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ABSTRACT 

Image-based CSG rendering algorithms for standard graphics hardware rely on multipass rendering that includes 

reading and writing large amounts of pixel data from and to the frame buffer. Since the performance of this data 

path has hardly improved over the last years, we describe new implementation techniques that efficiently use 

modern graphics hardware. 1) The render-to-texture ability is used to temporarily store shape visibility, avoiding 

the expensive copy of z-buffer content to external memory. Shape visibility is encoded discretely instead of 

using depth values. Hence, the technique is also not susceptible to artifacts in contrast to previously described 

methods. 2) We present an image-based technique for calculating the depth complexity of a CSG shape that 

avoids reading and analyzing pixel data from the frame buffer. Both techniques optimize various CSG rendering 

algorithms, namely the Goldfeather and the layered Goldfeather algorithm, and the Sequenced-Convex-

Subtraction (SCS) algorithm. This way, these image-based CSG algorithms now operate accelerated by graphics 

hardware and, therefore, represent a significant improvement towards real-time image-based CSG rendering for 

complex models. 
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1. INTRODUCTION 

CSG modeling, i.e. 3D-shape modeling by means of 

volumetric Boolean operations, is a powerful tool in 

many areas of applications, e.g., manufacturing, 

engineering, and 3D-interactive sculpting. For inter-

active manipulation and display of CSG shapes, 

image-based CSG rendering algorithms are most 

suitable. To this category belong the Goldfeather 

algorithm [Gol86a, Gol89a, Wie96a], the layered 

Goldfeather algorithm [Ste98a], and the SCS 

(Sequenced Convex Subtraction) algorithm [Ste00a, 

Ste02a].  

We identified as main bottleneck of these algorithms, 

as described in previous publications, reading pixel 

data from the frame buffer to external memory. This 

operation is needed due to:  

• Visibility transfer: The algorithms determine the 

visibility of CSG primitives and store the 

corresponding depth values in a temporary depth 

buffer. To hold a copy of the main depth buffer 

and to merge the temporary depth values with the 

main depth buffer, depth buffers are saved to 

external memory and restored from it. 

• Depth-complexity calculation: The algorithms, 

in general, calculate the depth complexity of a 

CSG shape by counting the overdraw in the 

stencil buffer, and then reading the stencil values 

to find the maximum overdraw.  

Today, the performance of image-based CSG 

rendering is mainly bound by the throughput of this 

data path. 

In our approach, we propose a solution for per-

forming visibility transfer and depth-complexity 

calculation by the graphics hardware on its own. 

Thereby, the overall performance of CSG algorithms 

is drastically improved. In addition, our solution for 

visibility transfer is insusceptible to artifacts in 

contrast to previous methods. 
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Section 2 summarizes related work and introduces 

basic concepts of image-based CSG. Section 3 dis-

cusses our technique for visibility transfer. Section 4 

explains the technique calculating depth complexity. 

Section 5 gives a detailed performance analysis for 

test models, and Section 6 draws conclusions. 

2. RELATED WORK 
Constructive Solid Geometry (CSG) represents a 

powerful and expressive approach to geometric 3D 

modeling [Req80a]. In CSG, complex shapes are 

built from simple shapes by volumetric Boolean 

operations, i.e., union, intersection, and subtraction. 

A complex shape is specified by a CSG expression, 

which is commonly stored as a CSG tree whose leaf 

nodes represent basic shapes (primitives such as 

sphere, cylinder, and box) and inner nodes denote 

Boolean operations (see Figure 1). 

Image-based CSG algorithms are a category of 

algorithms for z-buffer graphics hardware that 

generate “just the image” of a CSG shape without 

calculating a description of the final object geometry. 

Compared to object-based algorithms, image-based 

CSG algorithms offer a number of advantages in 

many areas of applications. For example, they allow 

for interactively composing and manipulating a CSG 

shape. In general, they also produce less visual 

artifacts than a possibly approximated 3D geometry. 

We are concentrating only on those image-based 

CSG algorithms that can be implemented on standard 

graphics hardware, because we aim at massive 

hardware-acceleration available on today’s GPUs. 

Algorithms that rely on specialized graphics 

hardware, such as the Trickle algorithm [Eps89a], are 

not considered. 

The Goldfeather Algorithm 
Goldfeather et al. presented a CSG rendering 

algorithm for the Pixel-Planes graphics hardware 

[Gol86a, Gol89a]. Their work includes the notion of 

tree normalization, a set of equations to transform a 

generic CSG tree into an equivalent union of one or 

more partial products, whereby a partial product is 

built by intersection and subtraction of an arbitrary 

number of primitives. The normalization ensures that 

CSG expressions can be rendered effectively using z-

buffer supported graphics hardware. Today, all 

image-based CSG rendering algorithms rely on it. 

Goldfeather et al. also observed that only front faces 

of intersected and back faces of subtracted primitives 

in a partial product are potentially visible. The 

Goldfeather algorithm separately tests the visibility 

of each potentially visible depth layer L of a 

(possibly concave) primitive P. If P is convex, ob-

viously only one depth layer of P must be 

considered.  

Visibility testing of L works as follows: The z-values 

of L are rendered into a temporary z-buffer. Then, a 

parity test is performed for all other primitives Q in 

the partial product to discard fragments of L that are 

not visible. The parity test counts the number of front 

and back depth layers of Q with less or equal depth 

as L. For visible parts of L, that number must be odd 

if Q is intersected, and similarly it must be even if Q 

is subtracted. When all parity tests for L have been 

performed, the temporary z-buffer contains the 

correct z-values for visible fragments of L. The z-

values are merged with the content of the main z-

buffer using a “z-less” test. The Goldfeather algo-

rithm has a quadratic runtime behavior with respect 

to the number of primitives in a partial product. 

Stewart et al. [Ste98a] observed that the depth 

complexity k of the primitives in a partial product is 

typically much smaller than the number of primitives 

n, and they proposed the layered Goldfeather algo-

rithm that takes advantage of this fact. The idea is to 

test the visibility of a depth layer of the partial 

product instead that of a single primitive. The theo-

retical runtime of this algorithm is O(n⋅k). The 
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Figure 1: A sample CSG tree (a). It consists of four primitives; the sphere and the box are intersected; the 

cylinders are subtracted. The intermediate results (b, c) and the final image of the CSG expression (d). 



problem of rendering artifacts that commonly 

occurred was solved later [Erh00a]  (also see Section 

3). 

Recently Guha et al. applied two-sided depth testing 

– enabled by hardware support of shadow mapping 

on modern graphics hardware – to a variant of the 

layered Goldfeather algorithm [Guh03a]. By depth 

peeling [Eve01a], their algorithm applies the parity 

test for depth layers of the partial product in front to 

back order, whereby a stencil mask rejects visibility 

updates where the visibility of a CSG layer already 

has been determined.  

The SCS Algorithm 

Stewart et al. [Ste00a] developed the SCS algorithm 

and they later described a refined version [Ste02a] to 

which we will refer to. The SCS Algorithm directly 

handles convex primitives only; concave primitives 

can be processed if they are subdivided into a set of 

convex primitives.  

To determine the z-values of a partial product, the 

SCS algorithm uses three stages:  

• First, the front surface of all intersected 

primitives in the partial product is determined. 

Two principles are applied to achieve this task: 

First, the visible front face of the intersection 

must be further away from the viewer than all 

other front faces of intersected shapes. Second, n 

back faces of intersected shapes must be behind 

the furthest front face; otherwise the furthest 

front face is not visible.  

• In the next stage, a sequence of subtracted 

primitives is subtracted from the z-buffer. A 

subtraction removes a primitive P from a 

temporary front surface, i.e., where the front 

surface of the subtracted primitive P is closer 

and the back surface further away than the 

temporary surface, the z-values are replaced by 

the z-values of the back surface of P. In general, 

the sequence of subtracted primitives must 

ensure that all permutations of primitives reside 

in the sequence in sorted order, such that all 

possible dependencies of primitives are correctly 

handled. A sequence that has this property is 

called permutation embedding. 

• At last, z-values of the subtracted primitives are 

clipped to the back faces of the intersected 

primitives. This is necessary because currently 

visible back faces of subtracted primitives can be 

situated behind the back of the intersection of all 

intersected primitives in the partial product. To 

mark these spots as invisible, it is necessary to 

render all back faces of the intersected 

primitives, resetting the z-value of fragments 

that are closer than the current z-value. 

The first and the last stage have linear runtime; the 

subtraction stage has quadratic runtime with respect 

to the number of subtracted primitives n because of 

the size of the permutation-embedding sequence. 

When the depth complexity k of the subtracted 

primitives is known, a shorter subtraction sequence 

of n⋅k primitives can be used [Ste00a]. Furthermore, 

the object-space arrangement of subtracted primitives 

can be analyzed to shorten the subtraction sequence 

in certain cases [Ste03a].  

3. VISIBILITY TRANSFER 
Both the Goldfeather and the SCS algorithms use 

two z-buffers: a temporary z-buffer used to compute 

the depth image of (part of) a partial product, and a 

final z-buffer to accumulate the results. But standard 

z-buffer graphics hardware does not support two 

simultaneous z-buffers for a single fragment. 

Wiegand proposed a workaround for the Goldfeather 

algorithm [Wie96a], which was later also applied to 

SCS: His method saves the main z-buffer into main 

memory. After calculating the visibility of some CSG 

primitives, it restores the z-buffer and merges the 

temporary result. Unfortunately, this solution has 

important shortcomings: 

• In general, the original z-values do not exactly 

match the copied z-values, since the OpenGL 

standard does not guaranty such exactness (due 

to the conversion of the data format). As a 

consequence, z-artifacts occur [Erh00a].  

• Z-values are temporarily copied from graphics 

memory to main memory. Even under ideal 

circumstances, performance of this approach 

will be moderate due to bandwidth limitations. 

We expect that the throughput of this data path 

will hardly increase in future hardware (For 

measurements of the throughput on today’s 

graphics hardware see Section 5).  

Erhart and Tobler omit z-buffer copies. Instead, they 

copy IDs for shapes that are stored in the stencil-

buffer [Erh00a]. This solves the z-artifacts problem; 

it does not solve the performance constraint since 

stencil-buffer copies are not significantly faster than 

z-buffer copies.  

Render-To-Texture 
In our technique, visibility transfer is based on p-

buffers [Wyn01a], which represent off-screen frame 

buffers. Rendering processes linked to other frame 

buffers can use the p-buffer color channel as 2D-

texture. This functionality, commonly denoted as 

render-to-texture, omits copying color data between 

main memory and graphics memory and, therefore, is 

well suited for real-time rendering. 



For our purpose, the p-buffer has the same size as the 

frame buffer1. Using automatically generated texture 

coordinates, the texture that corresponds to the p-

buffer can be projected on the frame buffer in such a 

way that every texel in the texture has a one-to-one 

mapping to a pixel in the frame buffer. This idea has 

been previously applied to depth-textures to 

implement depth-peeling [Eve01a]. 

ID Textures for Visibility of Primitives 
For convex primitives, only the front face of 

intersected primitives and the back face of subtracted 

primitives are potentially visible. This means that the 

visibility information of a convex primitive can be 

encoded by marking the position with a unique bit 

code ultimately. 

3.2.1 SCS Algorithm   
For the SCS algorithm, our technique uses p-buffers 

to determine the pixel positions at which a primitive 

in a partial product is visible. Thereby, we use the 

alpha channel of the p-buffer to store temporary 

results, i.e., the alpha value of a pixel in the p-buffer 

indicates which primitive is visible at a position. For 

this purpose, each primitive in the partial product is 

assigned a unique ID. Every time the depth buffer is 

updated to denote visibility of a primitive, we also 

store the ID of the primitive in the alpha buffer. 

Where no primitive is visible at all, we store the 

special ID 0.  

After computing the partial product, the alpha 

channel of the p-buffer holds all necessary visibility 

information for the primitives in the partial product. 

For the visibility transfer, we use the alpha channel 

of the p-buffer as texture, and we project this texture 

on the main frame buffer. Then, with “z-less” test, 

we render all potentially visible layers of primitives 

in the partial product (i.e., back or front faces), 

discarding all fragments with an alpha texture-value 

that differs from the ID of the current primitive. This 

is easily done with the alpha test. Finally, the z-

buffer in the back buffer contains the z-values for all 

partial products computed so far. 

3.2.2 Goldfeather Algorithm 
The Goldfeather algorithm cannot deploy shape IDs 

in the same way as the SCS algorithm, because it 

calculates the visibility of a single primitive at a time. 

So it would mark a primitive as potentially visible, 

and then the parity test would determine which parts 

would be really visible, remarking all other parts as 

invisible. In this step, the visibility IDs for primitives 

                                                           
1 If non-power-of-two textures are not supported by the 

graphics hardware, we use a greater p-buffer and restrict 

application of the texture to that area that is covered by 

the frame buffer, by using the texture matrix.  

that were calculated earlier would have to be 

restored. This is not possible without temporarily 

storing them elsewhere, which would impose an 

enormous overhead. Because of that, we cannot 

reasonably use IDs for primitives in the same way as 

in the SCS algorithm. 

Instead, we store the visibility information for only a 

single primitive in the alpha channel of the p-buffer. 

The alpha buffer contains a value of 0 exactly if the 

primitive is not visible − the visibility transfer is 

possible in the same way as in the SCS algorithm. 

We can apply the same approach for concave 

primitives. The Goldfeather algorithm calculates 

their visibility layer by layer, so if we store the 

number of the layer along with the visibility 

information, these information suffice for the 

visibility transfer into the main z-buffer. More 

exactly, for concave primitives, the alpha buffer 

contains a value of 0 exactly if the given layer of the 

primitive is not visible. In the same way, we deploy 

ID textures to the layered Goldfeather algorithm.  

3.2.3 RGBA Textures    
Besides the alpha channel, we can store visibility 

information also in the red, green, and blue color 

channels. The algorithm projects an RGBA-texture 

onto the frame buffer and needs a kind of ‘alpha 

testing based on color values’. That testing is 

achieved with the ARB_combine_dot3 extension of 

OpenGL. Using the dot product of the texture-color 

with a constant color ( (1,0,0), (0,1,0), or (0,0,1) ), 

the texture environment is configured to move the 

information of a color channel into the alpha channel. 

The alpha test, then, is applied as usual. For the 

Goldfeather algorithm, this way one texture encodes 

the visibility of four primitives; for the SCS 

algorithm, the RGBA-texture even encodes the 

visibility of four partial products.  

3.2.4 Limitations and Benefits    
For the SCS algorithm, ID textures limit the number 

of primitives that can be contained in a partial 

product to the number of different IDs. An alpha 

buffer of 8 bit allows for 255 primitives. If more 

primitives are required, the IDs can be spread over 

the RGBA channels, allowing for 232−1 different 

IDs. 

Z-artifacts do not occur with our approach because 

ID textures contain binary information only. 

4. DEPTH COMPLEXITY 
The layered Goldfeather algorithm calculates the 

depth complexity k of a partial product to determine 

the maximum number of depth layers which must be 

handled by the algorithm. In analogy, calculating the 

depth complexity is advantageous for the SCS 



algorithm because it allows to shorten the length of 

the subtraction sequence from n² to n⋅k.   

Calculating the depth complexity, as described in 

previous publications [Ste98a], is a costly operation: 

The overdraw of all pixels is determined by 

rendering the primitives of the partial product into 

the stencil buffer incrementing stencil values. Next, 

the stencil buffer is copied into main memory, and 

the maximum value is determined, which finally 

represents the maximum depth complexity of the 

partial product.  

Generic Calculation of Depth Complexity 
The occlusion-query capability of today’s graphics 

hardware can easily determine the depth complexity 

of a partial product without reading back the stencil 

buffer. Occlusion queries count the number of 

fragments that have passed the stencil test and depth 

test while rasterizing a given set of primitives. In 

OpenGL, the corresponding NV_occlusion_query 

extension [Kil03a] has found widespread support 

from different hardware vendors, e.g., from NVidia 

and ATI. 

To determine the depth complexity k, the partial 

product is rendered layer by layer, counting the 

number of rendered fragments for each layer. The 

number of the initial layer for which the number of 

rendered fragments is zero equals k+1.  

At first glance, the approach appears to be inefficient 

because it requires rendering n⋅k primitives to deter-

mine the depth complexity, instead of only n 

primitives with the conventional approach of reading 

back the stencil buffer. However, the layered 

Goldfeather algorithm requires rendering each layer 

of the partial product in any case. Therefore, for this 

algorithm an occlusion query can be performed while 

rendering the next layer, and, if the number of 

fragments in this layer is zero, the algorithm 

terminates. 

Depth Complexity for SCS 
The SCS algorithm, during the subtraction stage, 

deploys occlusion queries to test whether the depth 

buffer has not changed during rasterization of the last 

n primitives. In this case, the subtract-stage is 

finished (exit condition), i.e., subtracting the 

remaining primitives in the subtraction sequence is 

not required anymore. This approach requires to use 

an alternative subtraction sequence. 

4.2.1 An Alternative Subtraction Sequence 
For subtracting primitives P1, …, Pn Stewart et al. 

propose the following permutation-embedding 

sequence [Ste00a, Ste02a] 

44444444 344444444 21
shapes1

2121-1-2121-1-21

2

...............

+−nn

nnnnnn PPPPPPPPPPPPPP  

However, we use the following sequence: 

1

 times1

2121 .......... PPPPPPPS

n

nnn 44444 344444 21
−

=  

The length of Sn is also n · (n−1) + 1 = n2 − n + 1. 

First, we show by inductive proof that this sequence 

is really permutation embedding. For the induction 

base n = 1 the proposition is evident; and for n = 2 it 

is also because the sequence S2 = P1P2P1 obviously 

contains all permutations of P1 and P2, i.e., P1P2 and 

P2P1. So lets presume that the proposition is true for 

P1, …, Pn−1, i.e., the sequence Sn−1, build by n−1 

times P1…Pn−1 followed by P1, contains all 

permutations of P1, …, Pn−1. The length of Sn−1 is 

(n−1)2 − (n−1) + 1 = n2 − 3n + 3. 

Consider Sn for the primitives P1, …, Pn now. We 

choose an arbitrary primitive Pi. Then we construct a 

sub-sequence S’ of Sn by removing those (at most 

n−1) primitives from Sn that are left of the first 

occurrence of Pi in Sn, and by removing all 

occurrences of Pi. Pi is removed exactly n−1 times if 

i≠ 1; if i=1, Pi is removed n times but then no other 

elements are removed from Sn. So, the size of S’ is at 

least the size of Sn minus 2·(n−1), i.e., it is at least n2 

− n + 1 − 2·(n−1) = n2 − 3n + 3. By construction, the 

beginning of S’ has the same form as Sn−1, and S’ is 

at least as long as Sn−1. Therefore, the first n2 − 3n + 

3 elements of S’ embed all permutations of P1, …, Pn 

without Pi (inductive hypothesis). But S’ is a sub-

sequence of Sn, hence permutations of P1, …, Pn that 

start with Pi are embedded in Sn. Our choice of Pi 

was arbitrary, so all permutations of P1, …, Pn are 

embedded in Sn, which means that Sn is permutation 

embedding.  

Therefore, our permutation-embedding sequence is 

as effective and efficient as the sequence given by 

Stewart et al. Its advantage for our algorithm, 

however, is that when n primitives out of the 

subtraction sequence have been rendered, n different 

primitives have been rendered. We apply this 

property, which would be wrong for the sequence of 

Stewart et al., for the exit condition of our modified 

subtraction algorithm below.  

4.2.2 Modified Subtraction Algorithm 
In the subtraction stage, we assign a value 

P.fragment_count to each subtracted primitive P that 

holds the number of rendered fragments. The value is 

initialized with zero. Then, for all primitives in the 

sequence, the following enhanced subtraction is 

performed (additions to the original SCS subtraction 

are set in bold):  



The front surface of P is rendered, with “z-less” test 

and without update of the z-buffer, but setting a 

stencil-bit where the z-test passes. Additionally, the 

number of fragments that pass the z-test is 

counted. Only if this number does not equal the 

number stored with P, the back surface of P is 

rendered where the stencil-bit is set and with “z-

greater” test, updating z-values where stencil and z-

test pass. Otherwise, the visibility of the front of P 

did not change compared to the last subtraction of P, 

so that the currently stored z-values already match 

the visible back surface of P and updating the z-

buffer is not necessary.  

The exit condition can be defined as follows: If for n 

consecutive subtractions the z-buffer was not 

updated, the subtraction stage is terminated 

immediately. In this case, the modified subtraction 

sequence has ensured that all n subtracted primitives 

in the partial product have been tested without 

updating the z-buffer, so that all dependencies 

between different subtracted shapes have been 

handled. 

The pseudo code of our algorithm, which is outlined 

in Algorithm 1, can be optimized in an obvious way 

by iterating over the stencil reference values from 1 

to 255 and only clearing the stencil buffer for every 

255th primitive.   

5 RESULTS 
The performance of reading and writing pixel data 

from the frame buffer to external memory has been 

hardly accelerated over the last years. The 

measurements (Table 1) show that the older TNT2 

can read pixels as fast as the newer ATI 9700. The 

ATI 9700 is even considerably slower than the TNT2 

writing pixel data. The FX5600 performs better in 

these disciplines, however in comparison to the 

TNT2, the improvements do not come near to the 

comparable increase in fillrate or triangle throughput. 

Pixel transfer 

rate 

(Mpixels/sec) 

NVidia

TNT2 

(1998) 

Nvidia  

FX5600 

(2003) 

ATI 

9700 

(2003) 

Read 26 41 26 

Write 42 118 17 

Table 1: Pixel-transfer rates of different 

generations of graphics hardware. 

Our techniques have been implemented in C++ based 

on OpenGL. The implementation does not contain 

the “frame start optimization” [Wie96a]: For the first 

primitive (respectively partial product) in a frame, 

this optimization omits saving and restoring the z-

buffer, because at this time the main z-buffer does 

not yet contain any data. Even though this is a useful 

optimization, it complicates analyzing the rendering 

performance: Algorithms that perform well for one 

partial product may perform worse for two or more 

partial products.  

We measured the rendering performance at a 

resolution of 800x600, both on the FX5600 and the 

ATI 9700; results are given in frames-per-second. 

The performance results show that the presented 

implementation techniques lead to a drastically better 

performance for all tested CSG algorithms. In 

particular, the Goldfeather algorithm gets about eight 

times faster on the FX5600, and the layered 

Goldfeather as the SCS algorithms with depth-

complexity sampling get about four times faster. The 

performance improvements for the ATI 9700 are not 

shown here in detail, but they are even more evident, 

because due to the slower pixel transfer performance, 

the ATI 9700 is significantly slower than the FX5600 

in the conventional code path.  

In the conventional code path, CSG rendering 

performance is bound by the pixel-transfer 

performance, even on graphics hardware such as the 

FX5600, where pixel transfer is comparably fast: For 

example, the widget model is composed of five 

Figure 2: The widget and the  grid model used for 

performance analysis. 

Algorithm 1 modified subtraction of P1, …, Pn 

Generate sequence Sn from P1, …, Pn 

primitives_without_update = 0 

for primitives P in Sn do 

 Initialize stencil buffer with 0 

 Set stencil buffer to 1 where z-values of P.front < z

 begin fragment counting 

 Render P 

 end fragment counting, fc contains result 

 if fc != P.fragment_count then 

 Update z where z-values of P.back > z and 

                                     stencil == 1 

 Render P 

 P.fragment_count = fc 

 primitives_without_update = 0 

 else  

 primitives_without_update++ 

 end if 

 if primitives_without_update >= n then 

 exit algorithm (exit condition) 

 end if 

end for  

 



primitives so that the conventional Goldfeather 

algorithm requires to save and restore the depth 

buffer five times to render the widget. At a resolution 

of 800x600 and 11 fps, these are about 26.4 Mpixels 

that are copied in a second. In relation to the 

maximum pixel-transfer rate of 41 Mpixels/sec for 

reading and 118 Mpixels/sec for writing, the 

Goldfeather algorithm spends about 64% of its 

rendering time for saving the depth buffer and 22% 

for restoring it. Only the remaining 14% are actually 

used for rendering in this example.  

The SCS algorithm with depth-complexity sampling 

performs exceptionally well compared to the 

standard SCS algorithm; for the grid model the 

performance improvement are apparent. On the other 

hand, the widget model generally favours algorithms 

that do not determine the depth complexity, because 

all primitives overlap. But the SCS algorithm with 

depth-complexity sampling is hardly slower than the 

standard SCS algorithm. The overhead of the 

occlusion queries appear to be very small. 

Additionally, we found a similar effect as Guha et al. 

in their CSG algorithm [Guh03a]: In practice, the 

SCS algorithm with modified subtraction algorithm 

often requires rendering far fewer primitives than 

expressed by the run-time complexity of O(n⋅k) in 

the worst case. This is due to the exit condition that 

dynamically detects when the frame buffer has not 

been changed for a time long enough. 

6 CONCLUSIONS 
By taking advantage of features of modern graphics 

hardware, we can transfer core tasks in image-based 

CSG rendering to graphics hardware. On the one 

hand, occlusion queries determine depth complexity, 

on the other hand, p-buffers and textures transfer 

visibility information.  

In terms of performance, both the Goldfeather and 

the SCS algorithm benefit from these techniques by a 

huge amount. Overall, the SCS algorithm remains 

faster. However, the Goldfeather algorithm is 

suitable for handling concave primitives which the 

SCS algorithm does not support directly. 

The required graphics capabilities are included on 

current and future graphics hardware. The 

ARB_occlusion_query extension has been included 

in the OpenGL 1.5 specification; rendering to a 

texture will be exposed and optimized by ARB 

superbuffers [Mac03a]. Therefore, the presented 

techniques are well suited for real-time enabled 

image based CSG rendering on future graphics 

hardware.  
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3d-model: 

widget 

FX5600 

conven-

tional 

FX5600 

new 

ATI 

9700 

new 

Goldf. 11 81 114 

Lay. Goldf. 8.2 36 40 

SCS 41 124 228 

SCS (DS) 25 117 220 

Table 2: Performance results for the widget 

model. 

3d-model: 

grid 

FX5600 
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Figure 3: Cassette of a bicycle. This CSG model is 

composed of 150 primitives. With the SCS 

algorithm and depth-complexity sampling, the 

model is rendered interactively with 12fps on the 

GeForce FX5600.  
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