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Abstract

The sensitivity analysis and the finite elements method represent an important tool for the influence analysis of the
structural parameters. This analysis plays a significant role in the decision process of the formulation of the struc-
tural optimizing or probability analysis. The goal of the paper is to present theoretic and numerical aspects of the
shell element stress sensitivity analysis with the respect to the thickness and its implementation into finite element
code MATFEM inbuilt to Matlab.
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1. Introduction

Nowadays the sensitivity analysis is a significant tool helping to realize a structural parameters
influence analysis. This analysis is usually very computer time consuming but the results are
very innovative. This process is often applied to a structural analysis, i.e. in stress and strain
analysis, modal and spectral or buckling analysis, stochastic analysis and so on [3, 4].

Application of the sensitivity analysis is not associated only with the structural optimiz-
ing but also with the analysis of the mechanical systems with uncertain parameters, mainly in
the usage of so-called perturbation methods based on differentiation of the response with re-
spect to the uncertain system parameters (stiffness, mass, damping, etc.). Implementation of
this computational process into the finite element method has characterised mainly the era of
development of structural optimising techniques in eighties.

The finite element modelling of box, shell or thin-walled structures are usually realised
using thin shell finite elements (Kirchhoff’s or Mindlin’s formulation) [1, 2, 8, 9]. The stiff-
ness parameters depend on material constants and element geometry, mainly on its thickness.
Therefore, the thickness will be the variable in the following theoretical and numerical stress
sensitivity analysis of the shell finite element; the fundamental information about this analysis
can be found in Appendix.

2. Element stress analysis

The stress calculation is based on the expression of the element membrane forces and bending
moments (without the shear forces) [2, 5], i.e.
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and
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The integration matrices I,,, and I, are

Im:/BmdS, Ib:/Bde 3)
s s

and can be calculated only using the numerical approach. Further details about E,,,, E;, D, B,,,,
By, u,; and ¢ are presented in Appendix. The extreme stress values can be expected at the top
or at the bottom surface. Generally, it means
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Stresses at the top surface may be expressed as
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and at the bottom surface
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Let’s build new material and integral matrices
t-I3 03 D I
Em = : =D, D’m ) Im = " ) 9
N R e i
where matrix I3 is the unit matrix. Then (5) and (7) can be written as follows

o-mb|t0p = At,top ' Emb ' Imb cUg = At,top . Dt . Dmb . Imb * Uey,y (10)
amb'bot = At,bot : Emb : Imb cUel = At,bot : Dt : Dmb : Imb * Ugl- (1 1)
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Generally, the top or bottom von Mises stresses may be calculated from relations

ngv|t0p == o-yqy;b‘top . Tmb . Umb|top or O—zkv|bot - o'g;b‘bot : Tmb : o-mblbot (12)
where
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Using (10) and (11) in (12) we obtain
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Assuming a relation between the local element displacements u,; and the global displace-
ment vector u

Uy =Trg-To - u, (18)
(14) and (15) may be rewritten as
Uzkvltoxv =u’. TOTl : TEG : I%b : Dﬁb “Tiiop - D - Lnp - T Tou (19)
and
O—Skv|bOt =u". T0T1 : TEG ’ an;b : DZ@b “Tipot * Dinp + Ly - T Toqu (20)

where T ;¢ is a “classic” transformation matrix between the local and the global coordinate
systems, T; is a Boolean matrix, i.e. the localization matrix determining the element position
in the global stiffness matrix.
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3. Stress sensitivity analysis

The stress sensitivity analysis means finding of von Mises stress derivative with the respect to
a chosen structural parameter, in our case the thickness ¢. Let’s analyse the differentiation of
von Mises stress of j-th element with respect to ¢-th element thickness ¢;. Applying (19) we can
obtain
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The derivative u with the respect to ¢; may be expressed as
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or in more detail
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The relation % is often zero and the derivative of the all element components of the stiffness

matrix can be realized as follows [3]

1
— (Kim+3-Kip +Kiy), j=i
OKim+Kip +K,J) _ < ti (29)
ot 0, j#i

The particular membrane, bending and shear matrices are presented in Appendix, equations
(A13), (A15). More details can be found in [1, 2].

Finally, the derivative of the von Mises stress (at the top and at the bottom surfaces) with
the respect to the element thickness ¢; is following

2 2
aaj_ekv |top 1 aaj-ekv |t0p aaj_ekv |bot 1 8Uj_ekv IbOt
= . and = . .
aﬁz 20j_ekv|top aﬁz atz 2Uj_ekv |bot atl

(30)

All presented approaches have been implemented into Matlab’s FE software MATFEM devel-
oped by the authors.

4. Numerical examples

Example 1

Determine the element stress derivative (eqs. 21, 22) with respect to the thickness ¢; and ¢, of
the shell structure on figure 1. Let’s consider the following input parameters: elasticity modulus
E = 3 -10%MPa, Poisson’s ratio ;r = 0.3, thicknesses t; = 3mm and ¢, = 2mm and force
F; = 2500N concentrated into each node of the top curved surface.

Fig. 1. Half model of the analysed shell structure in MATFEM
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The chosen calculated values of the stress gradients are written in table 1. The presented
analytic stress gradient calculation has been confronted with the “classic” numerical computa-
tional approach (Ac;/At;). A graphic presentation of the stress gradients distribution in each
of the elements is on figures 2 and 3.

Table 1. Stress gradient values for the chosen elements — analytical vs. numerical calculation

Nr. of | Stress gradient with respect £; | Nr. of | Stress gradient with respect ¢,
element | Analytically | Numerically | element | Analytically | Numerically
4 180.6925 180.8217 81 72.1432 72.1356
15 178.1929 178.3464 66 56.8617 56.884 1
12 172.7673 1729401 65 56.5136 56.5514
7 172.2105 172.3427 92 54.8065 54.8449
53 170.204 1 170.4455 80 52.5394 52.5649

The results document the influence of both parameters on the stresses and the major signifi-

cation of thickness ¢;. This information may be used for the next optimizing process.
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Fig. 2. Stress sensitivity with the respect to ¢;
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Fig. 3. Stress sensitivity with the respect to ¢,
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Example 2

Find out the optimal thickenesses ¢, and ¢ of the shell structure from the previous example.
Let the searching process be based on the basis of the presented stress sensitivity analysis.
Considering the stress limit 04,, = 200 MPa it is possible to formulate the optimizing problem
as follows

Weight(t1,¢2) — min . subject to [Max oegy (t1,12)] — Tgor < 0

The graphic presentation of this optimizing problem is on Fig. 4. Results are summarized in
Tab. 2.

Table 2. Results of the optimizing process

t; [mm] | t5 [mm] | Weight [kg] | Max. stress [MPa]

2.4 6.4 3.6718 200,004
e
v —— |
LY SN Weight [kg] 100" =]
10—:& gl o 1
9'8.\ T ey, 1
9 '\ Optimum S

to Imml

Fig. 4. Graphic presentation of the optimizing problem

5. Conclusion

The work presents an analytic approach to the stress sensitivity analysis of the shell finite el-
ement focused on its thickness. The whole computational procedure was inbuilt into Matlab’s
software module MATFEM. Testing examples support the authors’ considerations about the
effectiveness of the presented approach.
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Appendix

Let’s remember the well-known basic data about stiffness parameters calculation of the applied
four-nodes thin shell finite element. This element belongs to a group of traditional finite ele-
ments therefore more details inhere in the relevant literature [1, 2, 5, 6, 7].

Generally, the virtual modelling of thin shell structures in the mechanical or civil engineer-
ing is based on the element whose isoparametric formulation has several advantages (e.g. a
degeneration of the number of nodes from 4 to 3, appropriate for the automesh). The nodes
are located on the midsurface and each node has 6 degrees of freedom (3 displacements and 3
rotational DOFs with a zero rotation about z-axis normal to the plane, see Fig. 5). The element
contains a membrane, bending and shear stiffness parameters. The constant element thickness
is considered.

WA

Bx

Fig. 5. Presentation of the displacement and rotational degrees of freedom
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According to the Mindlin’s theory, the displacement functions may be written in the form
U(I7y):Zﬁl(Z,y), U(l’,y): —Zﬁy(l’7y), MIW(Z,y) (Al)

Using the well-known isoparametric approximation, we obtain

4 4 4
UZE N; - uy, Uzg Ni - vy, w:E Ni - wy,
i=1 i=1 i=1

4 4 (A2)
i=1 i=1
where N; are shape functions in the form
Ni(r,s) = f(1+7)(1+s),  Na(r,s)=3(1=r)(1+s),
(A3)

Ns(r,s) = z(L—7r)(1 —s), Ny(r,s) = i(l +7)(1—5s)

=

and u;, v;, . . ., By; are values of the i-th element displacement vector u,; The Cauchy’s strains

may be written as follows

e membrane strains

ou v ou O]t
m = |3 337 A a_ :Bm' e A4
€ {ax’ay 3y+8x} el (B4
e bending strains
08 98, 98, 93,]"
— . _— _ — :B - Ue AS
&p z {33@” ay7 8y 633 b+ Uel ( )
e transverse shear strains
ow ow r
s — - s\ 3 z :Bs' e A6
om (5 -n) (G )] -meon o
where
NI,X 0 00 0 N4X 0 000
B, = 0 Niy 0 0 0 0 Ngy 000 (A7)
Niy Nix 000 Nyy Nyx 0 0 0
0 00 Nx 0 0 0 0 Nyx 0
B, = 000 O —Niy .0 00 O —Nyuy (AB)
000 Ny —Nix 0 0 0 Nyy —Ngx
_ 00 NMiy 0 =N 0 0 Noy 0 —Nyg
Bo= 100Ny M o0 00 Nox Ny 0 } (&9

The shape functions differentiation with the respect to x or y is

Nix 0 Nax 0 Ngx 0 Nyx O _ gL, Niyp 0 Nop 0 N3, 0 Ny, O (A10)
Niy 0 Noy 0 N3y 0 Ngy 0] Nis 0 Nag 0 N3g 0 Ny, O
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and J is well-known Jacobian matrix which may be written

or 0y
J— or Or (A1)

or 0y

ds Os

and the shape functions differentiation with the respect to s or r are

Nlﬂ“: '(1—’_8)7 Nzﬂ“:_i'(l—i_SL N3-,7”:_i'(1_3)7 Nl,r:i'(l_s)a

W=

(A12)

Nl,s = i . (1 +7"), Nz’s = i . (1 — T), N3_’S = —i . (1 — 7’)7 Nl,s = —i . (1 +7)

As a result, the shell element stiffness matrix can be expressed
1,1
K, — / / (BT -E, -B,)+ (Bl -Ey-By) + (BT - E, - B,)| - det(J) - dr - ds, (AI3)
—1J-1

where the material property matrices are given as

1 p O
Em={2-|u 1 0 |=t-D
)0
1 p O
_ g s (Al4)
Ey, = 12‘(13/42) : H 1 10 % 'D7
0 0 =*

10
_ _abt _
E—m[ }—t'st

where E and u represent the elastic modulus and the Poisson’s ratio, ¢ is the element thickness,
« is a shear correction factor (o« = 5/6). Calculation of the K; can be realized numerically
instead of analytically, i.e.

K; = Z Z ap - g - By (rp,5g) - Epy - Buu(rp, 5¢) - det(I (1, 54)) +
p=1 g=1
+ Z Z ap - g By (1, 5¢) - Ey - By(ry, 5) - det(I (1, 5)) + (A15)
p=1 ¢g=1
+ Z Z ap - g By (1, 5¢) - Ey - By(ry, 5¢) - det(I (1, 5,))
p=1 ¢g=1

where m denotes a degree of Gauss integration (usualy m = 2), 7, s,, are coordinates of inte-
grations points (for m = 2, r, = s, = 0.577350269) and a,, o are weight coefficients (for
m = 2, o, = g = 1.0). The shear locking efect usually leads to the decrease of the integration
degree for the shear part of K, [1, 2, 5].
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