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ABSTRACT

The classical formulation of large displacement visco-elasticity requires the geometrically nonlinear Green tensor.
Keeping track of the rotational part of strain permits alternative formulations, that allow the tensor to stay linear,
and at the same time maintaining rotational invariance. We replace a recently proposed heuristical warping
technique by the application of the polar decomposition. The polar decomposition exactly extracts rotations,
thus enhances stability and accuracy. We combine it with a hierarchical finite element basis, which allows us to
compute accurate rotations from a coarse level nonlinear simulation and use them with corotated tensors for finer
detail.
Keywords: Deformable Objects; Polar Decomposition; Strain Tensors.

1. Introduction

Basing visual simulations on physical laws established
its place in computer graphics with the work of Ter-
zopoulos et al.[TF88]. Similarly to the present work
the authors used methods derived form numerical en-
gineering [ZT00; HW96].

The applications for interactive deformable objects
are manyfold. Virtual surgery, as a prominent ex-
ample, poses strict requirements on fidelity. Thin
deformable objects are employed for the simulation
of cloth, virtually dressing up synthetical actors or
e-commerce customers. Whereas these simulations
should be able to reflect real materials, applications
like virtual avatars are less focused on accuracy. So
are, at least at the moment, computer games. But they
will include more and more physical realism, as soon
as the necessary computing power becomes widely
available. Mass-spring-damper systems, the most fa-
vored technique for a long time, allow physical con-
stants like spring-stiffness, but are unable to model
homogenous materials[VG98]. It is also not possible
to model incompressibility or transverse contraction in
the model without additional penalty forces.

For all these reasons the techniques from numeri-
cal engineering, namely finite element (FEM) and fi-
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nite difference (FDM) methods continue to be the most
versatile and accurate methods. Their drawbacks are
the computational expenses. But by now there is suffi-
cient computational power available to allow real-time
simulations using physical accurate modelling.

Simulations especially become costly, when nonlin-
ear systems are involved. Unfortunately, as soon as
finite deformations are considered, the measures for
strain become nonlinear, known as geometrical non-
linearity. This is closely linked to the invariance of
the strain measure under rigid body rotations. The
classical linear Cauchy strain, widely used for metal
or concrete, is not rotational invariant. The usual
solution is to use Green’s tensor, which is nonlin-
ear in the displacements. The rotation-problem be-
came obvious during the 60s in the analysis of orbiting
structures[dV76], and has been solved by a rotating
coordinate system, compensating rigid body move-
ments. Coupling a single rigid body frame and a de-
formable simulation has also been exploited by Ter-
zopoulos[TW88]. A generalization is given by the
corotational formulation[Fel00], attaching local coor-
dinate systems to points or elements of the mesh. This
idea recently found its way into computer graphics as
a warping heuristics[MMD+02]. We will instead em-
ploy the polar decomposition to enhance accuracy and
stability with minor additional costs. In addition, we
base rotation estimates on a hierarchical finite element
basis. This allows us to use a stable nonlinear simula-
tion on a coarse level and corotated strains at the finer
levels, resulting in an overall very stable algorithm.

2. Previous and Related Work

Although Terzopoulos used the metric tensor, a large
displacement measure, to describe deformation, small



displacement measures were common thereafter. One
of the first medical applications was published by Bro-
Nielsen[BN98], who used linear finite-elements with
Cauchy’s small strain tensor. Real-time animation
based on explicit finite elements using Green’s ten-
sor has been presented by Debunne[DDCB01]. Capell
et al.[CGC+02] use a hierarchial basis and linearize
around a floating reference frame. Hierarchical bases,
introduced into numerics during the 80’s[Ban96], have
been traced back by Yserentant[Yse92] to the be-
ginning of the 20th century. The work on adaptive
bases has been extended to the concept of a quasi-
hierarchical basis[GKS02]. The idea of a floating ref-
erence frame is also exploited in the work of Müller et
al.[MMD+02]. Instead of linearizing Green’s tensor,
they introduce a technique named warping to extrapo-
late this frame locally and use Cauchy’s tensor around
this warped coordinate systems.

The computer graphic society has been relatively
unaware of the polar decomposition. The only ref-
erence we were able to find was by Showmake and
Duff[SD92], who used it for keyframe matrix anima-
tion. Their problem shows some similarities, as they
also needed to separate strain and rigid body descrip-
tions. A similar application than the present, also us-
ing the polar decomposition, is currently evaluated for
cloth simulations[KE]. The methods are related, al-
though we discuss the general 3D case.

Considering time integration methods, more ad-
vanced work has been presented in cloth simulation.
Since Baraff et al.[BW98], implicit methods became
standard, allowing larger time steps than standard ex-
plicit methods, but paying the price of solving large
linear systems. We employ a variety of implicit meth-
ods based on the framework presented in [HE01].

3. Outline

The following section will describe the physical mod-
elling process. Section 5 gives an overview over the fi-
nite element techniques we tailored to our needs. The
next section completes the simulator by briefly de-
scribing the time integrator. A section about the appli-
cation, presenting some results, follows. We conclude
by a section about the lessons learned and further di-
rections of research.

4. The Physical Model

In this section, a mathematical description of strain
and related material behavior is given, leading to a
partial differential equation, which describes a de-
formable object. We will prove the rotational invari-
ance of Green’s tensor, and show how a rotated coor-
dinate system allows the same for the linear Cauchy
tensor.

4.1. Continuum Mechanics of Solids

Mathematically a deformable solid is given by its con-
figuration mapping

Φt : IR
3 ⊃ Ω → IR3 (4.1)

which maps each point in the material coordinates Ω
to its position in 3-space at time t. It is common to
identify the material coordinates with the body in its
rest state, usually at time t = 0, thus Φ0 = id. Using
this convention the configuration Φt can be split

Φt = id+ ut (4.2)

into the identity and a displacement field u.
From continuum mechanics[AG00], we know that

the elastic energy arising from a displacement field u
is given by the outer tensor product

Eel =

∫

Ω

∑

i,j

εij(u)σij(u) =:

∫

Ω

ε(u) : σ(u) (4.3)

with the symmetric strain tensor ε and the symmetric
stress tensor σ. Writing the tensors in standard ma-
trix notation, this product can be defined as ε : σ :=
tr(εTσ). In most applications, stress and strain are re-
lated by a material law, mapping the current strain to
the current stress

σ = C(ε). (4.4)

Thus we have now

Eel =

∫

Ω

ε : C(ε) (4.5)

All that remains is to decide about how to compute ε
and what kind of material law to apply.

4.2. Hooke’s Law

A straight forward approach leads to a linear relation
between the two tensors, Hooke’s law

σ = Cε. (4.6)

For isotropic materials only two of the 36 entries of C
are distinct, the Lamé constants λ and µ. In component
notation we have

σij = δijλ
∑

k

εkk + 2µεij , (4.7)

with the Kronecker δ.
For a dynamical simulation including inertia, we

need viscous damping forces for the system coming
to rest. We use the standard approach, which is to ap-
ply the visco-elastic correspondence principle and to
formulate damping forces in the same way as the elas-
tic forces, replacing ε in (4.4) by the strain rate tensor
ε̇[OH99]. Simpler, linear or lumped Rayleigh damping
forces, proportional to the linear velocity of each point,
would damp rigid body modes. A more complex mate-
rial law is frequency dependant visco-elasticity, which



still can be held (quasi-)linear, although with more
variables, for a wide class of materials[GHEB01]. The
techniques proposed below can be generalized to this
setting.

4.3. Elastic Strain Tensors

There are two commonly used strain tensors for La-
grangian formulations, which use the parametrization
over the rest state. These are the nonlinear Green strain
tensor

εGij(u) =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

+
∑

k

∂uk

∂xi

∂uk

∂xj

)

. (4.8)

and its linearization, the Cauchy strain tensor

εCij(u) =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

(4.9)

Green’s tensor can also be written in terms of the gra-
dient of the configuration φ

εG(φ) =
1

2

(

∇φT∇φ − id
)

. (4.10)

From this its invariance under rotations R can be seen,
because

εG(Rφ) =
1

2

(

∇φTRTR∇φ− id
)

= εG(φ), (4.11)

with the orthogonality of R. This does not hold for
Cauchy’s tensor. It produces ghost forces which lead
to distortions, as will be demonstrated in the examples.

4.4. Corotational Strain

Green’s tensor leads to a stiff, nonlinear ODE, which is
computationally expensive to solve. The corotational
formulation aims at the elimination of the geometri-
cal nonlinearity. The idea is to keep track of a ro-
tated coordinate system of the body (fig. 1). It has first
been employed with a single reference frame for the
entire structure, when the analysis of orbiting space
and aircraft structures made such techniques obviously
necessary[dV76]. Unfortunately a single frame is not
enough. Considering a long bar as in fig. 2, fixed at
one end and bent at the other, shows that it is not suf-
ficient to keep track of a single rigid body movement.
The attached part is not rotated but the other end may
undergo arbitrarily large rotations.

For the moment, we suppose that, at each point we
know the local rigid body rotation R(x). Then the
corotational Cauchy stress

εCR(φ) := εC(RTφ) (4.12)

is a trivially rotationally invariant strain description
and still linear. The arising forces are then trans-
formed back by R. Note that in contrast to Müller

Figure 1: Separating rotation and deformation by a ro-
tating reference frame.

Figure 2: Non-moving bar with large rotations.

et al.[MMD+02] we will discretize the rotation field
R(x) per element rather than per vertex. This results
in a finer representation of the tensor field and is more
consistent with the finite element modelling paradigm.

4.5. Extracting the Rotation Field

Another major difference to the work of Müller is the
way the rotations are extracted. They ‘found that the
stability is not sensitive to the rotation field’ and there-
fore use a heuristics called warping. It extracts ro-
tations based on the deterministic selection of three
edges per point of the mesh and tracks their rotations.
This is sufficient for a rigid body movement superim-
posed on a deformed configuration, because the warp-
ing roughly follows it and therefore does not produce
large ghost forces.

However, accuracy suffers from this approximation,
as it is not directly clear, how the rigid body mode of
an arbitrarily deformed element looks like. A way to
extract a well defined rotation, is given by employing
the polar decomposition of the deformation gradient
J := ∇φ. It solves the following problem

Find an orthogonal R minimizing ‖J −R‖2
F , (4.13)

with the Frobenius norm ‖ · ‖F . It gives rise to a de-
composition J = RS, and therefore reduces (4.10) to

εG(φ) = STS, (4.14)

where S does not contain any rotational component.
The factor R is the rotation closest to the deforma-



tion gradient in the space of matrices equipped by the
Frobenius norm[SD92].

In two dimensions it is straight forward to compute

R′ = J + sign(det(J))

[(

J |22 −J |21
J |12 J |11

)]

, (4.15)

and a subsequent normalization of the columns gives
R. In higher dimensions, Higham[HS90] proposed an
efficient, quadratically convergent iteration scheme

R(0) := J (4.16)

R(n+1) :=
1

2

(

R(n) +R(n)−T
)

. (4.17)

Because the deformation gradient may be singular, e.g.
in case of a pure rotation around one of the coordinate
axes, we use a QR decomposition ahead of the core
algorithm as also proposed by Higham. This results in
a very robust and fast algorithm. We seldomly need
more than three iterations of (4.17).

4.6. Principle of Virtual Work

By minimizing the energy given in (4.5), i.e. equating
its first variation to 0, adding body forces b(x) and sur-
face traction t(x), inertia and viscous damping forces,
we arrive at the principle of virtual work

∫

Ω

δuρü dx+

∫

Ω

δε : C(ε) dx+

∫

Ω

δε̇ : D(ε̇) dx

−

∫

Ω

δu b dx−

∫

δΩ

δu t ds = 0, (4.18)

given as a weak partial differential equation.

5. Spatial Discretization

In this section we describe briefly, how we transform
(4.18) into an ordinary differential equation, using fi-
nite elements. For a full description we refer to stan-
dard textbooks like Zienkiewicz and Taylor[ZT00].

5.1. Standard Finite Elements

In a standard finite element approach the functions u
and δu are replaced by piecewise polynomial approx-
imations over a decomposition T of Ω into disjoint
elements of simple shape. Because of good shape-
fitting properties, tetrahedra are usually preferred in
computer graphics. Our discretization employs linear
shape functions φi, resulting in a piecewise affine ap-
proximation. Therefore u will be approximated by

u(x, t) =

N
∑

i=0

µi(t)φi(x), µi(t) = u(xi, t).

(5.1)

Inserting (5.1) into the principle of virtual work
(4.18) and using δε = ∂ε/∂µ, δu = ∂u/∂µ leaves the
ordinary differential equation

Mµ̈(t) +Kµ(t) +Dµ̇(t)− b̂− t̂ = 0, (5.2)

with the mass matrix M = [
∫

Ω
φiρφj ], where ρ is the

mass density, the nonlinear operators

Kµ(t) =

∫

Ω

(
∂

∂µ
ε) : C(ε), (5.3)

Dµ̇(t) =

∫

Ω

(
∂

∂µ
ε̇) : D(ε̇), (5.4)

and the load vectors

b̂ = [

∫

Ω

φib] and t̂ = [

∫

δΩ

φit]. (5.5)

All integrals are evaluated locally and piecewise
over the elements, then summed up. Because the ba-
sis {φi} is linear, ε is constant over each tetrahedron,
greatly reducing the cost for the evaluation of K and
D. Arranging the computations carefully gives a cost
of around 300 flops for Green’s tensor per element for
the evaluation of each operator.

Using the corotational tensor εCR (5.6) transforms
(5.3) to the now linear operator

Kµ(t) =
∑

ti∈T

Ri

∫

ti

(
∂

∂µ
εC(RT

i u) : C(εC(RT
i u)),

(5.6)
also evaluated over the triangulation and then summed
up. Besides being consistent with finite elements, us-
ing a rotation per element keeps the Jacobian of the
system symmetric, whereas using a rotation per node
breaks symmetry.

To transform (5.2) into an explicit second order
ODE in standard form, the mass matrix M needs
to be inverted. Because this is very costly, even
with precomputed decompositions, we apply row sum
mass lumping. The price of mass lumping is a
slight artificial increase of viscosity depending on the
mesh[ZT00].

5.2. Hierarchical Approximations

For a multi-resolution representation we employ a hi-
erarchical basis[Ban96], in order to be able to use dif-
ferent strain measures on different levels. For a given
coarse tetrahedral discretization a series of nested
meshes is constructed by octasection of each tetrahe-
dron. For a hierarchical representation the function
now is described by its values at the nodes of the coars-
est level and the difference between the nodal value at
the next finer level and the linear interpolation of its
two parent nodes. A key to the efficiency of algorithms
linked to this kind of hierarchical representations are



the fast basis transformations. Using the efficient O(N)
wavelet transformation [Yse92], is it possible to carry
out all computations using the wavelet approximation
of u with minimal changes to the code. For details of
our implementation we refer to Hauth et al.[HGS03].

6. Implicit Time Integration

A detailed analysis of (5.2) reveals, that all the eigen-
values of the linearisation for t > 0 are located in the
negative complex halfplane, thus the problem can be
considered stiff. A physical interpretation of this fact
is, that the system always has a bounded solution, and,
if only a limited amount of energy is transferred into
it, it converges to a rest state.

Numerical stability analysis[HW96] characterizes
stable integrations methods, that deliver a bounded so-
lution, by their stability region, which covers parts of
the complex plane. All the eigenvalues of the sys-
tem, scaled by h must be located inside this region.
Unfortunately all explicit methods possess a bounded
and usually small stability region near zero, therefore
h must be sufficiently small to fulfill the stability re-
strictions. Many of the implicit methods possess an
unbounded stability region covering the whole com-
plex halfplane with negative real parts. In this case,
there is no artificial limit to the time step h, allowing
arbitrary large steps h > 0[HW96; BW98]. The draw-
back of implicit methods is the solution of large and
in the case of Green’s tensor nonlinear equation sys-
tems. Usually Newton’s method is used, involving the
Jacobian of (5.2) with respect to the basis coefficients.
The advantage for the corotional formulation now be-
comes obvious: the systems to be solved in each time
step remain linear. This gives a speedup from about
2 to 10, depending on the original number of Newton
iterations. Compared to classical linear finite elements
the linear systems change over time, whenever the ref-
erence frames are updated.

We built a layered solver core as described in Hauth
et. al.[HE01], employing several integration formulas
and a Newton method with backtracking. In the exam-
ple section backward Euler and BDF(3) will be used.
For the linear solver a cg method with a block diag-
onal preconditioner or a sparse LU-factorization with
reordering is used[DD99]. The Gauss method usually
is faster than cg for small systems. A small drawback
is that factorizations are expensive, whereas solves are
fast. This can result in jittering frame-rates for large
systems.

7. Application Details and Results

We implemented a prototype application based on the
framework laid out above. All tests were performed
on a Desktop P4/Willamette-2000. There is still room

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [sec]

re
la

ti
ve

 f
or

ce
 e

rr
or

 ∆
 f

/|f
|

Cauchy
Polar
Hybrid
Warp

Figure 3: Example 1: Pressure Forces.
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Figure 4: Example 1: Shear Forces.

for improvements. For example the corotational for-
mulations use no special path. So for the implicit
solver the Jacobian of the affine mapping is computed
and for each force evaluation, the contributions from
each tetrahedron are summed up again. Exploiting
the already computed Jacobian would speed this up by
roughly a factor of two, as the force computations are
a major part of the workload. Memory consumption is
moderate, the hierarchical bar (example 3) takes a total
of 16 MB, the liver takes 18 MB, including texture.

7.1. Example 1: Forces

To compare the quality of the warping heuristics (ap-
plied per element) and the polar decomposition we
performed the following experiment: Using Green’s
tensor for simulation we rotated a cube of 0.1m side
length (µ = 103, ν = 0.45) with ω = 0.63s−1 per-
forming a single rotation in 10s. Then the cube is
sheared with a constant force on the top surface. After
coming to rest, it is again rotated. The resulting local
coordinate systems are shown in the first video. They
pass the visual test of rotating globally with the rigid
rotations and locally with the shear deformation.

For the second video, the internal stress forces
from Green’s (black), Cauchy’s (red), corotation/po-
lar (green) and warped tensors (violet) were computed.
Ideally all should match the Green model. During
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Figure 5: Example 2. Shearing.
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Figure 6: Example 2. Shearing and rotating.

the first rotation with no deformation you can see the
phantom forces from Cauchy’s tensor, which will be
switch off for the rest of the video. All other forces are
zero. During the shear movement the corotated and
warped forces split from the Green forces. This is due
to the fact, that Green’s tensor is a second order model
of strain, whereas the other ones are linear. The polar
decomposition roughly halves the error compared to
warping. Of course all are rotational invariant.

In figs. 3 and 4 we plotted the relative error ‖f −
fG‖/‖fG‖ of the different force contributions, leav-
ing away the first 10s. The picture confirms the above
observations, and shows that the error is especially
large in the pressure component. Therefore we in-
troduced a hybrid tensor shown in blue, combining
Green’s tensor for pressure and the corotated tensor
for shear forces. This is very cheap in terms of force
computations, but of course makes the system non-
linear again. For this tensor, the Jacobian is updated
correctly including the nonlinear terms, whenever the
rotation frame is updated.

7.2. Example 2: Displacements

This example employs a bar similar to fig. 2, of
size 0.1x0.1x0.6m3, with λ = 105, µ = 104, dλ =
10, dµ = 1 and a time step of 20ms with a Gauss

CPU Newton evals LU dec.
time [s] (Jacobi)

time step 20ms, update rate 20ms
Green 16.5 6490 21276 105
Warped 27.4 - 2000 2000
Polar 31.4 - 2000 2000
Hybrid 33.8 3092 3092 2000

time step 20ms, update rate 200ms
Green 16.5 6490 21276 105
Warped 5.5 - 2000 201
Polar 5.9 - 2000 201
Hybrid 22.5 9981 10538 422

time step 60ms, update rate 300ms, rotating
Green 13.6 4489 16688 202
Warped 2.7 - 667 135
Polar 3.0 - 667 135
Hybrid 22.4 7142 21576 411

Table 1: Runtime Details for Example 2.

solver. The bar is discretised in 337 tetrahedra. A
shear force rising linearly from 0 to 200N/m2, is
applied to the top surface, and this time the simula-
tion is performed which each tensor separately. As
an error measure we chose the relative error in the z-
component of the upper right front corner (compared
to Green). The results (fig. 5) are similar to those
from above, identifying the hybrid formulation as best,
warping as worst. This does not change, when the ro-
tated frame is updated less than once per time step, eg.
only every 200ms. This causes Gauss- or precondi-
tioner updates to be less frequent and makes the cost
for computing the reference frame negligible (table 1).

To bring the method to its limit, we again performed
this test, but imposing a rotation, choosing a time step
of 60ms and updating the frame only every 300ms
(about every 10 degree of rotation, fig. 6). This brings
the methods very close together, showing again a fa-
vor for the tensors based on the polar decomposition.
Now after reaching the rest position the bar still vi-
brates, resulting in an oscillating error. The hybrid ten-
sor suffers from the bad frame, combined with an inac-
curate Jacobian, due to the nonlinear pressure forces.
Delaying updates more than 0.5s (or about 20 deg.)
makes the linearized methods unstable, whereas using
Green’s tensor the Newton iterations increase but the
system remains stable. Without the rotation, the coro-
tational formulations stay stable for larger update rates
and time steps, and with Green’s tensor one can even
use steps of 1s and above.

From this examples we conclude, that the corota-
tional formulations perform well, especially when the
rigid body movements are not too fast compared to the
time step. For 337 tetrahedra this gives up to 13x real-
time, or a factor of 3-4 faster than the nonlinear sim-
ulation. The polar decomposition helps to cut down



Figure 7: Example 3. 70/4480 Tetrahedra.

the induced error, at additional computational costs of
less than 10%. The warping heuristics does a reason-
able job, but is not able to really extract the essence of
the rotation, especially obvious when comparing the
forces.

7.3. Example 3: Hierarchical Simulation

The next example addresses the use of corotational
tensors in a hierarchical setting. For the coarsest level,
Green’s tensor is used, allowing a very stable simula-
tion. From the configuration of the coarse level, the ro-
tation state is computed by the polar decomposition of
the deformation gradient, then propagated to the finer
levels. If necessary, this could be iterated, recomput-
ing rotations at several levels. Here we just do it for the
top level. Thus at the coarse level, where linear alge-
bra is cheap, we perform a full nonlinear simulation, at
the finer levels the system is linearized and now solved
by cg, adding detail for reduced computational costs.
Nevertheless the computational costs of the finer levels
dominate.

The bar (0.1x0.1x0.3m3,µ = 103, ν = 0.3) shown
in fig. 7 is discretized by 70 tetrahedra, two octasec-
tion steps give 4480, i.e. 82 × 70, fine elements. As
before we add a rising top shear force of 80N/m2. We
rotate the bar as shown in the video during the 10s sim-
ulation, with a time step of 30ms and an update rate of
150ms for the coordinate systems. The specular high-
lights in the video and the silhouette in fig. 7 show the
smooth deformation gained by the fine discretization.
The coarse surface is given by the red wireframe. The
computation time of 11.2s is almost real-time. It takes
6693 preconditioned cg steps, i.e. about 20 iterations
per time steps to smooth out the error at the finer lev-
els. For a comparison a complete nonlinear simulation
was computed in 71.7s, the relative deformation error
at the corner was 16%. This is larger than in the pre-
vious examples, because we are using the same frame
for 64 tetrahedra.

Figure 8: Example 4. Liver w. 327/2616 Tetrahedra.

7.4. Example 4: Deforming a Liver

The last experiment shows an application in vir-
tual medicine. It employs a liver model (about
0.2x0.3x0.2cm3, µ = 103, ν = 0.495, roughly as
measured in [GHEB01]), shown in fig. 7 at the
top. The opaque parts possess homogenous Dirichlet
boundary condition, i.e. are fixed. The initial tetra-
hedralization has 327 elements, we add a single level
with 2616 tetrahedra. The liver is pushed in the region
marked by the green arrows. Again thanks to the fine
level the surface stays very smooth, compared to the
coarse initial disrcetization, which can be seen at the
fixed parts and the silhouette.

For a simulation of 40s the application spent 25.8s,
the time step was 30ms using BDF(3). The video dis-
closes one small drawback of using a large number of
coarse tetrahedra. About every second, the update of
the rotation frames, which recomputes the linearized
corotated Jacobian and the update of the coarse non-
linear Jacobian, including its LU-decomposition, coin-
cide with each other, giving an unpleasant speed shift.
This could be cured by just delaying one of the tasks,
or by using a coarser top level mesh, such that the de-
composition is faster.

8. Conclusion and Future Work

In this paper we presented a system for the visual sim-
ulation of deformable models. A corotational formu-
lation keeps the systems to be solved linear, especially



important for fine discretizations, as the cost for solv-
ing linear systems grows polynomially with the di-
mension. The most significant contribution is the use
of the polar decomposition for extracting the rotation
state and its application in a hierarchical finite element
setting. We compared our approach to the recent work
of Müller et. al. [MMD+02]. In addition we examined
the error that is arising from using the corotational ap-
proximation instead of the nonlinear tensor. This point
has not been addressed in the previous work.

The examples show, that the corotational approxi-
mation induces an error of about 5-20%, but can give
a speedup of about a factor of seven or more, when
applied in the hierarchical case. The use of the polar
decomposition instead of the warping heuristics helps
to decrease the introduced error. Using a hybrid ten-
sor can further reduce the error, but computation times
rise due to the reintroduced nonlinearity. The stability
is enhanced when comparing to the admissible time
steps published in [MMD+02], which were all around
10ms or below. We use step sizes of 20-60ms in the
above examples and are stable for 100ms and beyond.
Especially the hierarchical approach benefits from its
unconditionally stable top level.

Future work will look at adaptivity and better sub-
division schemes, not suffering from the fast factor-of-
eight growth. Also the use of adaptive mesh coarsen-
ing could alleviate the jittering effects seen in the last
example.
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