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Abstract. An estimation of parameters of a multivariate Gaussian Mixture Model
is usually based on a criterion (e.g. Maximum Likelihood) that is focused mostly
on training data. Therefore, testing data, which were not seen during the train-
ing procedure, may cause problems. Moreover, numerical instabilities can occur
(e.g. for low-occupied Gaussians especially when working with full-covariance
matrices in high-dimensional spaces). Another question concerns the number of
Gaussians to be trained for a specific data set. The approach proposed in this pa-
per can handle all these issues. It is based on an assumption that the training and
testing data were generated from the same source distribution. The key part of
the approach is to use a criterion based on the source distribution rather than us-
ing the training data itself. It is shown how to modify an estimation procedure in
order to fit the source distribution better (despite the fact that it is unknown), and
subsequently new estimation algorithm for diagonal- as well as full-covariance
matrices is derived and tested.
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1 Introduction

Gaussian mixture models (GMMs) are very popular models of multivariate probabilistic
distributions in various domains, including speech and speaker recognition domains.
For given training data set, one is confronted with three mutually dependent problems:

– How complex the model should be? How many Gaussians? Diagonal- or full- co-
variance matrix?

– How to estimate model parameters to fit also to unseen data?
– Is the model numerically stable? Variances may go approach zero and full-covariance

matrices may be ill-conditioned.

The problem with numerical stability can be handled in relatively easy way. In the
case of low variances, the problematic model component can be simply discarded or a
minimum variance threshold can be specified. The threshold is usually a fixed fraction
of the global variance of the entire data set [1]. From the other hand, the threshold intro-
duces an additional prior, in the form of a magic number, into the estimation algorithm
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and it may be dubious. In the case of full-covariance matrices, smoothing or shrinkage
methods can be used [2], [3]. They are based on the lowering of the off-diagonal values
of the covariance matrix.

Choosing a proper model complexity is the main challenge [4–8]. It is the trade-off
between an accurate training data fit and a generalization ability to unseen data. The
trade-off can be handled easily if one knows both information. But, in our case, we
have only the first half: the training data. The generalizations ability to unseen data can
be only estimated.

The first class of solutions involves penalization of the training data fit by the model
complexity. The most popular criteria are Bayesian information criterion (BIC) [9] and
Akaike’s information criterion (AIC) [10]. BIC and AIC penalize the mean of the log-
likelihood of training data by the number of model parameters. BIC penalization de-
pends moreover on a number of training data samples. These criteria may work nicely
in most cases. However, they depend on the log-likelihood of the training data. It means
that they depend also on a way how the minimum variance is handled. In the case of
outliers, the variance will go to zero and the log-likelihood will go to infinity. An ex-
treme example is the mixture model of Dirac functions placed on locations of training
data samples. This model is completely incorrect, but it gives the best BIC and AIC.
Additional weak point in BIC is the number of samples. The samples are assumed mu-
tually independent, but it is not true in most of real cases (e.g. speech data). This may be
solved by a tunable gain of the penalization part in the BIC, but it brings an additional
magic constant into the training set-up.

In the second class of solutions an unseen-data performance is estimated via cross-
validation technique. In the simplest case, the available data are split into two parts -
training and development. The training part is used to train the model parameters and
the development part is used to evaluate the model performance. In a more complex
case - the true cross-validation - data are split into more parts and an one-leave-out
approach with all combinations is used. The cross-validation works well on real data,
but it has also disadvantages. The first one is much higher computational requirements,
which grow with the number of data splits. The second disadvantage resides in fact that
the result varies with the number of splits and data distribution between these parts.

The approach proposed in this paper is based on an assumption that the training
data and the testing data are generated from the same source distribution. When this
is not true, one should use an appropriate normalization and/or adaptation technique
to compensate for the difference as much as possible. The key part of the approach is
to use a criterion based on the source distribution rather than the training data itself.
Naturally, the source distribution is unknown. But, we are able to modify the estimation
procedure in order to fit the distribution better despite the fact that it is unknown. Based
on a criterion, we have derived how the covariance matrices need to be enhanced, and
we have proposed a new estimation algorithm for diagonal as well as full covariance
matrices. Also, a very useful feature of the algorithm is the ability to leave out the re-
dundant Gaussians. Therefore, the final GMM has an optimal number of components.
Moreover, such enhanced full covariance matrices are well-conditioned. Thus, this fea-
ture prevents numerical stability issues. The proposed approach may be understood also
as the extreme case of cross-validation, where each data sample forms a new part.
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Fig. 1. Fitted functions of the ratio between the optimal estimate of variance of the source-
distribution and the optimal estimate of variance (Figure A) and covariance (Figure B) of training
data for various numbers of training samples.

2 Robust GMM Training

2.1 Estimation of Single Gaussian Model

Assume we have i.i.d. random data set X = {x1, x2, . . . , xn} sampled from univari-
ate normal distribution N (µ, σ2) (the real-speech data case will be discussed later in
the paper). The Maximum Likelihood (ML) estimates of sample mean µ̂ and sample
variance σ̂2 are given by the well-known formulas:

µ̂ =
1

n

n∑
i=1

xi (1)

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2 (2)

From Central Limit Theorem, it can be derived that the estimate of the sample mean
µ̂ has normal distribution N (µ, σ

2

n ) and the estimate of the sample variance σ̂2 has
Chi-square distribution with variance equal to 2σ2

n−1 . These estimates give the best value
of the ML criterion for the training data set X . On the other hand, these estimates are
not optimal, and they do not achieve the best value of the ML criterion for unseen data
generated from the source distribution N (µ, σ2).

We performed a very large amount of Monte Carlo simulations for various lengths
of data sets, and we have found out that the ML estimate of the optimal variance of
the source distribution should have a higher value. The difference grows especially for
data sets containing few samples. We fitted a function of the ratio between the optimal
estimate of variance of the source-distribution and the optimal estimate of variance of
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training data. The function is given in dependence on the number of training samples
and it is shown in Figure 1 A. The ratio function can be used to enhance the variance
estimate σ̂2 given by the equation (2). The enhanced variance estimate σ̃2 is calculated
in following way:

σ̃2 = σ̂2

(
1 +

1

n− 1.25

)3.5

(3)

In the multivariate case, assuming a diagonal covariance matrix, the same variance en-
hancement can be used for individual dimensions. The variance enhancement also han-
dles numerical stability issues. The enhanced estimate cannot be close to zero even for
outliers, because the enhanced variance grows fast when only a few samples are avail-
able.

In the case of multivariate data and full covariance model, the covariance matrix
should be enhanced in the same way - by multiplication with the coefficient from equa-
tion (3). Moreover, the off-diagonal part of the matrix need to be corrected. We per-
formed some additional Monte Carlo simulations to fit the optimal function for the
off-diagonal part. The optimal correction coefficient was found in the interval 〈0, 1〉.
It means that for small training sets some suppression of the off-diagonal elements is
needed. This is similar to smoothing and shrinkage methods [2], [3]. The optimal value
of the correction coefficient depends on the number of training samples n and on the
number of dimensions d. The fitted functions are shown in Figure 1 B. The enhanced
estimate of the off-diagonal element ŝij of the covariance matrix, which was enhanced
by equation (3) already, is

s̃ij = ŝij

[
1−

(
d

d− 1 + n

)1.4
]
. (4)

Covariance matrix enhanced this way is also well-conditioned. The Monte Carlo simu-
lation and the fit was done for dimensions in range from 2 to 50. Therefore, the fit may
be inaccurate in cases with significantly higher dimensions.

2.2 Real Speech Data

Real speech data (e.g. MFCC or PLP vectors augmented by delta and acceleration co-
efficients) are not i.i.d.. Subsequent feature-vectors are mutually dependent. This is the
consequence of the speech processing itself. There is an overlap of the FFT window and
the delta and acceleration coefficients are computed from neighbouring feature-vectors.
Also, the speech production is continuous, i.e. time dependent. It means that n used in
formulas (3) and (4) cannot be directly the number of feature-vectors.

An number of independent feature-vectors ñ needs to be estimated too from the
given data set of n real feature-vectors. For such an estimation we used a normalized
mean of absolute differences of consecutive feature-vectors:

δ̃ =
1

d

d∑
j=1

1

nσ̂j

n∑
i=2

|xij − xi−1,j | . (5)
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In the case of dependent data, the difference δ̃ is smaller than for the independent data.
We simulated various filter lengths and many filter shapes (e.g. Hamming, Blackman,
Triangle, Rectangular) to analyze a relation between the data dependency influenced
by the filter and the difference δ̃. The relation depends mainly on the filter length.
The dependence on the filter shape is minor. Again, we fitted a function to estimate
the number of independent feature-vectors ñ from the difference δ̃ and the number of
feature-vectors n:

ñ = 1 + (n− 1)0.7δ̃3. (6)

2.3 Enhanced Gaussian Mixture Models

In the case of GMM, the above described approach can be used for individual com-
ponents. The optimality is not ensured since the overlap of Gaussian components is
ignored. All the estimates are calculated incorporating the posterior probability of the
individual Gaussian components. Instead of the number of feature-vectors n, the sum
of posteriors is used in the equations (3), (4), and (5). Only in the equation (6) the sum
of posterior square roots is used.

2.4 Training Procedure

We use a modified Expectation-Maximization (EM) algorithm. We modified the esti-
mation equations as described above. The iterative training converges in most cases, but
the convergence is not assured. Appropriate number of iterations is higher in compari-
son with the classic EM algorithm. Some model components may be found redundant
during the iterations. This means that other components comprise most of the data from
the redundant component. The redundant component should be discarded since its esti-
mates become very inaccurate. Discarding the redundant component naturally produces
a model with an optimal number of components.

The modified EM algorithm does not converge to a global optimum alike the classic
EM. The initial seed is important. According to our experiments, starting with a single
component followed by subsequent split of the component with highest weight results
to a reliable final model. However, it is a very time-consuming method when dealing
with large datasets, where a random initialization of all the components gives a model in
much shorter time. In that case, we recommend to try out several random initializations
and select the model witch gives the best value of the ML criterion. The individual ran-
dom initializations may vary in the number of components, but the proposed algorithm
provides (after a few iterations) their optimal subset. Hence, the redundant ones will be
discarded.

3 GMM Estimator Software

We incorporated previous methods of the covariance matrix enhancement into our GMM
estimator software. The GMM estimator supports diagonal and full covariance matrices
and it is developed for processing of very large datasets. It uses CUDA GPU accelera-
tion (if available) [11], [12] or multi-threaded SSE implementation in all other case. It
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is free for academic use. More information is available at http://www.kky.zcu.
cz/en/sw/gmm-estimator.

4 Speech Recognition Results

We employed the proposed GMM training approach into an acoustic model training. For
this paper, we choose a ML trained triphone Hidden Markov Model (HMM) baseline
where each tied-state has a uniform number of components with diagonal covariance
matrices. We used this model to label all the training feature-vectors with tied-state
labels. Each state was then trained as an independent GMM. On the end, we collected
all the GMMs and constructed a new HMM.

We compared models with diagonal as well as full covariance matrices. Three vari-
ants were assumed. We tested various uniform numbers (each HMM state has same
number of components) of components (i.e. 2, 4, 8, 16, 32) and kept the best perform-
ing ones: 16 components for diagonal covariance models and 8 components for full
covariance models. We did not use Speaker adaptive training, discriminative training,
nor adaptation, in order to keep the influence of the modelling approach evident. Sum-
mary of the compared models:

– Diagonal covariance HMM with uniform number of components per state, 16 com-
ponents used (denoted as Diag 16G), trained by classical EM algorithm.

– Enhanced diagonal covariance HMM with the target number of components equal
to 16, but in one third of states some of the components were marked as redundant
and left out (marked as Diag 16G Enh).

– Enhanced diagonal covariance HMM with variable number of components, the
largest component was split until the ML criterion grew (marked as Diag Vari Enh).

– Full covariance HMM with uniform number of components per state equal to 8
(marked as Full 8G) trained by classical EM algorithm. 10% of the states was not
able to be trained with full covariances because of ill-conditioning. These states
was replaced by enhanced GMMs from the following model.

– Enhanced full covariance HMM with target number of components equal to 8, but
one half of states had some components redundant (marked as Full 8G Enh).

– Enhanced full covariance HMM with variable number of components, the largest
component was split until the ML criterion grew (marked as Full Vari Enh).

4.1 Test Description

A corpus Bezplatne Hovory was chosen as a data source for the experiments. It is a
Switchboard like telephone speech corpus, recorded at 8kHz in Czech language. It con-
tains spontaneous speech with unlimited vocabulary, hence it is hard to get high recog-
nition accuracy compared to some domain specific corpora.

280h of speech were selected for training and other 2h were selected for tests. Fea-
ture vectors were standard PLPs with delta and acceleration coefficients followed by
the Cepstral Mean Subtraction. Total dimension of the vectors was 36.
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Czech language belongs to flexible languages, therefore the vocabulary used needs
to be extremely large in order to carry most of the pronounced words. Since less than
5 million words from the training set transcriptions do not suffice for such a task, a
language model was trained from distinct text sources. Next, 200 million words mainly
from internet forums and blogs were mixed with training set transcriptions in the ratio
1:3. Resulted trigram back-off language model contained 550k words (650k baseforms).
Kneser-Ney smoothing was used. A perplexity of the test set was 102 with 1.17% of
OOV words.

Table 1. Recognition results

Model #States #Gaussians #Gaussians/#States WER[%]

Diag 16G 4104 65,654 16.0 45.24
Diag 16G Enh 4104 54,444 13.3 45.02
Diag Vari Eng 4104 108,422 26.4 44.69

Full 8G 4104 32,809 8.0 42.73
Full 8G Enh 4104 28,246 6.9 41.89
Full Vari Enh 4104 29,870 7.3 40.81

The results of the speech recognition are shown in Table 1. Most interesting is the
last column: Word Error Rate (WER). The full covariance models perform better than
diagonal ones in this task. The full covariance models are also more sensitive to the
selected training algorithm. The enhanced training procedure with variable number of
components per state gave best results for both diagonal and full covariance models. The
middle column with a total number of Gaussians is also of interest. It illustrates how
many redundant Gaussians were present in the uniform models. The full covariance
model with variable number of components Full Vari Enh performed better by 4.5%
absolutely, when compared to the baseline diagonal model Diag 16G.

The overall WERs are somewhat high. This is caused by the difficulty of the task
- spontaneous telephony speech with unlimited vocabulary, which contains also slang
and expressive words. We needed to add more than a half million of words to the vo-
cabulary in order to carry the speech variability. We also did not use any adaptation nor
discriminative training techniques to keep the influence of the training method evident.
Merging the enhanced covariances, discriminative training and adaptation is going to
be the focus of our future research.

5 Conclusions

The approach of covariance matrix enhancement was proposed and described in this
paper. It handles all the most problematic issues from the GMM training: optimal model
complexity, unseen data, numerical stability. The key idea is to move the focus of ML
criterion from the training data to the source distribution of the data. The covariance
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matrix needs to be enhanced to get an optimal ML criterion. We performed a very large
set of Monte Carlo simulations to get the optimal enhancement of a covariance matrix.

The proposed approach was incorporated into our high-performance GMM training
software, which is free for use for research community. Finally, we successfully tested
the new approach incorporating it to the training of acoustic models for ASR. The sig-
nificant reduction of WER was achieved using the covariance matrix enhancements.
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