution by 2-D 

Gaussian model with the following mean vector A 

and covariance matrix C [Pau10a]:  

 𝐴 = 𝐺{𝑥}[𝑥 = (𝑟𝑔)𝑇]    (3) 

 𝐶 =  [
𝜎𝑟𝑟 𝜎𝑟𝑔

𝜎𝑔𝑟 𝜎𝑔𝑔
]     (4) 

Step 4: Estimate likelihood (L) of skin color using 

the following equation [Pau10a]: 

𝐿 = 𝑃(𝑟, 𝑔) = exp [−0.5 (𝑥 − 𝐴)𝑇 𝐶−1(𝑥 − 𝐴) ] 
        (5) 

where,  𝑥 = (𝑟, 𝑔)𝑇. 

Step 5: Find the skin color regions of Y in 

chromatic color r and g, denoted as P(r) and P(g). 

Step 6:  Fuse P(r) and P(g) to obtain resultant 

binary image, Z = P(r) AND P(g) 

Step 7:  Perform morphological operation using 

disk shape structuring element of radius 10 to fill 

the skin regions in Z. 

Step 8:  Apply Z as a mask on Y to obtain image 

X containing un-occluded skin portions. 

Step 9:  Partition X into 10×8 blocks each having 

10×10 pixels and construct a block vector {Bi| i= 

1, 2, …, 80}. 

Step 10:  Construct an index vector {Ij| i= 1, 2, …., 

m}, where BIj contains skin regions (un-occluded) 

and m is the total number of un-occluded blocks. 

Step 11: Estimate total proportion of 

occlusion, 𝐸 =
∑ 𝐵𝐼𝑗

𝑚
𝑗=1

∑ 𝐵𝑖
80
𝑖=1

× 100     (6) 

Step 12: If E>60%, discard Y and reacquire test 

image. 

 

Fig. 6 presents some outcomes of occlusion detection 

of four ear samples from WPUT Ear Database. Fig. 6 

(a) shows four original ear samples containing 

different types of occlusions due to earring, 
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headphones, and hair. The corresponding ear samples 

after chromatic color space conversion are shown in 

Fig. 6 (b). Fig. 6 (c) presents the resultant skin-regions 

separated from occlusions. After separating occluded 

and un-occluded regions, the ear image is partitioned 

into 80 blocks, each containing 10×10 pixels. The 

estimated occlusion has been calculated as the ratio of 

the number of un-occluded blocks over total number 

of blocks (eq. 6). The estimation of occlusion 

facilitates auto-rejection of unreliable test images, 

where most of the information is distorted due to 

occlusion. In the proposed method, if the estimated 

occlusion is below 60%, the test image will be used 

for recognition, otherwise it has to be reacquired. In 

this way, the proposed ear recognition system can 

reduce false matches by discarding unreliable test 

samples, automatically. 

 

Figure 5. Flow diagram of the four steps of 

occlusion detection using skin color model. 

 

 
Figure 6. Examples of ear occlusion detection: a) 

original occluded ears, b) conversion to chromatic 

color space, c) detected unoccluded skin-regions. 

3.4 Partial Feature Extraction and 

Matching  
In the proposed method, partial features are extracted 

from the detected un-occluded blocks of the test 

image. 1st level of Haar DWT is applied to all un-

occluded blocks (BIj), and four subbands images (LL, 

LH, HL, HH) are obtained. The low frequency 

subband (LL) of each block is considered as the local 

features of corresponding block and converted to a 

feature vector.   

Finally, similarities between the partial features of test 

ear and corresponding features of enrolled ears are 

measured for recognition. Fig. 7 shows an example of 

the corresponding blocks of a test ear and an enrolled 

ear. The left image in Fig. 7 shows the blocks of skin 

regions in test image and the right image shows 

corresponding blocks in enrolled image. Unlike 

existing methods, we matched the un-occluded blocks 

of the detected skin regions to the corresponding 

blocks of enrolled ears. The index vector (Ij) is used to 

fetch the corresponding blocks of enrolled ears from 

feature database. A visual representation of the partial 

feature extraction and similarity matching process is 

shown in Fig. 8.  

 
Figure 7. Block indexing, a) unoccluded blocks of 

test ear, b) corresponding blocks of enrolled ear. 

The similarities of the test and enrolled ears are 

computed using Euclidean distance. Euclidean 

distance of the indexed features of test ear (V) and 

enrolled ear (U) can be calculated using the following 

equation: 

𝐷 = √∑ ∑ (𝑢𝑗𝑘 − 𝑣𝑗𝑘)
2𝑛

𝑘=1
𝑚
𝑗=1                 (7) 

where 𝑢𝑗𝑘 and 𝑣𝑗𝑘  are the kth feature of jth block of U 

and V, respectively, and m is the total number of un-

occluded blocks in V. However, a problem may arise 

during the index-based matching if the indexed blocks 

of the test ear do not overlap with the indexed blocks 

of enrolled ear (in other words, if the test ear is shifted 

to any direction). There are eight possible directions 

of shift, which is shown in Fig. 9. We propose to solve 

this problem by using a matching window in all 

possible eight directions: B1, B2, B3, B4, B5, B6, B7, B8.      
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Figure 8. Feature extraction and index-based partial feature matching of test and enrolled ears. 

The set of all un-occluded blocks of the test ear is 

considered as one region. Let us consider Ti,j as the un-

occluded region of test image and Ri,j as the 

corresponding region in the enrolled sample. The nine 

similarity score are then calculated using eq. 8 to eq. 

16.  

 𝑆0 = 1 − 𝐷(𝑇𝑖,𝑗 , 𝑅𝑖,𝑗)            (8) 

𝑆1 = 1 − 𝐷(𝑇, 𝑅𝑖,𝑗+1)             (9) 

𝑆2 = 1 − 𝐷(𝑇𝑖,𝑗 , 𝑅𝑖+1,𝑗+1)           (10) 

𝑆3 = 1 − 𝐷(𝑇𝑖,𝑗 , 𝑅𝑖+1,𝑗)           (11) 

𝑆4 = 1 − 𝐷(𝑇𝑖,𝑗 , 𝑅𝑖+1,𝑗−1)           (12) 

𝑆5 = 1 − 𝐷(𝑇𝑖,𝑗 , 𝑅𝑖,𝑗−1)           (13) 

𝑆6 = 1 − 𝐷(𝑇𝑖,𝑗 , 𝑅𝑖−1,𝑗−1)           (14) 

𝑆7 = 1 − 𝐷(𝑇𝑖,𝑗 , 𝑅𝑖−1,𝑗)           (15) 

𝑆8 = 1 − 𝐷(𝑇𝑖,𝑗 , 𝑅𝑖−1,𝑗+1)            (16) 

The first similarity (S0) score between the test and 

enrolled sample is calculated by matching the blocks 

of test region Ti,j and corresponding enrolled region 

Ri,j. Next, we calculated the similarity score S1 along 

B1 direction between the test region Tij and training 

region Ri,j+1. Then similarity score, S2 is calculated 

along B2 direction between Ti,j and Ri+1,j+1. Similarly, 

similarity scores S3 to S8 are calculated along 

directions B3 to B8 using eq. 11 to eq. 16. The reason 

for calculating nine similarity scores is that if the test 

sample is shifted to any of the possible directions, 

matching score along that direction will be the highest. 

Thus, calculating similarity scores in all possible 

directions allow us to find the best matching indices 

even under shifted condition. Fig. 10 shows pictorial 

representation of the calculation of nine similarity 

matching scores from S0 to S8. In Fig. 10, S0 (in 

middle) represents an example of the corresponding 

blocks of an enrolled image. The shifted blocks in 

eights possible directions are represented by S1 to S8 

in Fig. 10. The shifted blocks were calculated by 

shifting the whole region (all blocks) towards the eight 

possible directions as shown in Fig. 9. 

 

Figure 9. Possible eight directions of image shift. 

 

 

Figure 10. Nine similarity scores (S0- S8) 

calculation by shifting the indexed region of 

enrolled ear along different directions. 

The best matching score is calculated in two ways. 

First, the highest value among the nine scores is 

considered as the overall maximum score, Sm (eq. 17). 

Secondly, we calculated the block-wise maximum 

score (SB) among the nine similarity vectors. 

Calculation of SB can be shown as eq. 18: 
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𝑆𝑚 =  max
0≤𝑖≤8

𝑆𝑖           (17) 

𝑆𝐵 =  max
0≤𝑖≤8,1≤𝑗≤𝑚,

𝑆𝑖𝑗           (18) 

where Sij is the similarity score of jth block of ith 

similarity vector, m is the maximum number of un-

occluded blocks in test image. 

4. EXPERIMENTAL RESULTS 
Three sets of experiments were conducted to evaluate 

the performance of the proposed ear occlusion and ear 

recognition method. All experiments were carried out 

on Windows 7 operating system, 2.7 GHz Quad-Core 

Intel Core i7 processor with 16GB RAM. Matlab 

version R2013a was used for implementation and 

experimentation of the proposed method. We 

evaluated our method on WPUT Ear Database 

[WPUTED] since this is the largest publicly available 

database containing ear images with wide variations 

of real occlusions. A brief description of the database 

is as follows: 

WPUT Ear Database [Fre10a]: This database contains 

2071 ear images of 254 women and 247 men, total 501 

individuals of different ages. There are at least two 

images per ear of each subject. 15.6% of the images 

were taken outside and some of them were taken in the 

dark. 80% of the images are recorded as deformed due 

to the presence of real occlusions. Ear images of 166 

subjects are covered by hair and the presence of 

earrings are recorded for 147 subjects. The other forms 

of real-world occlusion in this database are glasses, 

headdresses, noticeable dirt, dust, birth-marks, ear-

pads etc. Many of the samples are simultaneously 

occluded by different types of occlusion in different 

proportions.  

For our experimentation, the whole database is 

partition into training and test sets. The training 

database is created using comparatively un-occluded 

ear samples. We have single training sample per 

subject. The occluded images are randomly selected 

for testing. Each experiment is performed five times 

and the average recognition accuracy is considered as 

the recognition performance of the proposed method. 

Identification rate of the proposed method is analyzed 

by plotting Cumulative Match Characteristics (CMC) 

curve. CMC curve is the cumulative probability of 

obtaining the correct match in the top r positions 

(ranks). The final matching scores of the test and 

enrolled images can be obtained in different ways such 

as block-wise maximum score, overall maximum 

score, block-wise average score, and overall average 

score. Therefore, in the first experiment, we compared 

the performance of the proposed method using 

different similarity scores to obtain the best 

performing method of calculating the final similarity 

score. Fig. 11 shows the CMC curves of the proposed 

method using block-wise maximum similarity, overall 

highest similarity, block-wise average score, and 

overall average similarity scores. From Fig. 11, we can 

see that the highest performance of the proposed 

method was obtained by using block-wise maximum 

similarity score. Consideration of the highest score 

among the nine scores obtained the 2nd highest 

performance. Fig. 11 also shows that block-wise 

average scores performed better than overall average 

score. However, consideration of the maximum scores 

are more discriminative than consideration of average 

scores. The reason for this that not all the similarity 

scores will find the best match among the test and 

training blocks and averaging all scores may fade 

away the best match. Fig. 11 shows that correct 

matching probabilities of the block-wise maximum 

similarity, overall maximum similarity, block-wise 

average similarity, and overall average similarity at 

rank 1 are 73%, 65%, 57%, and 51%, respectively.  

Therefore,   from the first set of experiments, we found 

that block-wise maximum score obtained the best 

results for the proposed method. 

 

Figure 11. CMC curves of the proposed method 

using different similarity scores. 

In second set of experiments, we compared the 

performance of the proposed method with a baseline 

Haar discrete wavelet transform-based method. For 

the baseline method, ear features were extracted using 

Haar discrete wavelet transform from test sample 

without applying any occlusion detection mechanism 

and the features were matched with the enrolled 

samples regardless of indices.  The CMC curves for 

the proposed method and the baseline methods are 

plotted in Fig. 12. From Fig. 12, we can see that the 

rank 1 recognition rate for the proposed method is 

73%, whereas for the baseline method obtained 60% 

recognition accuracy. Also, 91% recognition rate was 

obtained by the proposed method within rank 10. The 

CMC curves in Fig. 12 demonstrate the effectiveness 

of prior occlusion detection and index-based matching 

of occluded features.  
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Figure 12. Recognition performance improvement 

by the proposed method on WPUT database. 

 

In the final set of experiment, we evaluated 

performance of the proposed method on different 

amount of occlusions. Amount of occlusion is 

estimated as the ratio of the occluded blocks over total 

number of blocks in an ear sample. Fig. 13 shows how 

the performance of the proposed method varied with 

different proportion of occlusion. From Fig. 13, we 

can see that the proposed method can obtain 

recognition rate as high as 85% with 10% estimated 

occlusion.  Also, the recognition performance 

remained nearly 80% under 30% occlusion, which is 

a better result than reported by previous studies. The 

performance of the proposed method was at 67% even 

with the 50% of ear image occluded! However, there 

is simply not enough features for high precision of ear 

recognition when over 60% of an ear is occluded and 

in this case ear sample needs to be reacquired.   

 

Figure 13. Performance of the proposed method 

with different degrees of occlusions. 

From the above experiments, we can summarize the 

performance improvement of the proposed method as 

follows. First of all, automated occlusion detection 

and estimation allowed us to decide upon whether an 

ear sample is good enough to be recognized or it is 

needed to be reacquired. In this way, the proposed 

method can improve recognition rate by reducing false 

matches of overly occluded images. Secondly, unlike 

existing methods where occluded regions were 

predefined, localization of unoccluded portion in our 

method is automated. Therefore, the system can 

adaptively decide upon which portion of the image is 

unoccluded and good for feature extraction. Thirdly, 

during recognition, features are extracted from only 

unoccluded portion of the ear image and matched with 

corresponding portion of the enrolled samples, which 

reduces the probability of unreliable matching of the 

occluded portion. Finally, the problem of shifted 

indices is solved by using the best block-wise 

matching scores in eight different scores. For these 

reasons, the proposed method is capable of obtaining 

a reliable recognition performance under real 

occlusions of ears during identification stage.  

5. CONCLUSION 
A completely automated approach to ear occlusion 

detection and estimation using skin color model has 

been proposed in this paper. We also proposed a novel 

index-based ear recognition method to recognize 

partially occluded ears effectively. The most 

important advantage of the proposed method is it can 

estimate occlusion on ear samples during 

identification stage and adaptively use this 

information to select proper indices of the features for 

recognition purpose. There is a scarcity of occluded 

ear samples in biometric community and only few 

publicly available databases contain occluded ear 

samples.  However, the adaptive decision making 

process of the proposed method doesn’t depend on any 

learning or training of occlusions and thus can be 

applied to any database. The proposed method of 

handling ear occlusion was proved to be a very 

effective in the real world scenarios. Our experiments 

on real occluded ear images validated the 

effectiveness of occlusion detection and index-based 

feature matching for partial ear recognition. Future 

research will look into incorporating weights into an 

occlusion estimation process to improve the 

recognition even further. 
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