
Rendering Techniques for Hardware-Accelerated
Image-Based CSG

Florian Kirsch Jürgen Döllner
Hasso-Plattner-Institute for Software Systems Engineering at the University of Potsdam

Prof.-Dr.-Helmert-Straße 2-3
D-14482 Potsdam, Germany

{kirsch,doellner}@hpi.uni-potsdam.de

ABSTRACT

Image-based CSG rendering algorithms for standard graphics hardware rely on multipass rendering that includes

reading and writing large amounts of pixel data from and to the frame buffer. Since the performance of this data

path has hardly improved over the last years, we describe new implementation techniques that efficiently use

modern graphics hardware. 1) The render-to-texture ability is used to temporarily store shape visibility, avoiding

the expensive copy of z-buffer content to external memory. Shape visibility is encoded discretely instead of

using depth values. Hence, the technique is also not susceptible to artifacts in contrast to previously described

methods. 2) We present an image-based technique for calculating the depth complexity of a CSG shape that

avoids reading and analyzing pixel data from the frame buffer. Both techniques optimize various CSG rendering

algorithms, namely the Goldfeather and the layered Goldfeather algorithm, and the Sequenced-Convex-

Subtraction (SCS) algorithm. This way, these image-based CSG algorithms now operate accelerated by graphics

hardware and, therefore, represent a significant improvement towards real-time image-based CSG rendering for

complex models.

Keywords

Constructive Solid Geometry, CSG Rendering, Image-Based Rendering, Rendering Algorithms, Solid Modeling

1. INTRODUCTION

CSG modeling, i.e. 3D-shape modeling by means of

volumetric Boolean operations, is a powerful tool in

many areas of applications, e.g., manufacturing,

engineering, and 3D-interactive sculpting. For inter-

active manipulation and display of CSG shapes,

image-based CSG rendering algorithms are most

suitable. To this category belong the Goldfeather

algorithm [Gol86a, Gol89a, Wie96a], the layered

Goldfeather algorithm [Ste98a], and the SCS

(Sequenced Convex Subtraction) algorithm [Ste00a,

Ste02a].

We identified as main bottleneck of these algorithms,

as described in previous publications, reading pixel

data from the frame buffer to external memory. This

operation is needed due to:

• Visibility transfer: The algorithms determine the

visibility of CSG primitives and store the

corresponding depth values in a temporary depth

buffer. To hold a copy of the main depth buffer

and to merge the temporary depth values with the

main depth buffer, depth buffers are saved to

external memory and restored from it.

• Depth-complexity calculation: The algorithms,

in general, calculate the depth complexity of a

CSG shape by counting the overdraw in the

stencil buffer, and then reading the stencil values

to find the maximum overdraw.

Today, the performance of image-based CSG

rendering is mainly bound by the throughput of this

data path.

In our approach, we propose a solution for per-

forming visibility transfer and depth-complexity

calculation by the graphics hardware on its own.

Thereby, the overall performance of CSG algorithms

is drastically improved. In addition, our solution for

visibility transfer is insusceptible to artifacts in

contrast to previous methods.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3., ISSN 1213-6972

WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

Section 2 summarizes related work and introduces

basic concepts of image-based CSG. Section 3 dis-

cusses our technique for visibility transfer. Section 4

explains the technique calculating depth complexity.

Section 5 gives a detailed performance analysis for

test models, and Section 6 draws conclusions.

2. RELATED WORK
Constructive Solid Geometry (CSG) represents a

powerful and expressive approach to geometric 3D

modeling [Req80a]. In CSG, complex shapes are

built from simple shapes by volumetric Boolean

operations, i.e., union, intersection, and subtraction.

A complex shape is specified by a CSG expression,

which is commonly stored as a CSG tree whose leaf

nodes represent basic shapes (primitives such as

sphere, cylinder, and box) and inner nodes denote

Boolean operations (see Figure 1).

Image-based CSG algorithms are a category of

algorithms for z-buffer graphics hardware that

generate “just the image” of a CSG shape without

calculating a description of the final object geometry.

Compared to object-based algorithms, image-based

CSG algorithms offer a number of advantages in

many areas of applications. For example, they allow

for interactively composing and manipulating a CSG

shape. In general, they also produce less visual

artifacts than a possibly approximated 3D geometry.

We are concentrating only on those image-based

CSG algorithms that can be implemented on standard

graphics hardware, because we aim at massive

hardware-acceleration available on today’s GPUs.

Algorithms that rely on specialized graphics

hardware, such as the Trickle algorithm [Eps89a], are

not considered.

The Goldfeather Algorithm
Goldfeather et al. presented a CSG rendering

algorithm for the Pixel-Planes graphics hardware

[Gol86a, Gol89a]. Their work includes the notion of

tree normalization, a set of equations to transform a

generic CSG tree into an equivalent union of one or

more partial products, whereby a partial product is

built by intersection and subtraction of an arbitrary

number of primitives. The normalization ensures that

CSG expressions can be rendered effectively using z-

buffer supported graphics hardware. Today, all

image-based CSG rendering algorithms rely on it.

Goldfeather et al. also observed that only front faces

of intersected and back faces of subtracted primitives

in a partial product are potentially visible. The

Goldfeather algorithm separately tests the visibility

of each potentially visible depth layer L of a

(possibly concave) primitive P. If P is convex, ob-

viously only one depth layer of P must be

considered.

Visibility testing of L works as follows: The z-values

of L are rendered into a temporary z-buffer. Then, a

parity test is performed for all other primitives Q in

the partial product to discard fragments of L that are

not visible. The parity test counts the number of front

and back depth layers of Q with less or equal depth

as L. For visible parts of L, that number must be odd

if Q is intersected, and similarly it must be even if Q

is subtracted. When all parity tests for L have been

performed, the temporary z-buffer contains the

correct z-values for visible fragments of L. The z-

values are merged with the content of the main z-

buffer using a “z-less” test. The Goldfeather algo-

rithm has a quadratic runtime behavior with respect

to the number of primitives in a partial product.

Stewart et al. [Ste98a] observed that the depth

complexity k of the primitives in a partial product is

typically much smaller than the number of primitives

n, and they proposed the layered Goldfeather algo-

rithm that takes advantage of this fact. The idea is to

test the visibility of a depth layer of the partial

product instead that of a single primitive. The theo-

retical runtime of this algorithm is O(n⋅k). The

 −

−

∩

(a) (b) (c) (d)

Figure 1: A sample CSG tree (a). It consists of four primitives; the sphere and the box are intersected; the

cylinders are subtracted. The intermediate results (b, c) and the final image of the CSG expression (d).

problem of rendering artifacts that commonly

occurred was solved later [Erh00a] (also see Section

3).

Recently Guha et al. applied two-sided depth testing

– enabled by hardware support of shadow mapping

on modern graphics hardware – to a variant of the

layered Goldfeather algorithm [Guh03a]. By depth

peeling [Eve01a], their algorithm applies the parity

test for depth layers of the partial product in front to

back order, whereby a stencil mask rejects visibility

updates where the visibility of a CSG layer already

has been determined.

The SCS Algorithm

Stewart et al. [Ste00a] developed the SCS algorithm

and they later described a refined version [Ste02a] to

which we will refer to. The SCS Algorithm directly

handles convex primitives only; concave primitives

can be processed if they are subdivided into a set of

convex primitives.

To determine the z-values of a partial product, the

SCS algorithm uses three stages:

• First, the front surface of all intersected

primitives in the partial product is determined.

Two principles are applied to achieve this task:

First, the visible front face of the intersection

must be further away from the viewer than all

other front faces of intersected shapes. Second, n

back faces of intersected shapes must be behind

the furthest front face; otherwise the furthest

front face is not visible.

• In the next stage, a sequence of subtracted

primitives is subtracted from the z-buffer. A

subtraction removes a primitive P from a

temporary front surface, i.e., where the front

surface of the subtracted primitive P is closer

and the back surface further away than the

temporary surface, the z-values are replaced by

the z-values of the back surface of P. In general,

the sequence of subtracted primitives must

ensure that all permutations of primitives reside

in the sequence in sorted order, such that all

possible dependencies of primitives are correctly

handled. A sequence that has this property is

called permutation embedding.

• At last, z-values of the subtracted primitives are

clipped to the back faces of the intersected

primitives. This is necessary because currently

visible back faces of subtracted primitives can be

situated behind the back of the intersection of all

intersected primitives in the partial product. To

mark these spots as invisible, it is necessary to

render all back faces of the intersected

primitives, resetting the z-value of fragments

that are closer than the current z-value.

The first and the last stage have linear runtime; the

subtraction stage has quadratic runtime with respect

to the number of subtracted primitives n because of

the size of the permutation-embedding sequence.

When the depth complexity k of the subtracted

primitives is known, a shorter subtraction sequence

of n⋅k primitives can be used [Ste00a]. Furthermore,

the object-space arrangement of subtracted primitives

can be analyzed to shorten the subtraction sequence

in certain cases [Ste03a].

3. VISIBILITY TRANSFER
Both the Goldfeather and the SCS algorithms use

two z-buffers: a temporary z-buffer used to compute

the depth image of (part of) a partial product, and a

final z-buffer to accumulate the results. But standard

z-buffer graphics hardware does not support two

simultaneous z-buffers for a single fragment.

Wiegand proposed a workaround for the Goldfeather

algorithm [Wie96a], which was later also applied to

SCS: His method saves the main z-buffer into main

memory. After calculating the visibility of some CSG

primitives, it restores the z-buffer and merges the

temporary result. Unfortunately, this solution has

important shortcomings:

• In general, the original z-values do not exactly

match the copied z-values, since the OpenGL

standard does not guaranty such exactness (due

to the conversion of the data format). As a

consequence, z-artifacts occur [Erh00a].

• Z-values are temporarily copied from graphics

memory to main memory. Even under ideal

circumstances, performance of this approach

will be moderate due to bandwidth limitations.

We expect that the throughput of this data path

will hardly increase in future hardware (For

measurements of the throughput on today’s

graphics hardware see Section 5).

Erhart and Tobler omit z-buffer copies. Instead, they

copy IDs for shapes that are stored in the stencil-

buffer [Erh00a]. This solves the z-artifacts problem;

it does not solve the performance constraint since

stencil-buffer copies are not significantly faster than

z-buffer copies.

Render-To-Texture
In our technique, visibility transfer is based on p-

buffers [Wyn01a], which represent off-screen frame

buffers. Rendering processes linked to other frame

buffers can use the p-buffer color channel as 2D-

texture. This functionality, commonly denoted as

render-to-texture, omits copying color data between

main memory and graphics memory and, therefore, is

well suited for real-time rendering.

For our purpose, the p-buffer has the same size as the

frame buffer1. Using automatically generated texture

coordinates, the texture that corresponds to the p-

buffer can be projected on the frame buffer in such a

way that every texel in the texture has a one-to-one

mapping to a pixel in the frame buffer. This idea has

been previously applied to depth-textures to

implement depth-peeling [Eve01a].

ID Textures for Visibility of Primitives
For convex primitives, only the front face of

intersected primitives and the back face of subtracted

primitives are potentially visible. This means that the

visibility information of a convex primitive can be

encoded by marking the position with a unique bit

code ultimately.

3.2.1 SCS Algorithm
For the SCS algorithm, our technique uses p-buffers

to determine the pixel positions at which a primitive

in a partial product is visible. Thereby, we use the

alpha channel of the p-buffer to store temporary

results, i.e., the alpha value of a pixel in the p-buffer

indicates which primitive is visible at a position. For

this purpose, each primitive in the partial product is

assigned a unique ID. Every time the depth buffer is

updated to denote visibility of a primitive, we also

store the ID of the primitive in the alpha buffer.

Where no primitive is visible at all, we store the

special ID 0.

After computing the partial product, the alpha

channel of the p-buffer holds all necessary visibility

information for the primitives in the partial product.

For the visibility transfer, we use the alpha channel

of the p-buffer as texture, and we project this texture

on the main frame buffer. Then, with “z-less” test,

we render all potentially visible layers of primitives

in the partial product (i.e., back or front faces),

discarding all fragments with an alpha texture-value

that differs from the ID of the current primitive. This

is easily done with the alpha test. Finally, the z-

buffer in the back buffer contains the z-values for all

partial products computed so far.

3.2.2 Goldfeather Algorithm
The Goldfeather algorithm cannot deploy shape IDs

in the same way as the SCS algorithm, because it

calculates the visibility of a single primitive at a time.

So it would mark a primitive as potentially visible,

and then the parity test would determine which parts

would be really visible, remarking all other parts as

invisible. In this step, the visibility IDs for primitives

1 If non-power-of-two textures are not supported by the

graphics hardware, we use a greater p-buffer and restrict

application of the texture to that area that is covered by

the frame buffer, by using the texture matrix.

that were calculated earlier would have to be

restored. This is not possible without temporarily

storing them elsewhere, which would impose an

enormous overhead. Because of that, we cannot

reasonably use IDs for primitives in the same way as

in the SCS algorithm.

Instead, we store the visibility information for only a

single primitive in the alpha channel of the p-buffer.

The alpha buffer contains a value of 0 exactly if the

primitive is not visible − the visibility transfer is

possible in the same way as in the SCS algorithm.

We can apply the same approach for concave

primitives. The Goldfeather algorithm calculates

their visibility layer by layer, so if we store the

number of the layer along with the visibility

information, these information suffice for the

visibility transfer into the main z-buffer. More

exactly, for concave primitives, the alpha buffer

contains a value of 0 exactly if the given layer of the

primitive is not visible. In the same way, we deploy

ID textures to the layered Goldfeather algorithm.

3.2.3 RGBA Textures
Besides the alpha channel, we can store visibility

information also in the red, green, and blue color

channels. The algorithm projects an RGBA-texture

onto the frame buffer and needs a kind of ‘alpha

testing based on color values’. That testing is

achieved with the ARB_combine_dot3 extension of

OpenGL. Using the dot product of the texture-color

with a constant color ((1,0,0), (0,1,0), or (0,0,1)),

the texture environment is configured to move the

information of a color channel into the alpha channel.

The alpha test, then, is applied as usual. For the

Goldfeather algorithm, this way one texture encodes

the visibility of four primitives; for the SCS

algorithm, the RGBA-texture even encodes the

visibility of four partial products.

3.2.4 Limitations and Benefits
For the SCS algorithm, ID textures limit the number

of primitives that can be contained in a partial

product to the number of different IDs. An alpha

buffer of 8 bit allows for 255 primitives. If more

primitives are required, the IDs can be spread over

the RGBA channels, allowing for 232−1 different

IDs.

Z-artifacts do not occur with our approach because

ID textures contain binary information only.

4. DEPTH COMPLEXITY
The layered Goldfeather algorithm calculates the

depth complexity k of a partial product to determine

the maximum number of depth layers which must be

handled by the algorithm. In analogy, calculating the

depth complexity is advantageous for the SCS

algorithm because it allows to shorten the length of

the subtraction sequence from n² to n⋅k.

Calculating the depth complexity, as described in

previous publications [Ste98a], is a costly operation:

The overdraw of all pixels is determined by

rendering the primitives of the partial product into

the stencil buffer incrementing stencil values. Next,

the stencil buffer is copied into main memory, and

the maximum value is determined, which finally

represents the maximum depth complexity of the

partial product.

Generic Calculation of Depth Complexity
The occlusion-query capability of today’s graphics

hardware can easily determine the depth complexity

of a partial product without reading back the stencil

buffer. Occlusion queries count the number of

fragments that have passed the stencil test and depth

test while rasterizing a given set of primitives. In

OpenGL, the corresponding NV_occlusion_query

extension [Kil03a] has found widespread support

from different hardware vendors, e.g., from NVidia

and ATI.

To determine the depth complexity k, the partial

product is rendered layer by layer, counting the

number of rendered fragments for each layer. The

number of the initial layer for which the number of

rendered fragments is zero equals k+1.

At first glance, the approach appears to be inefficient

because it requires rendering n⋅k primitives to deter-

mine the depth complexity, instead of only n

primitives with the conventional approach of reading

back the stencil buffer. However, the layered

Goldfeather algorithm requires rendering each layer

of the partial product in any case. Therefore, for this

algorithm an occlusion query can be performed while

rendering the next layer, and, if the number of

fragments in this layer is zero, the algorithm

terminates.

Depth Complexity for SCS
The SCS algorithm, during the subtraction stage,

deploys occlusion queries to test whether the depth

buffer has not changed during rasterization of the last

n primitives. In this case, the subtract-stage is

finished (exit condition), i.e., subtracting the

remaining primitives in the subtraction sequence is

not required anymore. This approach requires to use

an alternative subtraction sequence.

4.2.1 An Alternative Subtraction Sequence
For subtracting primitives P1, …, Pn Stewart et al.

propose the following permutation-embedding

sequence [Ste00a, Ste02a]

44444444 344444444 21
shapes1

2121-1-2121-1-21

2

...............

+−nn

nnnnnn PPPPPPPPPPPPPP

However, we use the following sequence:

1

 times1

2121 PPPPPPPS

n

nnn 44444 344444 21
−

=

The length of Sn is also n · (n−1) + 1 = n2 − n + 1.

First, we show by inductive proof that this sequence

is really permutation embedding. For the induction

base n = 1 the proposition is evident; and for n = 2 it

is also because the sequence S2 = P1P2P1 obviously

contains all permutations of P1 and P2, i.e., P1P2 and

P2P1. So lets presume that the proposition is true for

P1, …, Pn−1, i.e., the sequence Sn−1, build by n−1

times P1…Pn−1 followed by P1, contains all

permutations of P1, …, Pn−1. The length of Sn−1 is

(n−1)2 − (n−1) + 1 = n2 − 3n + 3.

Consider Sn for the primitives P1, …, Pn now. We

choose an arbitrary primitive Pi. Then we construct a

sub-sequence S’ of Sn by removing those (at most

n−1) primitives from Sn that are left of the first

occurrence of Pi in Sn, and by removing all

occurrences of Pi. Pi is removed exactly n−1 times if

i≠ 1; if i=1, Pi is removed n times but then no other

elements are removed from Sn. So, the size of S’ is at

least the size of Sn minus 2·(n−1), i.e., it is at least n2

− n + 1 − 2·(n−1) = n2 − 3n + 3. By construction, the

beginning of S’ has the same form as Sn−1, and S’ is

at least as long as Sn−1. Therefore, the first n2 − 3n +

3 elements of S’ embed all permutations of P1, …, Pn

without Pi (inductive hypothesis). But S’ is a sub-

sequence of Sn, hence permutations of P1, …, Pn that

start with Pi are embedded in Sn. Our choice of Pi

was arbitrary, so all permutations of P1, …, Pn are

embedded in Sn, which means that Sn is permutation

embedding.

Therefore, our permutation-embedding sequence is

as effective and efficient as the sequence given by

Stewart et al. Its advantage for our algorithm,

however, is that when n primitives out of the

subtraction sequence have been rendered, n different

primitives have been rendered. We apply this

property, which would be wrong for the sequence of

Stewart et al., for the exit condition of our modified

subtraction algorithm below.

4.2.2 Modified Subtraction Algorithm
In the subtraction stage, we assign a value

P.fragment_count to each subtracted primitive P that

holds the number of rendered fragments. The value is

initialized with zero. Then, for all primitives in the

sequence, the following enhanced subtraction is

performed (additions to the original SCS subtraction

are set in bold):

The front surface of P is rendered, with “z-less” test

and without update of the z-buffer, but setting a

stencil-bit where the z-test passes. Additionally, the

number of fragments that pass the z-test is

counted. Only if this number does not equal the

number stored with P, the back surface of P is

rendered where the stencil-bit is set and with “z-

greater” test, updating z-values where stencil and z-

test pass. Otherwise, the visibility of the front of P

did not change compared to the last subtraction of P,

so that the currently stored z-values already match

the visible back surface of P and updating the z-

buffer is not necessary.

The exit condition can be defined as follows: If for n

consecutive subtractions the z-buffer was not

updated, the subtraction stage is terminated

immediately. In this case, the modified subtraction

sequence has ensured that all n subtracted primitives

in the partial product have been tested without

updating the z-buffer, so that all dependencies

between different subtracted shapes have been

handled.

The pseudo code of our algorithm, which is outlined

in Algorithm 1, can be optimized in an obvious way

by iterating over the stencil reference values from 1

to 255 and only clearing the stencil buffer for every

255th primitive.

5 RESULTS
The performance of reading and writing pixel data

from the frame buffer to external memory has been

hardly accelerated over the last years. The

measurements (Table 1) show that the older TNT2

can read pixels as fast as the newer ATI 9700. The

ATI 9700 is even considerably slower than the TNT2

writing pixel data. The FX5600 performs better in

these disciplines, however in comparison to the

TNT2, the improvements do not come near to the

comparable increase in fillrate or triangle throughput.

Pixel transfer

rate

(Mpixels/sec)

NVidia

TNT2

(1998)

Nvidia

FX5600

(2003)

ATI

9700

(2003)

Read 26 41 26

Write 42 118 17

Table 1: Pixel-transfer rates of different

generations of graphics hardware.

Our techniques have been implemented in C++ based

on OpenGL. The implementation does not contain

the “frame start optimization” [Wie96a]: For the first

primitive (respectively partial product) in a frame,

this optimization omits saving and restoring the z-

buffer, because at this time the main z-buffer does

not yet contain any data. Even though this is a useful

optimization, it complicates analyzing the rendering

performance: Algorithms that perform well for one

partial product may perform worse for two or more

partial products.

We measured the rendering performance at a

resolution of 800x600, both on the FX5600 and the

ATI 9700; results are given in frames-per-second.

The performance results show that the presented

implementation techniques lead to a drastically better

performance for all tested CSG algorithms. In

particular, the Goldfeather algorithm gets about eight

times faster on the FX5600, and the layered

Goldfeather as the SCS algorithms with depth-

complexity sampling get about four times faster. The

performance improvements for the ATI 9700 are not

shown here in detail, but they are even more evident,

because due to the slower pixel transfer performance,

the ATI 9700 is significantly slower than the FX5600

in the conventional code path.

In the conventional code path, CSG rendering

performance is bound by the pixel-transfer

performance, even on graphics hardware such as the

FX5600, where pixel transfer is comparably fast: For

example, the widget model is composed of five

Figure 2: The widget and the grid model used for

performance analysis.

Algorithm 1 modified subtraction of P1, …, Pn

Generate sequence Sn from P1, …, Pn

primitives_without_update = 0

for primitives P in Sn do

 Initialize stencil buffer with 0

 Set stencil buffer to 1 where z-values of P.front < z

 begin fragment counting

 Render P

 end fragment counting, fc contains result

 if fc != P.fragment_count then

 Update z where z-values of P.back > z and

 stencil == 1

 Render P

 P.fragment_count = fc

 primitives_without_update = 0

 else

 primitives_without_update++

 end if

 if primitives_without_update >= n then

 exit algorithm (exit condition)

 end if

end for

primitives so that the conventional Goldfeather

algorithm requires to save and restore the depth

buffer five times to render the widget. At a resolution

of 800x600 and 11 fps, these are about 26.4 Mpixels

that are copied in a second. In relation to the

maximum pixel-transfer rate of 41 Mpixels/sec for

reading and 118 Mpixels/sec for writing, the

Goldfeather algorithm spends about 64% of its

rendering time for saving the depth buffer and 22%

for restoring it. Only the remaining 14% are actually

used for rendering in this example.

The SCS algorithm with depth-complexity sampling

performs exceptionally well compared to the

standard SCS algorithm; for the grid model the

performance improvement are apparent. On the other

hand, the widget model generally favours algorithms

that do not determine the depth complexity, because

all primitives overlap. But the SCS algorithm with

depth-complexity sampling is hardly slower than the

standard SCS algorithm. The overhead of the

occlusion queries appear to be very small.

Additionally, we found a similar effect as Guha et al.

in their CSG algorithm [Guh03a]: In practice, the

SCS algorithm with modified subtraction algorithm

often requires rendering far fewer primitives than

expressed by the run-time complexity of O(n⋅k) in

the worst case. This is due to the exit condition that

dynamically detects when the frame buffer has not

been changed for a time long enough.

6 CONCLUSIONS
By taking advantage of features of modern graphics

hardware, we can transfer core tasks in image-based

CSG rendering to graphics hardware. On the one

hand, occlusion queries determine depth complexity,

on the other hand, p-buffers and textures transfer

visibility information.

In terms of performance, both the Goldfeather and

the SCS algorithm benefit from these techniques by a

huge amount. Overall, the SCS algorithm remains

faster. However, the Goldfeather algorithm is

suitable for handling concave primitives which the

SCS algorithm does not support directly.

The required graphics capabilities are included on

current and future graphics hardware. The

ARB_occlusion_query extension has been included

in the OpenGL 1.5 specification; rendering to a

texture will be exposed and optimized by ARB

superbuffers [Mac03a]. Therefore, the presented

techniques are well suited for real-time enabled

image based CSG rendering on future graphics

hardware.

7 REFERENCES
[Eps89a] Epstein, D., Jansen, F., and Rossignac, J.

Z-Buffer Rendering from CSG: The Trickle

Algorithm. IBM Research Report RC 15182,

1989.

[Erh00a] Erhart, G., and Tobler, R.F. General

Purpose Z-Buffer CSG Rendering with Consumer

Level Hardware. VRVis Technical Report 003,

2000.

[Eve01a] Everitt, C. Interactive order-independent

transparency. Technical report, NVidia

Corporation, 2001.

[Gol86a] Goldfeather, J., Hultquist, J. P. M., and

Fuchs, H. Fast Constructive Solid Geometry

3d-model:

widget

FX5600

conven-

tional

FX5600

new

ATI

9700

new

Goldf. 11 81 114

Lay. Goldf. 8.2 36 40

SCS 41 124 228

SCS (DS) 25 117 220

Table 2: Performance results for the widget

model.

3d-model:

grid

FX5600

conven-

tional

FX5600

new

ATI9700

new

Goldf. 2.0 16 24

Lay. Goldf. 8.9 38 50

SCS 18 24 73

SCS (DS) 25 95 198

Table 3: Performance results for the grid model.

Figure 3: Cassette of a bicycle. This CSG model is

composed of 150 primitives. With the SCS

algorithm and depth-complexity sampling, the

model is rendered interactively with 12fps on the

GeForce FX5600.

Display in the Pixel-Powers Graphics System.

ACM Computer Graphics (SIGGRAPH '86

Proceedings), 20(4):107-116, 1986.

[Gol89a] Goldfeather, J., Molnar, S., Turk, G., and

Fuchs, H. Near Realtime CSG Rendering Using

Tree Normalization and Geometric Pruning.

IEEE Computer Graphics and Applications,

9(3):20-28, 1989.

[Guh03a] Guha, S., Krishnan, S., Munagala, K., and

Venkatasubramanian, S. Application of the Two-

Sided Depth Test to CSG Rendering. ACM

SIGGRAPH 2003 Symposium on Interactive 3D

Graphics, 177-180, 2003.

[Mac03a] Mace, R. OpenGL ARB Superbuffers.

2003.
http://developer.nvidia.com/docs/IO/

8230/GDC2003_OGL_ARBSuperbuffers.pdf.

[Kil03a] Kilgard, M. J. (editor). NVIDIA OpenGL

Extension Specifications, June 2003.
http://developer.nvidia.com.

[Req80a] Requicha, A. A. G. Representations for

Rigid Solids: Theory, Methods, and Systems.

ACM Computing Surveys, 12(4):437-464, 1980.

[Ste98a] Stewart, N., Leach, G., and John, S. An

Improved Z-Buffer CSG Rendering Algorithm.

1998 Eurographics / SIGGRAPH Workshop on

Graphics Hardware, ACM, 25-30, 1998.

[Ste00a] Stewart, N., Leach, G., and John, S. A CSG

Rendering Algorithm for Convex Objects.

Journal of WSCG, 8(2):369-372, 2000.

[Ste02a] Stewart, N., Leach, G., and John, S. Linear-

time CSG Rendering of Intersected Convex

Objects. Journal of WSCG, 10(2):437-444, 2002.

[Ste03a] Stewart, N., Leach, G., and John, S.

Improved CSG Rendering using Overlap Graph

Subtraction Sequences. Proceedings of

GRAPHITE 2003, 47-53, 2003.

[Wie96a] Wiegand, T.F. Interactive Rendering of

CSG Models. Computer Graphics Forum,

15(4):249-261, 1996.

[Wyn01a] Wynn, C. Using P-Buffers for Off-Screen

Rendering in OpenGL. Technical report, NVidia

Corporation, 2001.

