
University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and Engineering

MASTER THESIS

Pilsen, 2015 Jan Strejc

University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and Engineering

Master Thesis

Multi-platform mobile
application for Scrum

Pilsen, 2015 Jan Strejc

Original requirements

Declaration
I hereby declare that this master thesis is completely my own work and that I used
only the cited sources.

 Pilsen 25th June 2015, Jan Strejc

Acknowledgment
I would like to thank to Manfred Nowotny and Mario Wessely from Austrian
company OnTec for giving me the opportunity to work on this thesis. They were
very helpful to me, when I was creating this application and needed any
consultation. By working on this thesis I gained a lot of valuable experience.

Abstract
This work aims at project management using scrum on mobile devices. In this text I
explore existing mobile applications for scrum, compare available solutions for
multiplatform mobile development and describe possible ways of distributed
mobile device synchronization without a dedicated server.

Next part is about implementation of a multiplatform mobile application for scrum,
which is based on the above mentioned research. At the end I perform tests on the
created application and evaluate the results.

Abstrakt
Tato práce se zaměřuje na projekt management s použitím scrumu na mobilních
zařízeních. V tomto textu prozkoumávám existující mobilní aplikace pro práci se
scrumem, porovnávám dostupná řešení pro multiplatformní mobilní vývoj a
popisuji možné způsoby distribuované komunikace mezi mobilními zařízeními bez
dedikovaného serveru.

Další část popisuje implementaci mobilní multiplatformní aplikace pro práci se
scrumem, která vychází z výše uvedeného výzkumu. Na konci vytvořenou aplikaci
testuji a zhodnotím výsledky.

Key words
Scrum, agile development, multi-platform, cross-platform, mobile application,
Android, iOS, Windows, Cordova, SQLite, GWT, distributed communication, mDNS,
zero-conf

Table of contents
1 Introduction 1

2 Scrum 2
2.1 Introduction to scrum...2
2.2 Iterative development...3
2.3 Incremental development..3
2.4 Combining iterative and incremental development.......................4
2.5 Comparison with plan driven development..............................5

 2.5.1 Just in time approach...6
2.6 Scrum overview...7

 2.6.1 Scrum principles...7
2.7 Scrum roles...8

 2.7.1 Product owner...8
 2.7.2 Scrum master..9
 2.7.3 Development team..11

2.8 Scrum activities and artifacts..12
 2.8.1 Product backlog...12
 2.8.2 Sprints...13
 2.8.3 Sprint backlog..14
 2.8.4 Stories and tasks..14
 2.8.5 Sprint planning...15
 2.8.6 Sprint execution...16
 2.8.7 Daily scrum...16
 2.8.8 Estimation..16
 2.8.9 Velocity..18
 2.8.10 Sprint review..18
 2.8.11 Sprint retrospective..18
 2.8.12 Scrum board...19
 2.8.13 Burndown charts..19

3 Multiplatform mobile development 22
3.1 Mobile operating systems...22

 3.1.1 Apple iOS...23
 3.1.2 Google Android...25
 3.1.3 Microsoft Windows..26

3.2 Native vs multiplatform development..................................28
 3.2.1 Native..28
 3.2.2 Multiplatform...28

3.3 Multiplatform development frameworks...............................29
 3.3.1 Apache Cordova (PhoneGap).....................................30
 3.3.2 Qt..31
 3.3.3 Xamarin..33

 3.3.4 Appcelerator..36
 3.3.5 Sencha touch...36
 3.3.6 Online app builders...37
 3.3.7 Pure Webview application.......................................39
 3.3.8 Games..39

3.4 Conclusion..40

4 Existing solutions 41
4.1 Scrum poker applications...41
4.2 JIRA Connect Enterprise..42
4.3 AgileScrum Pro..43
4.4 Lion Monkey Scrum..44
4.5 Pivotal tracker...45
4.6 Conclusion..46

5 Communication 47
5.1 SMS...47
5.2 Communication over Internet...47

 5.2.1 Push notifications...47
 5.2.2 Email, File sharing services.......................................48

5.3 Local communication...48
 5.3.1 Bluetooth...48
 5.3.2 Wi-Fi...49

5.4 Conclusion..51

6 Data storage 52
6.1 Files..52
6.2 Key value storage..52
6.3 SQLite database..53
6.4 Conclusion..54

7 ScrumApp specification 55
7.1 Basic features..55
7.2 Optional features..56
7.3 Technologies..56
7.4 Basic architecture overview...57
7.5 Use cases..58
7.6 Testing..59

8 Implementation 60
8.1 Multiplatform and native part...60
8.2 Technology stack...61

9 Database 62
9.1 Database model..62
9.2 Database tables..63

 9.2.1 Database update..63
9.3 Data synchronization...63

 9.3.1 Distributed keys...64

 9.3.2 Database synchronization..64
 9.3.3 Slave pulls master for updates....................................64
 9.3.4 Slave pushing his changes to master..............................65
 9.3.5 Slave asks master to update the database for him...................65

10 Native android part 67
10.1 Cordova library...68
10.2 SQLite Cordova plugin...69
10.3 JmDNS library..69
10.4 Database DAO..69
10.5 ScrumApp server...69

 10.5.1 Background server service......................................70
 10.5.2 TCPServer...71
 10.5.3 Scrum server..71

10.6 ScrumApp Client..72
10.7 File import and export..72

 10.7.1 File import..72
 10.7.2 File export...73

10.8 Cordova plugins..74
 10.8.1 Plugin principle..74

10.9 Multiplatform HTML, CSS and JavaScript code.........................76

11 Native iOS part 77
11.1 Cordova library...77
11.2 SQLite plugin...78
11.3 ScrumApp Client..78
11.4 File import and export..78
11.5 Cordova plugins..79

 11.5.1 Plugin principle..79
11.6 Multiplatform HTML, CSS and JavaScript code.........................80

12 Communication protocol 81
12.1 Server method list..82
12.2 Message content examples...82

 12.2.1 Project list...83
 12.2.2 Vote..83
 12.2.3 Sync issues..84

13 GWT multiplatform part 85
13.1 GWT overview..85

 13.1.1 Developing using GWT...85
 13.1.2 JSNI...86
 13.1.3 mGWT..87
 13.1.4 GWT PhoneGap..87

13.2 ScrumApp GWT..88
 13.2.1 Database plugin..88
 13.2.2 Client...89
 13.2.3 Connection..89

 13.2.4 DAO..90
 13.2.5 Files..91
 13.2.6 JSNI...91
 13.2.7 Resources...91
 13.2.8 UI..91
 13.2.9 Util...91
 13.2.10 Activities...91
 13.2.11 Pages..92

14 Tests 96

15 Results 97
15.1 What is done...97
15.2 What isn't done...98
15.3 Encountered problems..99
15.4 Supported devices...100
15.5 Performance..100
15.6 Battery usage...101
15.7 Software used for development.....................................101
15.8 Statistic...101

16 Conclusion 102

CHAPTER 1 INTRODUCTION

1 Introduction

Introduction
My goal in this work is to create a multiplatform mobile application for project
management using scrum. I will start by analyzing existing mobile applications for
project management using scrum. Then I will describe the scrum process, as scrum
and agile development are generally very popular ways of developing software
these days.

In present time, there is an urge to have a mobile app for almost everything. This
creates a demand for rapid and cheap development of apps of all kind. Problem for
fast deployment is incompatibility and big differences between major operating
systems. Many mobile multiplatform development frameworks were created over
the past years. I will describe current leading mobile platforms and compare the
most popular mobile multiplatform development solutions.

For this mobile application I will explore possible ways of using distributed data
synchronization between mobile devices without using a dedicated server. I will
have to deal with several problems here, like creating some form of device
discovery that allows two devices to find each other. Another important thing will
be storing complex data on mobile devices, where traditional database servers are
unavailable and synchronizing this data from one device to another.

I will analyze use cases for the application and create a specification with basic and
optional features. Using one of the multiplatform development frameworks I will
design and implement the multiplatform mobile application. The application will
be deployed and tested on real devices with different operating systems.

1

1

CHAPTER 2 SCRUM

2 Scrum

Scrum
In this chapter I will describe the scrum process generally, because scrum does not
force you to do things in only one way and can be easily customized. I will describe
how I decided to create my implementation of scrum, suiting my use case, in the
next chapter.

2.1 Introduction to scrum
Scrum (in software development) is an iterative and incremental agile product or
service development framework. Key features are flexibility, self organization,
collaboration and communication (in the development team itself and also with the
customer). Scrum recognizes and orients itself on the fact that customers can and
usually change their mind about what they want or need during the development
process. Traditional ways of software development such as plan driven
development have problems with reacting on sudden changes, because everything
must be specified and planed at the start. Scrum instead of focusing on
understanding and defining everything, focuses on fast delivery and ability to
respond to changing requirements. Of course scrum is not the ultimate solution for
everything, some projects can be handled better with more traditional ways
(usually military or government projects). [esc]

The basic overview on scrum can be seen on figure 2.1. The principles of scrum will
be described in the following pages. This chapter is mostly based on Essential
Scrum [esc], which is a book written by Kenneth S. Rubin that aggregates a lot
information about the scrum framework and is based on many other famous books
about scrum, agile development and product development process generally.

2

2

CHAPTER 2 SCRUM

2.2 Iterative development
Creating a product in iterative development is based on reworking the product
over and over again, until we are satisfied with it. We start by creating a prototype
and than we present it to the customer, users etc. Based on their feedback we
improve the product and present it again. Each pass is called an iteration. We
repeat iterations until we are finished. It's important to note, that it's very hard to
predict at the start how many iterations we will need to complete the product.
[esc]

2.3 Incremental development
Rather than building the project as one big thing, where all the pieces come
together at the end, we try to split the project into smaller pieces and build them
one by one and test how they work. This way we can incorporate feedback into
future work. We can also find problems and learn from them sooner and apply our
new knowledge on further development. This gives us the opportunity to adapt the
way we continue the development. On the other hand we risk missing the big
picture, because we focus only on the small pieces. [esc]

3

Figure 2.1: Scrum overview

CHAPTER 2 SCRUM

2.4 Combining iterative and incremental development
Scrum tries to take the best parts from both the incremental and iterative
development and combine them together, while removing the drawbacks. In scrum
we don't work on a phase at a time (design, implementation, testing …), but we
work on a feature at a time. To do so, scrum uses a set of iterations called sprints. In
each iteration we build a working product increment by performing all the
necessary steps:

● Analysis

● Design

● Implementation

● Integration

● Testing

This way, by doing all the feature related work in one sprint, we build a working
increment which we can present to get feedback. Than we can adapt our future
work. If the feedback on the finished feature wasn't so good, we can schedule it for
future improvement (iterative development), or if it was accepted, we can than
choose the next feature for the next sprint. We don't need to decide how many
iterations (sprints) are needed, this will come naturally from the feedback and
incremental way of work (figure 2.2). [esc]

4

Figure 2.2: Iterative and incremental development

CHAPTER 2 SCRUM

2.5 Comparison with plan driven development
In plan driven development we specify the requirements at the start of the product
development and we let the customer review them immediately so we can advance
to the next phase. The problem is, we make decisions before we acquire deeper
knowledge about the product (see figure 2.3). This creates an illusion of having
everything under control and can lead to creation of large amount of low quality
requirements. [esc]

On the other hand in scrum we think, that we should not make premature
decisions, just because the process wants us to. In scrum we try to have our options
open and thus we make decisions at the last responsible moment. This is a point
when cost of not deciding would be greater than cost of making a decision (figure
2.4). We don't want to make critical and irreversible decisions until we have deeper
knowledge about the product, so our decision can be better. If we make a wrong
critical decision at the start of the product the cost of going back can be big,
especially if we realize our mistake several phases later. [esc]

5

Figure 2.3: Requirements in plan driven development

CHAPTER 2 SCRUM

2.5.1 Just in time approach

Instead of making a whole plan at the start we make only the necessary
requirements and we will fill the rest up later. This way we can avoid making
wrong decisions, caused by our lack of knowledge of the product. As an other
benefit from this approach, we can more easily adapt to change in requirements
later during the development of the product, because even our customer usually
doesn't know exactly what he wants at the start.

Where plan driven development tries to predict what is not known, scrum uses
exploration, prototype building and trial and error approach to buy more
information so we can make better decisions. The cost of such exploration has
significantly lowered in the past decades. In the past, when the plan driven
development was most used, the cost of exploration was big, there weren't things
like Internet for example to help you, computers were slower and technology was
less accessible. But now we have the possibility to explore relatively cheaper, so
why not use it.

In scrum we are making decisions just in time when they are needed, accepting
change is easier for us. This approach significantly reduces the cost of change in
time (figure 2.5). [esc]

6

Figure 2.4: Cost of decision

CHAPTER 2 SCRUM

2.6 Scrum overview
Scrum is not a sequential step by step process, it's a framework designed for
organizing work. There are core rules and principles, but everyone is free to add
his own rules and create a unique implementation that suits his organizations
needs.

2.6.1 Scrum principles

On figure 2.6 is an overview of core scrum principles, which will be discussed
further.

7

Figure 2.6: Scrum principles

Figure 2.5: Cost of change

CHAPTER 2 SCRUM

2.7 Scrum roles
In every scrum based development there is one or more scrum teams. Each team
consists of three basic roles: one scrum master, one product owner and
development team (with several team members), additional roles can be added,
but scrum requires only these three. For easy orientation in all future diagrams the
product owner will be blue, scrum master purple and members of the
development team will be green.

2.7.1 Product owner

The product owner is the leading authority of the product, he decides which
features will be implemented and in which order. He is responsible for the success
of the developed product. He acts like a bridge between the development team and
the stakeholders (both internal and external), customers and users (figure 2.7).
[esc]

As we can see above he has to divide his attention to two sides: [esc]

● He has to communicate with the customers, stakeholders, users etc. and
then he has to understand their needs well enough, so he can act as their
voice. He has the responsibility that the solution is developed in the right
direction.

8

Figure 2.7: Product owner and his relations to others

CHAPTER 2 SCRUM

● Secondly he has to communicate with the development team, tell them what
to build and in what order. He also has to define the acceptance criteria for
the features being developed. He is responsible for ultimately deciding if the
criteria is met. He has to be available to the team so he can clarify their
questions about the features.

Economics
He has to make budget oriented decisions, decide if the added value of a feature is
worth its cost. During the planning of the next sprint he decides if to fund the next
sprint or not, he can predict the price of developing the planned features in the
sprint, he knows how long the sprint is, which people are involved and how much
their work time costs. With this he has to decide whether the upcoming less
important features are worth the cost or not. [esc]

Backlog
Product owner is also responsible for managing the product backlog. He negotiates
the customers needs and adds it into the product backlog, the priority of the
features in the backlog is shown by its order (features on top of the list are the
most important). More on how backlog management works will be told further in
the text. [esc]

2.7.2 Scrum master

While the product owner is focused on building the right product, the scrum
master is a coach, his responsibilities are helping everyone understand and
embrace the scrum. He is there for both the development team and the product
owner. On figure 2.8 are core responsibilities of the scrum master. [esc]

9

CHAPTER 2 SCRUM

Coach
The scrum master acts as a coach or a trainer for the team and the product owner.
He observes how they work with the scrum and helps them use it better. He is not
there to solve their problem, he is there to help them, to solve them on their own.
Only when the team can't solve it on their own, it becomes an impediment and the
scrum master proceeds to solve it. [esc]

Servant leader “Facilitator”
Scrum master is foremost a coach and not a boss to command the team or the
product owner. He is there to help the team and guide them to be more effective.
His role does not give him the power to hire or fire team members, he does not
dictate what task will obe done next, nor is he responsible if the work does not get
done. [esc]

Process authority
Scrum masters job is to ensure that everyone understand the scrum process and
uses it correctly. He also helps the team to customize and improve the scrum
process for the teams and products needs. [esc]

10

Figure 2.8: Scrum masters responsibilities

CHAPTER 2 SCRUM

Interference shield
Scrum master protects the team from outside interference, allowing developers to
focus on the sprint and work. The interference can be a task from other team or a
manager who wants something done outside of the sprints scope or change the
sprint in the middle. Scrum master tries to solve those problem without bothering
the team. [esc]

Impediment remover
If an impediment that the team cannot resolve by themselves (could be a hardware
is required, another department cooperation is needed or the coffee machine is
broken), the scrum master then tries to work out a solution, so the team can
remain focused on their work. [esc]

Change agent
Since adapting to a chance is a core part of scrum, scrum master helps the team
and the whole organization to change so it can embrace the scrum principles. This
change can be difficult and requires cooperation of many people on many levels in
the organization. [esc]

2.7.3 Development team

In traditional development teams usually consist of individuals with same role.
There are teams of designers, database specialists, data analytics, programmers,
testers and so on. One team passes work to another and there is often a problem in
the communication between teams and often one team does not even know what
the other teams are doing.

In scrum on the other hand we try to make cross functional teams, which consist of
people with different roles. The composition of the team is often suited for the
features or work the team will be doing. For example a team can be composed of
one designer, one architect, two programmers, one database specialist and one
tester. This enhances the communication between the different roles, a web front-
end developer can directly discuss with the designer the look of the feature, instead
of receiving a finished design from the design team and then having to send it back
because it can't be implemented, since the designer did not know some technical
limitations. The team size is typically between 5 and 9 people. It's better to have
several smaller teams than one big team, since it's much easier to manage smaller
teams.

Also important is that the team which implements the new feature is responsible
for its testing. But it can still be viable in some situations to maintain a separate QA
team (quality assurance, testing), for example it can be in the requirements from
the customer. [esc]

11

CHAPTER 2 SCRUM

2.8 Scrum activities and artifacts
Next figure 2.9 shows most important scrum artifacts and activities, which will
now be discussed.

The product owner breaks down his idea of what he wants to create to a smaller
set of features (stories) and he orders them by priority in a list that is called
product backlog. At the start of each sprint the team and product owner agree on
what set of features will be done in the sprint, this process is called sprint planning.
Than comes the sprint execution, this is the time when actual work on the product
is done by the development team. Each day of the sprint the team holds a small
meeting, where they discuss what they did and plan to do next. At the end of the
sprint the team should have a potentially shippable product increment to show.
Next are two small meetings, the sprint review and the sprint retrospective, which
will be discussed further. After the sprint ends a new can start, again by sprint
planning. [esc]

2.8.1 Product backlog

The product owner is responsible for managing the work, what needs to be done
and when. To help him he has the product backlog. Basically it's an ordered list of
features (stories) with the most important ones on the top (figure 2.10). He fills the

12

Figure 2.9: Scrum activities and artifacts

CHAPTER 2 SCRUM

backlog based on input he gets from customers, stakeholders and the scrum team
itself. Product backlog can contain new features, changes to current ones, bug
reports (defects) and others.

From the collaboration with stakeholders and other interested parties the product
owner has to determine the correct order of items in the backlog, so the most
important work is done first. The product backlog is a dynamic artifact, the product
owner can add, remove or reorder the items in the backlog at any time. [esc]

2.8.2 Sprints

The work in scrum is done in timeboxed iterations called sprints (figure 2.11).
Each sprint has a starting and an ending date. They typically are one to four weeks
long and it is a good practice to have all sprints the same length (but it's not
necessary). Each sprint is immediately followed by the next sprint. It's not good to
change the scope or goal of a sprint when it's in progress. [esc]

13

Figure 2.10: Product backlog

CHAPTER 2 SCRUM

2.8.3 Sprint backlog

The sprint backlog is very similar in function to the product backlog, but it's related
only to a sprint. The sprint backlog is a result of sprint planning and contains items
(stories) selected to be worked on in the next sprint.

2.8.4 Stories and tasks

The term story is very often used for one backlog item, it's a short version of user
story and it can be easily explained on an example: “As a user I want to be able to
view the list of my orders in the application”. It can be a request for a feature, a bug
report, change of some feature etc. The stories should be understandable even to
people without the technical knowledge. This way it's possible to show list of
stories to managers, stakeholders or customers without confusing them.

Tasks on the other hand are the necessary steps needed to finish one of the stories.
Tasks are not created by product owner, they are created by the development team
during the sprint planning process by breaking down the stories. [esc]

Shown on the example above tasks could be:

● Design the look of the order list

● Create web frontend

● Implement backend server functionality

● Add or change the database tables

● Test the functionality of the order list

14

Figure 2.11: Sprints

CHAPTER 2 SCRUM

2.8.5 Sprint planning

Product backlog usually contains stories for much more than what can be done in
one sprint. At the start of each sprint we need to decide what is the most important
work from the backlog (this is easy, since the backlog is ordered by priority).

During sprint planning all three roles should be involved, the product owner has to
choose the goal of the sprint, the development team is needed to realistically
determine the how much work they can accomplish in the sprint and help to
estimate the stories (more on this later). The scrum master acts as a coach and
process authority during the planning.

Stories are also broken into tasks (figure 2.12). This also helps with estimating how
much work will be needed for the story.

When some work is not done on schedule we have to replan it for the next sprint,
which can cause difficulties. The next sprint we have to take less work, so we can
finish the unfinished work from the last sprint. On the other hand if we run out of
work before the end of the sprint, we have to add something, which is also not ideal
state. This is the reason why we estimate stories and calculate velocity, to be able to
more accurately predict how much work can be done in the sprint. [esc]

15

Figure 2.12: Sprint planning

CHAPTER 2 SCRUM

2.8.6 Sprint execution

After the sprint planning is finished, the team starts working on the tasks. The
team is free to choose the order in which they will perform the tasks and who will
be working on which task. They can also define new tasks on the go as needed. The
scrum master is always available to the team to help them with organizing the
process. [esc]

2.8.7 Daily scrum

Or also called daily stand-up or just stand-up, is an event when members of the
team hold a small meeting (usually up to 15 minutes), preferably at the same time
each day.

During the daily scrum members of the team take turns under the scrum masters
supervision and answer three questions:

● What did I accomplish since the last meeting

● What I plan to do until the next

● What impediments are stopping me from my work

During the daily scrum everyone from the team can get overview on who is doing
what and what problems they have. The daily scrum is not a time to solve those
problems, the team members usually try solve them afterwards.

An important rule is that only one person should speak at a time, and those who
are not members of the team and came to observe should not speak during the
stand-up. To help with this a token is often used and is passed between the
attendants. Only the one with the token is allowed to speak. [esc]

2.8.8 Estimation

Story or task estimation is not an easy process and there are several ways of
estimating how much work will be needed. Besides hours or days (which are hard
to guess), the most common way is to estimate the complexity of a story relatively
to another story or stories. The relative estimation is usually more accurate than
absolute estimation based on days or hours.

For this an abstract unit called story points is introduced. Usually altered
Fibonacci sequence is used to get valid values (figure 2.13). This way we have only
small number of estimations and have to decide if a story is 5 or 8 for example. It
also ensures significant differences in possible estimation values. Sometimes
clothes sizes are used as estimations instead of Fibonacci sequence. To help us
deciding we can have some estimated reference stories, which everyone can easily
imagine how complex they are. Then we can say its 5 because it will take very

16

CHAPTER 2 SCRUM

similar time to finish as another story with 5. When we encounter a story with high
estimation, it may be good idea to try to split it to more stories if possible, because
its much easier to estimate small stories then big ones.

Tasks should be usually small enough, so their estimate should not be more than
few hours. If they are not, then we should split them if possible.

Planning poker
To make the process of estimation more interesting and accurate a game called
planning poker (or scrum poker sometimes) can be played for each story. To begin
we need cards with the above values (or we can use normal cards with some
imagination, a queen can be 40 a king can be 100 for example). Very often infinity
(meaning it's too big and needs to be split) or question mark (I have no idea how
complex is this) are part of the cards. Sometimes a card with a coffee or some food
is included to show “I am hungry and need a pause” for when the estimations are
taking a long time. [aep]

Each development team member gets his own set of cards and they play by the
following rules:

1. A story from the backlog is selected and presented to the team.

2. The development team discuses the story and asks the product owner
questions if needed.

3. Each team member then privately selects an estimate (a card).

17

Figure 2.13: Estimation values

CHAPTER 2 SCRUM

4. When all team members have their estimation, they show it to others, all at
the same time.

5. If all estimates are the same we have a valid estimate for the story.

6. If there are differences in the estimates a discussion follows, often those
with the lowest or highest estimate start explaining why they chose it.

7. After the discussion we can either chose the estimate based on the choices
or start the estimation again (return to step 3).

We should be able to get to a consensus after at most two or three votings, because
the ongoing discussion increases understanding of the story by the team. [aep]

2.8.9 Velocity

Velocity is the amount of work completed in each sprint (sum of story points of all
finished stories in the sprint). Partially finished stories are not included, because
product owner gets no value from them. This way velocity is based on size of what
was done in the sprint.

We can then use velocity to predict how much work the team is able to finish in one
sprint. This can help us during the sprint planning. We can store velocity from past
sprints and use it to calculate average or range of minimal/maximal velocity the
team was able to deliver. The product owner can for example use all this the data to
predict costs. [esc]

2.8.10 Sprint review

Sprint review is an activity at the end of the sprint, where the development team,
product owner, stakeholders and other interested parties meet and review the
completed work in the sprint. Everyone can get an overview on how the
development continues and influence its direction. The scrum team gets a valuable
feedback on their work. The sprint review is an opportunity to adapt the product.
[esc]

2.8.11 Sprint retrospective

This is a second activity performed at the end of a sprint. It usually takes part after
the sprint review and before the next sprint planning. Opposed to the sprint
review, the sprint retrospective is aimed at adapting and inspecting the process.
Scrum master, product owner and the development team come together and
discuss what is not working regarding the scrum process and how to improve it to
make it work better. [esc]

18

CHAPTER 2 SCRUM

2.8.12 Scrum board

Scrum board is a tool that helps the team organize work. There are many different
variations on the scrum board, some are programs, some can be a white board with
markers or a wall covered with colorful stickers. For example (figure 2.14) tasks
are written on stickers (green) and moved on the table from open to in progress to
done as work on them continues.

2.8.13 Burndown charts

The burndown chart is a representation of remaining work in time (figure 2.15).
On the horizontal axis is time of the sprint in days and on the vertical axis is the
remaining work (here in story points, task count or only stories count can also be
used, if needed). [ftb]

The blue line represents ideal work progress for the sprint, the red one the actual
values. Numbers represent remaining work in story points. When the red line
(actual) is above the blue (ideal) it means that we are behind schedule (day 0 to 6),
we have done less work then was expected. On day 6 we are on schedule, actual
equals remaining work. From day 6 to 9 we worked harder and finished more work
than was expected and we are ahead of schedule. On day 9 and 10 we are on
schedule.

19

Figure 2.14: Scrum board

CHAPTER 2 SCRUM

In this particular example we managed to finish all the expected work on schedule.
And we also did not get too far from the ideal work progress. But we still have
some opportunity to improve.

On the next picture (figure 2.16) we can see three bad examples of burndown
charts.

1. In first example we can see that the team was working slowly at the start
(probably thinking they had enough time) and as they were closer to the
deadline they realized they are far behind schedule and tried to get the job
done fast. This can lead to bad coding, as you are working under pressure
and try to finish as fast as possible, usually forgetting about testing.

2. On example two we took more work than we actually could do. Either we
estimated the stories badly, or we just thought we are better than we really
are.

3. On third example we took less work than we can do and had to add some
more work in the middle of the sprint. This is also not good, we had to do a
sprint planning during the sprint. We should try to estimate the stories
better next time.

20

Figure 2.15: Burndown chart

CHAPTER 2 SCRUM

21

Figure 2.16: Burndown charts - bad examples

CHAPTER 3 MULTIPLATFORM MOBILE DEVELOPMENT

3 Multiplatform mobile development

Multiplatform mobile development
In present time, there is an urge to have a mobile app for almost everything, this
creates a demand for rapid and cheap development of such apps. Problem for fast
deployment is incompatibility and big differences between major operating
systems. For start I will show some graphs of market shares of major systems, then
I will describe the most important systems and some of their specifics (from
development point). I will follow with comparison between native and
multiplatform development and lastly I will compare some of the most used
multiplatform mobile development frameworks and point out their pros and cons.

3.1 Mobile operating systems
There are currently three major players on the mobile operating system market
(both tablet and smartphone). The biggest number of devices are powered by
Google Android, followed by Apple iOS, last place is occupied by Microsoft
Windows Phone (called just Windows from version 10 and up). Other operating
systems have so small market share that they are usually not taken into account by
most mobile developers. On the following table 3.1 we can see market shares of
sold devices by their operating system at the end of years 2014 and 2013.

Operating system 3Q 2014 Units sold
(thousands)

3Q 2014
Market share %

3Q 2013 Units sold
(thousands)

3Q 2013
Market share %

Android 250 060.2 83.1 205 243 82.0

iOS 38 186.6 12.7 30 330 12.1

Windows 9 033.4 3.0 8 916 3.6

Blackberry 2 419.5 0.8 4 401 1.8

Other OS 1 310.2 0.4 1 407 0.6

Total 301 009.9 100.0 250 296.8 100.0

Table 3.1: Market share by units sold [grt]

22

3

CHAPTER 3 MULTIPLATFORM MOBILE DEVELOPMENT

Such statistics differ a lot sometimes, because different data are used. There are
differences in tablet and smartphone usage, on tablets iOS has a bigger share than
it has on smartphones for example. Also there are big differences in market share
in different regions. In Western Europe and North America iOS has bigger share
than it has in other parts of world (mostly caused by lack of cheap devices with
iOS).

On the next table 3.2 is mobile operating system market share measured by web
access. As we can see the numbers differ from sales. They also differ a lot between
two different sources.

Operating system Net Applications
March 2014 %

Net Applications
July 2014 %

StatCounter
February 2014 %

StatCounter
August 2014 %

Android 36.6 45.2 47.6 54.9

iOS 53.3 44.2 23.0 23.6

Windows 0.7 2.5 2.2 2.4

Symbian 3.9 2.6 14.9 9.7

Bada 0.0 0.0 3.9 0.1

Blackberry 1.1 1.2 2.6 7.7

Other OS 4.4 0.1 2.2 0.6

Table 3.2: Market share by web access [nap, scg]

Also very important statistics for developers is the amount of money they can
make on different platforms or how much are users willing to pay for applications.
On the following table 3.3 is a statistics regarding mobile application stores (by
platform).

Statistics iOS Android Blackberry Windows

Total app downloads 29 000 000 000 31 000 000 000 3 400 000 000 5 100 000 000

Percent users who have never paid
more than $1 for an app

43 % 60 % 61 % 56 %

Average number of downloaded apps
per phone

88 68 49 57

Total number of apps in store 1 205 000 950 000 230 000 320 000

Total app store revenue in 2014 $6 900 000 000 $1 800 000,000 $750 000 000 $1 250 000 000

Table 3.3: Various application stores statistics [sbr]

3.1.1 Apple iOS

Apple iOS (or formerly known as iPhone OS) is an operating system developed by
Apple Inc. It's a closed source system, only the Darwin kernel shared with OS X
(Apple's desktop and laptop operating system) is open sourced and based on Unix

23

CHAPTER 3 MULTIPLATFORM MOBILE DEVELOPMENT

(mostly NeXTSTEP, and BSD). iOS is used exclusively in Apple's own products and
Apple does not license it other companies. It's used in iPhone (smartphone), iPad
(tablet), iPod touch (music player) and Apple TV (digital media player). On the
following picture (figure 3.1) is iOS 8 (current version, April 2015) home screen
with applications icons. [apd]

The system is very limited in any form of user customization or system changes.
Although it's a Unix based system, no shell or shared file system is accessible to
user. Applications can be installed only from official Apple's App Store and must be
checked by Apple before they can be distributed among users. Application
development is only possible from a Mac computer with OS X using Apple's own
SDK (Software development kit) and IDE (Integrated development environment)
called Xcode. There is also an annual fee for developers to allow them publish their
applications and test them on real devices ($99 per year). Multitasking is available,
but only one application can be running on foreground, all other applications are
suspended and not running. Limited number of exceptions is allowed to run in the
background - media players, downloads, voice communication (see [apd] for
more). [apd]

Apple promotes two programing languages for native application development:

● Objective-C – which is an objective oriented compiled general purpose
language based on C with Smalltalk messaging. It is the main language used
in iOS and OS X. All core system libraries like Cocoa and Cocoa touch are
written in Objective-C. Standard C and C++ code can be used alongside with
Objective-C. [apd]

24

Figure 3.1: iOS 8

CHAPTER 3 MULTIPLATFORM MOBILE DEVELOPMENT

● Swift – which is a new programming language designed by Apple to replace
Objective-C in all their products. It was announced at Apple's WWDC
(Worldwide Developers Conference) in 2014. It is influenced by many
current languages and can be compiled alongside with Objective-C and C++
in a single program. [apd]

Interpreted code
“An Application may not itself install or launch other executable code by any means,
including without limitation through the use of a plug-in architecture, calling other
frameworks, other APIs or otherwise. No interpreted code may be downloaded or
used in an Application except for code that is interpreted and run by Apple’s
Documented APIs and built-in interpreter(s). “ [apd]

The most commonly used interpreter is Apple's Safari Webview (a Webview is
basically a full screen running web browser without any visible user controls or
address bar) which allows to write applications in JavaScript, HTML and CSS. Some
of the native functions provided by system (images from gallery, camera etc.) are
accessible through the Webview, but you don't have access to native UI (user
interface) elements (buttons, sliders etc.).

3.1.2 Google Android

Android is an open sourced operating system developed by Google based on Linux
kernel. System is free to use and modify by others, but Google also provides his
proprietary services and applications (including Google play store – an application
and media store) for licensing, these are included in almost every android device.
Android can be found in a large variety of devices including smartphones, tablets,
consoles, media players, small laptops, ebook readers, mini PCs, smart watches,
cars and even a fridge. Current version of Android is 5 Lollipop (April 2015). On
figure 3.2 is the default home screen. [and]

Because of its open sourced nature Android can be customized nearly without
limits. There are several alternative distributions based on Google's releases
(CyanogenMod, MIUI, Amazon's android based OS, etc.). Almost all manufacturers
customize system look and applications on their devices to differ from others and
to gain advantage over competition. Applications can be installed either from
official store (Google play store), from unofficial stores (Amazon, Yandex) or from
installation package copied into the device. Multitasking works on the same basis
as in iOS, but there is no restriction on what applications can run in background
and how long it can run. [and]

25

CHAPTER 3 MULTIPLATFORM MOBILE DEVELOPMENT

Applications are mainly developed in Java and run on the device in Google's own
virtual machine. An SDK and an IDE (Eclipse with plugin or newer Android Studio
based on IntelliJ Idea) is available from Google. Also NDK (native development kit)
is available for development in C or C++. Development tools work on Windows,
Linux and OS X. [and]

Like on iOS there is a Webview available (based on chrome), which allows running
applications written using HTML, CSS and JavaScript, this Webview also provides
access to some system functions. There are no restrictions on using language
interprets on Android. Like on iOS only native code has direct access to system
functions, but reflection can be used to connect to the native API (application
programming interface). [and]

3.1.3 Microsoft Windows

Windows is a closed source operating system developed by Microsoft. The mobile
version (home screen on figure 3.3) is currently known as Windows Phone
(current version is 8), but this name will be changed to just Windows in the next
release (version 10), as the differences between the mobile and desktop version
are getting smaller with each release. Microsoft is aiming to ultimately have only
one version, installable on all supported devices, including smarphones, tablets,
laptops, PCs, servers and more. Important note is that Windows phone is not
evolution of the older Windows mobile (it's a little confusing, because the latest
version of Windows mobile was 6 and Windows phone started with 7), but a

26

Figure 3.2: Android

CHAPTER 3 MULTIPLATFORM MOBILE DEVELOPMENT

completely new system, which replaces Windows mobile (development and
support of Windows mobile was already discontinued). There is no backwards
compatibility with Windows mobile applications. Multitasking works the same way
like on other platforms, but running background tasks is like on iOS very limited
(see [ms] for more details). [ms]

SDK and IDE (Microsoft Visual Studio 2013) are available and development for
Windows Phone 8 requires Windows 8.1 Professional or better (could be possible
to use lesser version, but device emulation will not be available). Windows 10 is
not yet released so requirements for development are not yet known (April 2015).
[ms]

There are two main platforms used to develop applications for Windows phone:

● Silverlight – which is an application framework created by Microsoft, early
versions aimed for web based applications as alternative to Adobe's Flash.
Applications can be developed in any language supported by .NET
framework, most commonly used is C#. [ms]

● Windows runtime – which is shared with desktop version of Windows (it's
a successor to Win32 API) and allows deploying an application on both
mobile and desktop with minimal changes. Development is possible for
example in C#, VB.NET, and also in C++/CX. [ms]

Like in iOS and Android, Microsoft supports developing applications in JavaScript,
HTML and CSS and deploying them using a Webview based on Internet explorer.
[ms]

27

Figure 3.3: Windows

CHAPTER 3 MULTIPLATFORM MOBILE DEVELOPMENT

3.2 Native vs multiplatform development
Here is a difference between native and multiplatform (also known as cross
platform) development from a general point of view, different multiplatform
frameworks will be described further in this chapter.

3.2.1 Native

Native development offers better performance since systems are better optimized
for running their native code. Applications can interact more easily and have access
to all system functions and APIs. It is also much easier to make application design
fit the system, because native UI elements can be used. On the other hand code
cannot be usually reused on other platforms, basically the only native code usable
on all three above mentioned platforms can be C/C++ code, without any system
specific libraries used. Meaning developers will have to write code multiple times
for each platform and learn the specifics and language of each platform they want
to target.

Pros

 Better performance

 Access to all system functions

 Native UI elements and look

Cons

 Not portable code

 Have to write and maintain code for all targeted platforms

 Developers have to learn platform specifics

3.2.2 Multiplatform

Multiplatform development aims on better portability of code, trying to increase
the amount of code that can be reused. Some of the code can be also useful
elsewhere, not only on the mobile devices. The idea behind a lot of mobile
applications is, that we already have a mobile website for our service, so why don't
we reuse the same code. As a result most of the mobile development frameworks
focus on using a Webview to display the application in form of JavaScript, HTML
and CSS. For many companies it is easier to find web developers, who know above
mentioned technologies (or they most probably already have some in the
company), than finding mobile developers. Another benefit of using one code on
more platforms is easier maintainability of the code.

28

CHAPTER 3 MULTIPLATFORM MOBILE DEVELOPMENT

The biggest drawback of multiplatform approach is increased hardware
requirements for such applications. Launching a Webview and displaying a rich
JavaScript website in it consumes significantly more system resources than a native
application using native UI elements. From my experience a Webview on Android
or iOS can eat up more than 50 MB of RAM memory, while displaying only an
empty HTML page, on the other hand same native UI needs about 10 times less
memory. This can be a problem especially on cheaper Android phones, where
system resources are very limited. Same problem is with drawing speed and
performance on drawing web pages, which is more resource hungry and drawing is
slower than native UI which is better optimized and draws faster. There are
frameworks that try to remove this problem by instead of using a Webview they
create the UI from the platforms native UI elements (such as Xamarin), but this
may not work well since some of the UI elements can work differently on different
platforms.

Other notable obstacle is access to system APIs and functions. Some of them are a
lot different for different platforms and some may not even exists on some
platforms. Most of the frameworks try to solve this by wrapping the native
functionality by their own API to provide unified access. Some allow developers to
implement their own wrappers (PhoneGap for example).

Pros

 Reusability of code

 Easier maintenance of code

 Developers can use already known technologies

Cons

 More resource consuming applications (both memory and computing power)

 Harder access to system functions

 It can be a problem to create native looking application

3.3 Multiplatform development frameworks
Here I will describe and compare some of the most used multiplatform frameworks
for mobile application development. There are so many companies selling
multiplatform mobile frameworks, that it is impossible to describe them all. Most
of these solutions stand on using Webviews and JavaScript, but there are some
other interesting technologies.

29

CHAPTER 3 MULTIPLATFORM MOBILE DEVELOPMENT

3.3.1 Apache Cordova (PhoneGap)

Apache Cordova is an open source framework for creating multiplatform mobile
applications using web technologies (HTML, CSS, JavaScript). It is also known by
the name PhoneGap. PhoneGap was originally developed by Adobe/Nitobi, but
Adobe donated the codebase to Apache Software Foundation (ASF) and thus the
name change. Adobe still uses the PhoneGap name for its own distribution, but it is
based on the same code. It can include some Adobe specific tools (they also have
paid version with various services). Apache Cordova and PhoneGap are free to use
for both personal or commercial use and currently the only difference between the
two is the name. Cordova can be combined with most Web UI frameworks like
jQuery Mobile, Dojo Mobile or Sencha Touch. [cor]

Cordova uses a Webview to interpret the JavaScript and display the UI to the user. It
provides a unified JavaScript API for accessing several native functions of the
device like camera, storage, notifications and so on (see table 3.4 for details).
Applications can connect to servers using Internet (XmlHTTPRequest, Web
Sockets, etc.) to communicate with backend services. [cor]

Feature / OS
iPhone
< 3GS

iPhone
> 3GS

Android
Blackberry

6.0+
Blackberry

10
Windows
Phone 8

Ubuntu
Firefox

OS

Accelerometer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Camera ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Compass × ✓ ✓ × ✓ ✓ ✓ ✓

Contacts ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Files ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×

Geolocation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Media ✓ ✓ ✓ × ✓ ✓ ✓ ×

Network ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notification (sound) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notification (alert) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notification (vibrate) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Storage ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3.4: Features available in Cordova [cor]

Additional native functionality can be added through plugins. Many plugins can be
found online or if we need something special, we can write our own plugins using
the plugin API. We have to create the unified interface so we can access it from
JavaScript and than we have to implement the desired native functionality for each
needed platform. [cor]

30

CHAPTER 3 MULTIPLATFORM MOBILE DEVELOPMENT

Pros

 Free to use (personal and commercial)

 Open source

 Development using web technologies (HTML, CSS, JavaScript)

 Reusability

 Supports many platforms

 Access to several native APIs

 Plugins

Cons

 Webview is more resource hungry than native UI

 Missing native features without existing plugins require native development of
own plugins

 No easy way to have native UI look (application is a web page)

3.3.2 Qt

Qt is one of the most popular multiplatform application development frameworks.
Applications written in Qt can be deployed on many platforms, including all major
desktop operating systems and also mobile ones. Support for mobile platforms
have been added only recently (iOS and Android in December 2013, Windows
phone 8 in December 2014) and features are still being added. Qt is owned by Qt
company owned by Digia, which owns rights and trademarks to Qt. Qt is developed
as open source project and available under GPL and LGPL license. Digia also
provides a commercial license for Qt. [qt]

Licensing is possible in following packages: (see [qt] for more detailed info)

● Community – Open source or application must be compatible with GPL or
LGPL license (does not mean it has to be distributed under LGPL license)

● Indie mobile – Commercial license for mobile development only, costs $25
per month per developer

● Professional – Commercial license for mobile and desktop development,
costs $174 per month per developer, includes some advanced UI elements
and Qt quick compiler

● Enterprise – For big companies, individual pricing

31

CHAPTER 3 MULTIPLATFORM MOBILE DEVELOPMENT

Documentation states that development of closed source applications for iOS using
the community edition is not possible and violates the Apple Store terms and
conditions, since no dynamic linking is allowed and static linking requires sharing
of source code by LGPL (there exists a disagreement in this and whole page on Qt
wiki is dedicated to this issue, but there is no clear conclusion). [qt]

Official IDE called Qt creator is available for application development and works on
Windows, Linux and OS X. Main development languages used in Qt are C++ and
QML (with optional JavaScript use). QML (see figure 3.4 for example) is a
declarative language used for UI creation and can be combined with JavaScript to
provide application logic. Qt allows deploying applications in native code or using a
Webview. QML code can be compiled either Just-in-time (JIT) on the application
startup or using Qt Quick Compiler during the application compile, this allows
faster application load and better performance (and is required on iOS, because of
Apple's limitations of code interpreting on devices, see iOS section in chapter 3.1
for more). Also it is possible to write the whole UI in C++ only using the Qt widgets.
[qt]

import QtQuick 2.3

Rectangle {
 width: 200
 height: 100
 color: "red"

 Text {
 anchors.centerIn: parent
 text: "Hello, World!"
 }

 MouseArea {
 anchors.fill: parent
 onClicked: parent.color = "blue"
 }
}

Figure 3.4: QML example

Unified communication with many device native APIs is provided in Qt and missing
functions can be also implemented by developers, but the development is more
complicated than in Cordova. There is also a possibility to mix the Qt C++ code with
native compiled code on some platforms (Objective-C on iOS for example),
including the native UI elements, but such application is no longer multiplatform.
[qt]

32

CHAPTER 3 MULTIPLATFORM MOBILE DEVELOPMENT

Many low market share mobile operating systems are using Qt for native
application development including Jolla Sailfish OS, Ubuntu touch, Blackberry,
Symbian and MeeGo. [qt]

Pros

 Open source

 Targets nearly all available platforms including desktop and embedded devices

 Good IDE for all major desktop platforms is available

 Apps can be compiled to platform native code or Webview can be used

 Compiled code offers better performance than Webview

 Connection to many native APIs

 Nearly native UI look for some platforms

 Can be mixed with native platform code

Cons

 Commercial license required for closed source iOS development

 Some features like Qt quick compiler or advanced UI elements are available
only in paid versions

 More complicated development of missing native API functions

 All used Qt libraries have to be shipped with the app, even if another app with
them is already present on the device (there is solution which allows library
sharing on Android, but it can be confusing to normal user and not many apps
use it)

3.3.3 Xamarin

Like Qt, Xamarin focuses on multiplatform applications using native code and
native UI elements. Xamarin offers their own IDE called Xamarin studio, which
works on OS X and Windows and also integration with Microsoft Visual Studio on
Windows. The main development language is C# and applications can be deployed
on Android, iOS and Windows Phone. The technology behind is based on the Mono
project (open source framework and runtime for C#). On iOS applications are
compiled to native ARM assembly code, on Android code is compiled to
intermediate language (IL) and IL runtime is included, which then compiles the
code on the device on application startup, Windows phone has C# as native

33

CHAPTER 3 MULTIPLATFORM MOBILE DEVELOPMENT

language so runtime is already present in the system. For more details about C#
you can see [ms]. Xamarin offers limited free license and commercial licenses for
application development. [xam]

License options: (see [xam] for more detailed info)

● Starter – only free option, limited application size, no native API connection
and some features are not available

● Indie – Commercial license for individual developers or small companies
(up to 5 developers), no Visual studio integration, $25 per developer per
month

● Business – Commercial license for companies, all features, limited support
from Xamarin $999 per developer per year

● Enterprise – Commercial license for big companies with extended support
and assistance from Xamarin, $1899 per developer per year

Xamarin offers two ways of UI development, one is using different UI for each
platform build from platform native UI elements and with direct access to all
platform specific APIs (but this way only some code can be shared and some code
is platform specific). Second option is Xamarin.Forms that allows for single UI for
all platforms, it is also build using native UI elements (not available in starter
edition), Xamarin.Forms aims at maximum code sharing. Both ways can be
combined in single application. On figure 3.5 is example of one app made with
Xamarin.Forms on three different devices. [xam]

34

CHAPTER 3 MULTIPLATFORM MOBILE DEVELOPMENT

Pros

 Most advanced multiplatform mobile development framework

 Very good documentation and development guide

 Supports all three major platforms

 Good own IDE and MS Visual studio integration

 Compiles to native code, better performance than Webview

 Native look on all supported platforms

 Connection to many native APIs

 Binding to existing native code possible (Java, C++, Objective-C)

 Special licenses for students, universities and open source projects

Cons

 Free version is very limited and unusable for any more serious development

 Not open source (except for Mono)

35

Figure 3.5: Xamarin.Forms

CHAPTER 3 MULTIPLATFORM MOBILE DEVELOPMENT

3.3.4 Appcelerator

Appcelerator is business oriented multiplatform mobile cloud platform based on
web technologies (HTML, JavaScript and CSS). It focuses on integrating and
connecting various existing business cloud services. They offer both a Webview
apps and native ones. It is closed source solution aimed on large companies. There
is no free version and pricing starts on $39 for single developer per month. Also
additional functionality and plugins can be bought on their marketplace. [apc]

Licensing options: (see [apc] for more detailed info)

● Indie – only for one developer, $39 per month, limited functionality and no
support

● Team – for small teams and businesses, $259 per developer per month,
limited support

● Enterprise – for large companies with premium support, individual pricing

Pros

 Integration with many cloud services

 Huge number of plugins with various functionality

 Own IDE

Cons

 No free version, expensive

 Too complicated for small applications development

3.3.5 Sencha touch

Sencha touch is a JavaScript multiplatform web application development library. It
focuses on both mobile websites and mobile applications. Sencha touch offers a
variety of tools to help with development including IDE plugins, Sencha architect
(advanced HTML5 UI editor) and more. Sencha offers native looking themes for
applications and a web components that can be integrated into applications
(graphs drawing tools for example). Application packaging for mobile devices is
done using PhoneGap / Cordova, which means it is possible to use existing Cordova
plugins or own plugins with Sencha touch. [sen]

Licensing options include various products individually or a complete bundle for 5
developers ($4825 per year) or 20 developers ($18895 per year), see [sen] for
more detailed info.

36

CHAPTER 3 MULTIPLATFORM MOBILE DEVELOPMENT

Pros

 Complex JavaScript library for mobile web and application development

 Huge number of plugins with various functionality

 Development using web technologies (HTML, CSS, JavaScript)

 Reusability

 Supports many platforms

 Access to several native APIs

 Based on Cordova (can use Cordova plugins)

Cons

 No free version, expensive

 Webview is more resource hungry than native UI

 Missing native features without existing plugins require native development of
own plugins

3.3.6 Online app builders

Services that have seen a big boom in the past few years are various application
builders or generators. They very often offer simple development environment in
browser, mostly WYSIWYG editor with pre-made components. (see figure 3.6 for
example). Typically applications are developed using HTML5, JavaScript and CSS
and deployed using Cordova or Xamarin. Good side is that applications can be
made very easily and even managers can do it. This makes this approach very good
for fast creation of various application prototypes to show to customers. This
prototype can be then used as a template for the final application made by real
developers. Some of these services even offer remote testing on real devices.

37

CHAPTER 3 MULTIPLATFORM MOBILE DEVELOPMENT

Notable application builders are for example AppsBuilder, Altova MobileTogether,
Appery.io, Appy Pie, Mobincube, TheAppBuilder, Good Barber, AppMachine, Como
and many more exists. Most of these solutions are paid or the free version offers
very limited functionality.

Pros

 Fast and simple development

 Good for prototyping

 WYSIWYG editors

 Can create applications in browser

Cons

 Usually paid or very limited functionality

 Not good for complex applications

 Webview is more resource hungry than native UI

38

Figure 3.6: AppsBilder editor in browser

CHAPTER 3 MULTIPLATFORM MOBILE DEVELOPMENT

3.3.7 Pure Webview application

Sometimes there is no need to use any framework at all, when we have no use for
their added functionality, or we want something none of these frameworks can do.
We can use the Webview each platform provides on our own. There will be some
small overhead, because we have to create several native applications with
Webview component in it, but as a result we will have full control over our
application. All platforms offer a way how to interact with native code from the
Webview (Cordova uses it too for example). We can then develop our application
using HTML, CSS and JavaScript.

3.3.8 Games

There also exists a huge amount of multiplatform game engines. The situation with
games is a little different than with traditional applications, games usually don't
require any system specific API, UI is created using OpenGL or DirectX so native UI
elements are not needed either. This way most of the code can be shared between
different platforms more easily.

The most known one is Unity, like Xamarin it is build on the Mono project, so main
programing language is C#. Games written with unity can target almost any
possible platform available including mobile devices, desktop (Windows, Linux, OS
X), game consoles or even virtual reality devices. Other notable multiplatform
game engines are Unreal engine, Marmalade or Corona.

Apple Game center and Google Play services
Both Apple and Google offer a SDK with API that can be used to create multiplayer
games with ability to connect two or more devices over the Internet without the
need of a server, but this designed to be used with games and does not integrate
well with normal applications. The most notable problem is both of these solutions
are locked to their platform and don't offer cross platform connections.

39

CHAPTER 3 MULTIPLATFORM MOBILE DEVELOPMENT

3.4 Conclusion
In this chapter I described the difference between multiplatform and native
development, their ups and downs and major mobile operating systems. I
compared several most used multiplatform development frameworks and
approaches. For my application I have chosen to use Cordova, since it's completely
free, can be easily enhanced with missing functionality and lot of material exist to
help with development. Also in late summer 2013, when I made this decision, the
other frameworks were not as mature as they are now in April 2015, when I am
writing this. I will describe Cordova more closely from a developers point of view
in one of the further chapters. Main targeted platforms will be Android and iOS,
because they share the vast majority of market. I will leave the Windows phone
version out, but there shouldn't be any problem with adding it in the future.

40

CHAPTER 4 EXISTING SOLUTIONS

4 Existing solutions

Existing solutions
There are plenty of mobile clients for existing cloud project management services,
but mostly they rely on connecting to a server to work. Also not many mobile
applications are oriented on scrum and its activities. There is a big number of
applications aiming solely on the scrum poker, other big group consists of
interactive scrum guides, but those are more of packed books, than actual
applications. I will try to compare some of the more interesting scrum applications
in this chapter, I will not include project management applications which do not
have anything in common with scrum, as I am interested only in scrum. There are
also several applications, which aim on helping the scrum master, but they don't
implement the whole scrum framework. I will try focus on applications, that are
available and work on multiple platforms, rather than single platform ones. As
there are many similar applications, I will write only about those that are
interesting for a specific reason.

4.1 Scrum poker applications
There are many scrum poker applications available on Google Play or Apple App
Store. Many of them just work as a replacement for cards and don't offer any form
of communication. There exist few applications that offer some form of
communication mostly WLAN/zeroconf, Bluetooth, Game center, or a server (see
next chapter for more about communication). I was able to find one multiplatform
scrum poker game called Estimated (Android, iOS or web page), which uses a
server to synchronize. It allows to pick a card and others don't see your pick until
all have voted or owner can force the voting end (see figure 4.1 for screenshot
[est]).

Other applications can be found with names like Scrum poker, Scrum, Planning
poker etc.

41

4

CHAPTER 4 EXISTING SOLUTIONS

Pros

 Easy to use

 Many free applications

 Multiplayer applications

Cons

 Only scrum poker

4.2 JIRA Connect Enterprise
JIRA is a popular issue tracker and project management tool. It can be deployed on
own server or used as a cloud service. It supports agile and scrum planning. Mobile
applications are available for Android and iOS. Those applications are just clients
and require connection to the server, also the features are limited, comparing to the
web application. Use of the mobile application requires to have “Mobility for JIRA”
add-on installed on the server, which is paid. See figures 4.2 and 4.3 for some
screenshots. [jira]

42

Figure 4.1: Estimated

CHAPTER 4 EXISTING SOLUTIONS

Pros

 Powerful tool

 Many features, can be configured for scrum

 Add-ons

Cons

 Paid solution

 Mobile applications have limited features

 Requires connection to server to work

4.3 AgileScrum Pro
AgileScrum Pro is iOS only app for managing sprints and scrum board. It is
interesting because it uses email or box.net for sharing project data with other
people. I wasn't able to test the sharing in any depth, because I have only one iOS
device, but it looks like it is mostly meant to send out the project data from one
central device, so others can read it. Screenshot on figure 4.4. [asp]

43

Figure 4.2: JIRA android Figure 4.3: JIRA iOS

CHAPTER 4 EXISTING SOLUTIONS

Pros

 Easy to use

 Sharing over email or box.net

Cons

 Limited features (no scrum poker for example)

 iOS only

 No phone UI (iPad only)

4.4 Lion Monkey Scrum
Lion monkey is very similar application to AgileScrum Pro, it has more features,
also has only iOS version (figure 4.5), but sharing is done only using iTunes by
exporting/importing data as CVS files or SQLite database. [lms]

44

Figure 4.4: AgileScrum Pro

CHAPTER 4 EXISTING SOLUTIONS

Pros

 More features, but also no scrum poker

 Sharing using CVS files or SQLite database

Cons

 No scrum poker

 Complicated UI

 iOS only

4.5 Pivotal tracker
Pivotal tracker is like JIRA another big project management cloud application. It
focuses on agile development. Like JIRA, connection to the server is required and
Pivotal tracker is paid solution. Official mobile application is only for iOS (figure
4.6). [pvt]

45

Figure 4.5: Lion Monkey Scrum

CHAPTER 4 EXISTING SOLUTIONS

Pros

 Powerful tool

 Many features, focuses on agile development

 Add-ons

Cons

 Paid solution

 Mobile application have limited features

 Requires connection to server to work

 iOS only mobile application

4.6 Conclusion
There are many scrum oriented mobile applications, most of them are simple apps
for scrum poker. There are also clients for big project management cloud
applications, which have limited set of features and require access to server. There
are several local scrum management apps, most of them are for iOS only and their
ability to synchronize data between devices is very limited.

46

Figure 4.6: Pivotal tracker

CHAPTER 5 COMMUNICATION

5 Communication

Communication
In this chapter I will describe possible methods of communication between mobile
devices. Since my intention is to avoid having a dedicated server running
somewhere, I will focus mainly on technologies that allow communication directly
between devices without any public server. Two most promising candidates are
Wi-Fi and Bluetooth.

5.1 SMS
SMS messages could be used to share data between devices, but without an
unlimited messaging plan this could lead to a very high bill. Another notable
problem is, that on some platforms it's not allowed to read SMS messages from an
application (iOS [apd], Windows Phone 8 [ms]). Also not all devices are capable of
sending or receiving SMS messages (many tablets don't have GSM module).

5.2 Communication over Internet
Connecting from one device to second over Internet is a problem. Mobile devices in
GSM network don't have public IP address or other easy way of communicating
with them. When we want to communicate over Internet, we need some third
public point which both devices know. Also we don't want to have opened listening
socket on mobile connection all the time, this would drain the device's battery
really fast.

5.2.1 Push notifications

To overcome some of these issues Apple, Google or Microsoft have special service
called push notifications. General principle is that a server called push server exists
and it's known to all the devices. When an application on the device wants to
receive push notification from some service it asks the push server to create a
token for it, then it gives the token to the service it wants to receive the
notifications from. The token is application and device specific. When the service

47

5

CHAPTER 5 COMMUNICATION

wants to contact the device it sends the message to the push server instead. The
device maintains an optimized communication channel with the push server, the
push server delivers the notifications over this channel only. This way notifications
for all applications on the device are delivered over only one connection, which is
optimized specifically for this task.

The sender of the notification has to prove himself by a certificate, a pair of SSL
certificates is used, one is uploaded by application developer to the push server
(public key), second is used by the sender of the notification (private key).
Normally we use a server to send notifications, each mobile device requests a push
token from the push server and then sends it to our server, when our server wants
to send a notification, it signs it with the certificate and including the device token
it sends it to the push server.

Since I want to avoid having a server, this approach can't be used. Technically it
could be possible to send the push notification from a mobile device, but it would
be insecure. Also it violates the terms and conditions of most of the push services
and I would still have to distribute the device token first, before push notifications
can be used.

5.2.2 Email, File sharing services

One possibility for sharing data over the Internet would be to use emails or some
file sharing service like DropBox or Box.net, where we could upload project data.
This way we could use existing infrastructure without the need to create any
dedicated server. As a drawback it would be very difficult to manage concurrent
updates from different devices, because we can't run any code on those servers.

5.3 Local communication
Local communication is limited to only some group of devices, which are able to
reach each other. This limit could be distance between devices or a access to shared
network for example. Two most used technologies for this are Bluetooth and Wi-Fi.

5.3.1 Bluetooth

Bluetooth is a short range wireless communication technology present in almost all
phones and tablets. It is a WPAN (Wireless Personal Area Network) an works in the
2.4 GHz ISM band. This frequency band is 2400 - 2483.5 MHz. Bluetooth focuses on
low power consumption, low cost and robustness. Bluetooth is standardized by
IEEE as IEEE 802.15.1, but is maintained by Bluetooth SIG (Bluetooth Special
Interest Group), they oversee and develop the standard. Current version of
Bluetooth is 4.2. Bluetooth allows device independent communication, it is used

48

CHAPTER 5 COMMUNICATION

for communication between computers, phones and tablets, but also for
communication with various other devices, including keyboards, mouses, cameras,
watches and other wearable electronics. [bt]

Bluetooth operates on a master – slave ad-hoc architecture. One master can
communicate with up to 7 slaves. It is also possible for one device to act as both
master and slave and form a more complex network with several masters called
scatternet. Bluetooth specifies set of profiles, which describe possible ways and
forms of communication like A2DP (Advanced Audio Distribution Profile), OBEX
(Object exchange) and many others (see [bt] for more details). [bt]

Bluetooth defines three power classes, most mobile devices are in the second class
(max power – 2.5 mW) with maximal range around 10 meters. Theoretical speed is
25 Mb/s. [bt]

Devices must pair first to be able to communicate, this sometimes causes problems,
when one device can't see the other (this problem mostly occurs with older
devices).

Pros

 No need for additional hardware

 Present in almost every device

 Low energy consumption

Cons

 Small range

 Need for device pairing

 Low speed (with older versions)

5.3.2 Wi-Fi

Wi-Fi is a WLAN (Wireless Local Area Network), it is defined in IEEE standard
802.11 and is maintained by the Wi-Fi Alliance. Wi-Fi works in the 2.4 and 5 GHz
ISM radio bands. Wi-Fi is an implementation of the first and second ISO/OSI layers.
Wi-Fi is present in almost all mobile devices, including phones, tablets or laptops.
Wi-Fi is very often used to allow mobile devices to access Internet. An access point
(or hotspot) is used as a central point to which all the devices connect. This can be
either some router or another phone can make access point from itself and allow
other devices to connect and use its Internet connection for example. Transfered
data are organized in packets and usually TCP/IP protocol is used for
communication. The access point can be secured by encryption and require

49

CHAPTER 5 COMMUNICATION

a password to allow connection. When a device connects to an access point it
receives a local IP address from the access point, that identifies the device in the
network. [802.11]

Wi-Fi has higher range than Bluetooth, over 20 meters in buildings and over 100
meters outside, and also much bigger speeds can be achieved, the 802.11ac can
theoretically go over 1 Gb/s. Range and speed varies by used frequency (2.4 GHz
has slightly better range than 5 GHz) and also newer standards like 802.11ac have
better speeds than the older ones.

Zero configuration networking (zeroconf)
When we want to send data to some device we need to know its IP address. The
most simple way to exchange IP addresses between mobile devices on the network
is to use device discovery technology. One such technology is called zeroconf, it is a
mechanism that uses multicast messages to advertise and discover devices and
services in the network. It does not require any special server or manual
configuration of the devices (hence the name zeroconf). It is based on the TCP/IP
protocol. [RFC-6762, RFC-6763]

System called mDNS (multicast domain name system) is used to resolve IP
addresses in small local networks without DNS server. It evolved from Apple's
Apple talk and Microsoft's UPnP SSDP technology. It's now standardized and it's
specified in [RFC-6762, RFC-6763].

The most used implementation is Apple's Bonjour, which is included in all Apple
products. Libraries for other platforms/languages are available, including
implementations in C, Java (compatible with Android) or C# for Windows and
Windows phone.

Pros

 Present in almost every device

 Fast

 Good range

 Network devices discovery (zeroconf)

Cons

 Some form of access point is needed (router, hotspot)

50

CHAPTER 5 COMMUNICATION

5.4 Conclusion
I have chosen to use local area Wi-Fi as a communication technology for my
application, because it is available on almost all mobile devices, it is easy to use and
with zeroconf user will not have to bother themselves with IP addresses or other
networking. The need of access point is not a big drawback today, when Wi-Fi is
available almost everywhere. Bigger drawback is the need for the devices to be on
local network, not allowing any way of communication over Internet, but no simple
solution allowing such communication without a dedicated server is available.

51

CHAPTER 6 DATA STORAGE

6 Data storage

Data storage
For my application I will need some form of persistent data storage on the device to
preserve data and its structure even if the application is shut down. All the major
mobile platforms offer very similar data storage options. I will shortly describe
them in this chapter.

6.1 Files
On Android, iOS and Windows Phone it is possible for an application to store files
in a application private folder, where they are hidden for other applications. On
Android and Windows Phone 8.1 it is also possible to store files in shared file
system accessible to other applications and file managers. On iOS there is no
shared file system available to applications nor any file manager. [apd, and, ms]

Pros

 Available on all platforms

 Can store any data format

Cons

 Complex data structure will require complex parser to write and read the data

6.2 Key value storage
One easy data storage option available on three above mentioned systems is a key
value storage. This storage is private for each application. Data are stored in a form
of key – value pair. The key is unique and the value is specified as a string, boolean
or number. It is very easy to use this storage, but it is not good for complex data,
because there is no hierarchy or relations in the data. [apd, and, ms]

52

6

CHAPTER 6 DATA STORAGE

The following examples show how simple the manipulation with the key – value
storage in C# in Windows Phone works. Figure 6.1 is an example of saving a value
and on the figure 6.2 there is an example of loading the before stored value. [ms]

private void btnSave_Click(object sender, RoutedEventArgs e)
{
 IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;
 // txtInput is a TextBox defined in XAML.
 if (!settings.Contains("userData"))
 {
 settings.Add("userData", txtInput.Text);
 }
 else
 {
 settings["userData"] = txtInput.Text;
 }
 settings.Save();
}

Figure 6.1: Saving value

private void btnDisplay_Click(object sender, RoutedEventArgs e)
{
 // txtDisplay is a TextBlock defined in XAML.
 txtDisplay.Text = "USER DATA: ";
 if (IsolatedStorageSettings.ApplicationSettings.Contains("userData"))
 {
 txtDisplay.Text +=
 IsolatedStorageSettings.ApplicationSettings["userData"] as string;
 }
}

Figure 6.2: Loading value

Pros

 Available on all platforms

 Very easy to use

Cons

 Can't create any more complex data structure

6.3 SQLite database
The most complex data storage available on mobile devices is the SQLite database.
It is a self-contained, serverless, zero-configuration, transactional SQL database
engine. SQLite is in the Public Domain and can be freely used for any purpose,
including commercial use. [sqlite]

53

CHAPTER 6 DATA STORAGE

The database does not run in a separate process, data is written directly to disk and
the whole database is stored in a single file. The database format and file is
platform independent and can be easily moved between different architectures and
operating systems. SQLite is good for any embedded systems where memory or
resources are limited, because its requirements are minimal. It can be embedded in
application as local data storage or it can be also used for server use (creating one
database for each user for example). SQLite database supports any number of
concurrent readers, but only one writer at any time (others have to wait in queue).
[sqlite]

SQLite is compatible with most of the standard SQL language, but some features
are not available. See [sqlite] for more details.

SQLite database is available in Android and iOS, for Windows Phone a library exists
and can be included in an application. Another positive aspect is that a Cordova
plugin exists to allow unified access to device SQLite database from JavaScript code
running in a Webview.

Pros

 Available on most platforms

 Uses SQL to manipulate with data

 Fast and minimal resource requirements

 Cordova plugin for unified access from a Webview application

Cons

 Not all SQL features are available

6.4 Conclusion
I decided to use SQLite database for data storage in my application, it allows me to
to store complex data with structure and work them using SQL language. I will also
use files to export and import data from the database to allow their sharing.

54

CHAPTER 7 SCRUMAPP SPECIFICATION

7 ScrumApp specification

ScrumApp specification
The mobile app shall support distributed software development teams, who use
Scrum in planning, staying synchronized and having clear overview over the
project's status. The application should offer Scrum board as it is one of the most
important project overview features, backlog management of stories and tasks,
scrum poker game and a burndown chart for sprints and project.

The mobile app should be multiplatform and it should work on most used mobile
operating systems (Android, iOS), as companies often have fragmented portfolio of
devices. Native look and feel is not required.

Distributed communication should be used, without the need to use and maintain
any dedicated server. One device will act as a master, store the project data and will
keep other devices synchronized. The preferred way of communication is Wi-Fi. It
would be good to have some way to synchronize, when no connection is available.

7.1 Basic features
This is a list of core features which should be implemented in the application.

● Distributed communication over Wi-Fi

● Product and sprint backlog

● Story and task planning

● Burndown charts for sprints and project

● Scrum board

● Android version

● iOS version

● Phone user interface

55

7

CHAPTER 7 SCRUMAPP SPECIFICATION

7.2 Optional features
This is a list of optional features, not everything on this list will be implemented.
This list is ordered by priority, with most important features on top.

● Scrum poker game

● Project data export and import

● Communication encryption

● Some form of backup way of synchronization if no Wi-Fi is available

● Database encryption

● Windows Phone version

● Tablet user interface

● Changes history (tasks, stories)

● Saving logs

● Localization to more languages

7.3 Technologies
I have decided to use multiplatform framework Cordova to implement the
ScrumApp. When I made this decision (summer 2013) other frameworks were not
as mature as they are now. Also Cordova is well documented, free, open source and
more functionality can be added in form of plugins. Custom plugins can be
relatively easy made, thanks to the plugin API. I will have to implement some part
of the application in native code, as not every functionality I need can be made
from JavaScript and suitable plugins are not available. I will be making Android and
iOS version only, because other platforms have only small market share (It should
be possible to add more platforms, that are supported by Cordova latter). For the
multiplatform JavaScript part I chose to use Google Web Toolkit (GWT) framework
with mobile GWT (mGWT) plugin for UI, that allows me to write the code in Java
and then compile it using GWT compiler to JavaScript, as I know Java better than
JavaScript (I will describe GWT further in the text).

I will use Wi-Fi with zero-conf for distributed communication between mobile
devices. This will allow users to search for devices on local network without the
need to know their IP addresses. For data storage I picked the SQLite database, it
can store complex data structures and has low resources requirements. For backup
of data I will allow project export and import using files.

56

CHAPTER 7 SCRUMAPP SPECIFICATION

7.4 Basic architecture overview
Basically the architecture can be divided into three main parts (figure 7.1).

● Native part containing Cordova library, Cordova plugins and other native
code. This part is unique for each platform and uses Webview to display and
interpret the rest of the application. This part is also responsible for
handling communication and data storage.

● JavaScript part serves as a bridge between GWT and native code. It contains
Cordova JavaScript library and plugins, allowing access to native code from
GWT.

● GWT part contains application logic written in Java with mGWT plugin to
draw mobile and touch friendly UI for the user. Code created using GWT is
then compiled using GWT compiler into JavaScript, which is then deployed
on the device as a part of the application and is run in the Webview with
other JavaScript.

57

Figure 7.1: Basic architecture overview

CHAPTER 7 SCRUMAPP SPECIFICATION

7.5 Use cases
There are three types of users in the application: Scrum master, Product owner and
Team members. Scrum master has a special role of running the master device,
which takes care of synchronizing other devices. I also want to allow other users to
view and modify some data, even when they can't connect to the master device.
This puts some limitation on what different roles are allowed to do compared to
normal client-server application, where the server is always available. I had to
define and restrict some features, that would be normally possible in scrum
because of this distributed communication model. Some actions like taking an
unassigned task by team member requires a working connection to the master
device to prevent possibility of two users taking the same task. Scrum poker is
usually organized by the product owner, but to make the synchronization easier I
decided, that it will be controlled by the scrum master instead (both the scrum
master and the product owner are present at the estimation meeting). Below is the
list of use cases available to each role, with specified if they need to be connected to
master [online] or not [offline].

Scrum master (only 1 per project) – runs the server [SM]
● Create new project

● Add or edit users in project

● Estimate story - only in backlog, can be result of Scrum poker game – it
should be game like (playing cards)

● Create task – only in not accepted stories

● Edit task details

● Remove task – only free (not taken tasks)

● Estimate task

● Force free task – for purpose when some problem happened with user who
has taken it

● Start and end scrum poker

● Create issues

Product owner (only 1 per project) [PO]
● Edit his own user profile – [online]

● Create story in backlog – [offline]

58

CHAPTER 7 SCRUMAPP SPECIFICATION

● Accept story – when all tasks are done its marked finished and he can accept
it – [offline]

● Edit story – only in backlog – [offline]

● Delete story – only in backlog – [offline]

● Create story from issue – accept the issue – [offline]

● Create issues – [offline]

● Move story from backlog to sprint – [offline]

● Create and edit next sprint – [offline]

● Remove story from sprint to backlog – story must not contain taken tasks,
will remove all tasks from story – [online]

● Set next sprint as current one (automatically moves unfinished tasks and
stories to next sprint) – [online]

Team members (many) [TM]
● Edit his own user profile – [online]

● Create tasks – [offline]

● Edit free or assigned tasks to him which are created by him (if edited also by
SM then the SM version is used) – [offline]

● Take task – must be online to prevent more users from taking same task
[online]

● Free task – only taken by him [offline]

● Close task – only taken by him, when it’s finished – [offline]

● Set time worked on task – only taken by him – [offline]

● Create issues – [offline]

● Join scrum poker and vote on stories – [online]

7.6 Testing
There is possibility to use unit tests for parts of the application logic. Problem with
integration testing would be the fact that huge part of functionality is provided by
the device and running integration tests on the mobile device is not easy and
creating a device mock is a lot of work. As a result the most important testing will
be manual testing of the final application.

59

CHAPTER 8 IMPLEMENTATION

8 Implementation

Implementation
This and several following chapters will contain description of the ScrumApp
implementation. The application consist of three separate projects and Cordova
JavaScript files:

1. Android native part (references in text will be green)

2. iOS native part (references in text will be orange)

3. Application logic and GUI in GWT (references in text will be purple)

4. Cordova plugins

The third part needs to be compiled first and the result is then embedded into both
native parts. I will start with database model for storing data and distributed data
synchronization, then I will follow with native parts, next will be communication
protocol and last will be the actual application logic in GWT.

8.1 Multiplatform and native part
Not every functionality can be done in multiplatform way. Some things work
differently on different platforms or cannot be performed from JavaScript running
in Webview. For example background tasks, that have to run when application is
not in foreground cannot be done using JavaScript, because Webview pauses its
interpretation when it is minimalised or not focused.

Native parts
● Communication server and client

● Database (plugin for Cordova is available and works on Android and iOS and
offers unified, platform independent JavaScript API)

● File export and import

60

8

CHAPTER 8 IMPLEMENTATION

Multiplatform parts
● Application GUI

● Application logic

8.2 Technology stack
As was written in the previous chapter (see 7.3) the chosen technology stack is:

● Native part for Android (Java) and iOS (Objective-C)

● Wi-Fi for communication

● MDNS (Apple bonjour) for device discovery on network

● SQLite database for data storage

● File sharing for project data export and import

● Cordova as multiplatform framework (uses HTML, CSS and JavaScript)

● Cordova plugin for unified database access from JavaScript

● GWT for application logic

● mGWT plugin for mobile touch GUI

● GWT plugin for working with database

61

CHAPTER 9 DATABASE

9 Database

Database
This chapter will be about the ScrumApp database and data synchronization. First
is the overview on the database data model. Then will be described all the tables in
the database and last part will be about data synchronization between the mobile
devices.

9.1 Database model
On the figure 9.1 is a diagram of used database model. This database is present on
all devices and project data for multiple projects can be stored in it. Database
contains special table and columns for synchronization (will be described more
closely in chapter 9.3).

62

Figure 9.1: Database model

9

CHAPTER 9 DATABASE

The model contains many relations and is complex, so I will try to describe each
table, its content and its purpose. The database doesn't contain any triggers or
procedures, because SQLite database has limited features.

9.2 Database tables
The list of all database tables and their structure can be found in attachment 1.
Data types in SQLite are not forced, they work as a suggestion for the database and
it is possible to to store a string in a integer column. Basic data types are null,
integer, real, text and blob. There is no date-time like data type, dates can be stored
as integers, reals or text (I store them as big unsigned integers in milliseconds).
Text values are not limited by size (except global size limit). SQLite database will
try to convert inserted value to defined column type automatically, if possible (this
can be overridden). See [sqlite] for more details on data types in SQLite. If not
specified, the column is a text type. All primary and foreign keys in my database are
stored as big integers (64-bit).

9.2.1 Database update

Dbvers is a simple table for storing current database version. It has only one
column called value and only one row with an integer number. Because the
database is distributed on all devices, it also needs to be updated on all devices and
the upgrade script has to be distributed with application updates. When
application code in ScrumAppDAO class (invoked on each startup) finds that
database version stored in Dbvers is lower than in code, it starts the update method
which updates the database and increases the DB version in Dbvers table (figure
9.2).

if (old < 2)
{
 tx.executeSql("CREATE TABLE IF NOT EXISTS voting(...);", null);
 tx.executeSql("UPDATE dbvers SET value=?;", new Object[] { 2 });
}

Figure 9.2: Database update

9.3 Data synchronization
Data synchronization works on one master and several slaves architecture. SQLite
database doesn't support any form of distributed synchronization, so I have to
implement it on my own. Because I want to allow all devices to do changes and
create data, even when they are not connected to master I have already created
limits on who, what and when can do database changes to prevent conflicts (see

63

CHAPTER 9 DATABASE

use cases in chapter 7.5 for more details). Data exchange format between slave and
master is JSON. The communication protocol and format will be closely described
in chapter 12.

9.3.1 Distributed keys

In distributed environment I can't use auto-incremental keys, because they would
lead to conflicts when two devices create database row with same primary key.
This can be easily overcome with using GUID (Global unique identifier) also known
as UUID (Universal unique identifier) specified in [RFC-4122]. These are randomly
generated large enough numbers to minimalise chance of collision. Usually 128bit
numbers are used, which provide about 5.3x1036 possible unique keys. SQLite
support storing only 64bit numbers [sqlite], there is possibility to store keys as
strings or use only 64bit numbers with less possible unique keys (about 1.8 x 1019),
which is still enough for my use. So I decided to use only 64bit UUIDs, but it would
be possible in case of problems to switch to the string version of 128bit keys, even
with maintaining backwards compatibility with already generated 64bit keys.
[RFC-4122]

9.3.2 Database synchronization

There are several scenarios in the ScrumApp:

● Slave pulls new or modified data from master since his last synchronization

● Slave pushes his offline changes to the master

● Slave asks master to update some data for him

● Master makes direct changes to data

Also not all tables require synchronization, some are only enumerations filled once
and don't need to be synchronized and some tables are local only.

9.3.3 Slave pulls master for updates

This allows slave to get updated and new data from the master. A special column
called lastchange is used. It is used on the master device to store time stamp of
last change occurred in this record. This way when slave requests synchronization,
he tells master last time he got update and master can send him only those records
from each table that had change after the last synchronization. Slave requesting
update with 0 time stamp will receive back full database.

Tables that are synchronized using this mechanism:

● Project

64

CHAPTER 9 DATABASE

● Sprint

● Story

● Task

● Issue

● User

● User_role

See UpdateProjecHandler class, which takes care of extracting all new and
updated data from database on the master. On the slave the data are stored in
slaves database in ProjectUpdateService class.

9.3.4 Slave pushing his changes to master

Slaves use the modified column to mark records they made new or changed, they
also use the Sync table to mark tables they modified so they don't have to go
through whole database before sending. After the data are successfully sent to
master, they set the modified column to false to mark the data as synchronized.

Five tables are synchronized using this mechanism:

● Project

● Sprint

● Story

● Task

● Issue

On slave SendIssuesService, SendProjectService, SendStoriesService,
SendTasksService, SendSprintsService classes are responsible for sending
the modified data to master.

On master see classes IssueSyncHandler, ProjectSyncHandler,
StorySyncHandler, TaskSyncHandler, SprintHandler, as they take care of
adding the slave's changes to the master's database.

9.3.5 Slave asks master to update the database for him

These are the data changes that require the slave to be connected to the master to
prevent conflict in data changes. Also scrum poker game requires the users to be
online to attend to the voting.

These actions use online synchronization:

65

CHAPTER 9 DATABASE

● Accepting stories

● Scrum poker game

● Profile editation

● Project list of projects running on the master

● Claiming tasks by team members

● Authentication data testing (if login/password is correct)

Responsible classes on slave are AcceptStoryService, ClaimTaskService,
PokerService, ProfileEditService, ConnectionService and classes on
master AcceptStoryHandler, ClaimTaskHandler, PokerHandler,
ProfileEditHandler, ProjectListHandler, TestAuthHandler.

66

CHAPTER 10 NATIVE ANDROID PART

10 Native android part

Native android part
The native Android part contains both a client and server part, only Android
devices can currently act as masters. The server part cannot run from JavaScript or
GWT code, because JavaScript cannot be executed in background. For this reason
the server code is written in native code (Java) for Android. For further references
the project root package is at.ontec.scrumapp.

The Android project contains following parts:

● Cordova library

● SQLite Cordova plugin

● JmDNS library for Apple bonjour

● Database layer (DAO) for DB access from Android code (for running server)

● Server ScrumApp part

● Client ScrumApp part

● File import activity for importing project data

● My Cordova plugins for JMDNS, Client, Server and File export

● Multiplatform HTML, CSS and JavaScript code

The application entry point is the ScrumApp class, which is an Android activity. It is
responsible for creating the user interface and user interaction.

“Android activity is a single, focused thing that the user can do. Almost all activities
interact with the user, so the Activity class takes care of creating a window UI and
communication with the user.” [and]

Another important class is the MainApp that handles application specific events
and is responsible for establishing the database connection to the local SQLite
database (this database is private to the ScrumApp and is stored in its private

67

10

CHAPTER 10 NATIVE ANDROID PART

application directory). It is important to note, that for the database correct working
it is required to have only one open database handler for the SQLite database in
Android, otherwise it can lead to concurrency problems. There is no problem in
accessing the database concurrently from different threads, but it has to be done
using the same handle across the whole application, for the locks to work properly.
As I need to work with the database in the background service and also from the
JavaScript using the SQLite plugin I had to store the handle in the application object
so I can access it in all parts of the application. For this reason I also had to modify
the SQLite plugin to use my handle from the application object instead of creating
it's own.

10.1 Cordova library
I have already described the Cordova framework in chapter 3.3.1, and in 10.8 I will
describe the plugins API. I recommend reading the official Cordova documentation
and tutorials [cor] for detailed information as they are good and well maintained.
Cordova offers tools for generating empty Cordova based Android project, which
can then be used to create multiplatform application. I used such project as a base
for ScrumApp.

Cordova library offers a CordovaActivity class, which can be subclassed to
create Android activity with preconfigured WebView component in it.

My subclass is ScrumApp in project root. Other important file is config.xml
located in XML resources, which contains Cordova settings and is used to register
plugins for Cordova, see figure 10.1 for plugin registration example. Each
referenced plugin is a subclass of CordovaPlugin class provided by Cordova.

<feature name="SQLitePlugin">
 <param name="android-package" value="org.pgsqlite.SQLitePlugin"/>
</feature>

Figure 10.1: Plugin registration

The folder for placing HTML, CSS and JavaScript files is located in assets/www
directory inside the Android project. The Webview is then told what file it is
supposed to load on start (figure 10.2).

loadUrl("file:///android_asset/www/index.html");

Figure 10.2: WebView entry file

68

CHAPTER 10 NATIVE ANDROID PART

10.2 SQLite Cordova plugin
I used special SQLite Cordova plugin for unified access to SQLite database from iOS
and Android. See [SQLitePlg] for more information.

10.3 JmDNS library
JmDNS is a Java implementation of Apple bonjour (see chapter 5.3.2 for more). It is
a networking library using multicast messages on local network for device
discovery and advertisement. Library and documentation can be obtained at
[JmDNS].

I have created two small wrappers for the JmDNS library in the jmdns package.
JmDNSDiscovey is for discovery and JmDNSService is for registration.

The service advertises itself in the network with a remote type to identify type of
the service. I use remote type: _scrum._tcp.local. to create type that doesn't
conflict with already commonly used types like _http._tcp.local. The service
also advertises more information like IP address, Application name, operating
system etc.

The discovery scans the network for such services and generates three basic
events:

1. discover – new service was found on the network

2. resolve – resolves additional information about the found service

3. remove – a service sends message that it will be no longer available

In the resolve event I am able to get IP address of the master device and store it for
further use.

10.4 Database DAO
The package db.dao contains database access objects (DAO) for manipulation with
data and database transfer objects (DTO) for storing the data in memory. This
mostly copies the database structure described in 9.1 and 9.2. See the actual
classes for more details.

10.5 ScrumApp server
The server part is unique for the Android version of the application. The server
works as very simple HTTP server with very limited features. The server runs in a
separate part of the application called service.

69

CHAPTER 10 NATIVE ANDROID PART

10.5.1 Background server service

Services are Android components designed for running long term background
tasks. There are several types of background services each for different purpose.
Examples of services use are music playback, long downloads, file operations, VOIP
calls or some network communication. A service can run in the background even if
the component or activity that started it was stopped. [and]

Android offers predefined services for various tasks (downloads, media playback),
but as I need a special one I have to implement it by myself. Foreground part of the
application or even another application (if allowed) can bind to a running service
and communicate with it. Like other application components as activities or
content providers the service has to be declared in application
AndroidManifest.xml file, this file contains information about application,
required privileges, defined activities, content providers (data sharing with other
applications) and various settings (see [and] for more details). On following figure
10.3 is a simple service definition, referencing the class that provides the service.
The exported flag indicates, whether the service can be accessed by other
applications (not allowed here).

<service android:name="at.ontec.scrumapp.tcpserver.ServerService" android:exported="false" />

Figure 10.3: Service declaration

The service is defined in ServerService class, important methods are:

● onStartCommand – this method is invoked when service is started or
restarted by the system, it takes care of starting the server thread and
creates a persistent notification in the notification area, so user knows it is
running

● bind – this method allows the foreground part of application to bind to this
service and communicate with it

● getAddresses, getPort, getServerName – allows those who are bound to
this service to get some data form it, like on what IP address and port is the
server running

● onCreate, onDestroy – are called by the system when the service object is
created/will be destroyed to perform some initialization/cleanup

The service is started in special mode called foreground service, this tells the
system, that the service is important to the user and it should not be stopped or
destroyed, even if memory is low. In case the service gets killed, it is set to tell the

70

CHAPTER 10 NATIVE ANDROID PART

system to start it again when it is possible. For this kind of service it is required to
display notification in the notification area, which cannot be removed, unless the
service is stopped or moved from the foreground mode.

10.5.2 TCPServer

The tcpserver package apart from ServerService contains the ServerThread
class with simple HTTP server implementation. The communication protocol will
be described in the chapter 12. The server thread has two main responsibilities, it
advertises its IP address and port using zeroconf (JmDNS) and it listens on a TCP
socket for incoming connections. The server uses a random port assigned by
operating system.

Only small amount of clients is expected to connect to the server (about 10 at max),
so I did not implement any form of thread pooling for the server. For each request a
new thread is created, because the request is handled in a short time, there are no
cumulating long running tasks.

The communication is encrypted using AES 256bit cypher with a hard-coded key, I
originally wanted to implement a possibility for users to use their own keys instead
of the default one, but this feature was not implemented because there was not
enough time. The encryption is handled by JNCryptor [jnc] (Java implentation of
the RNCryptor library [rnc]). It uses a cross-language AES encryption/decryption
format, allowing easy encrypted communication between devices with different
operating systems. The hard-coded key was generated from a strong password
with PBKDF2 tool (password based key derivation tool 2). See the ServerThread
class for the actual implementation of the server loop.

There are several other files in the tcpserver package:

● TCPRequest – this is a wrapper class for the client's request

● TCPResponse – this is a wrapper class for the server's response

● TCPServiceBinder – this class allows communication with the
background server service

● TCPServiceConnection – this class is used by the main activity to
communicate with the background server service

10.5.3 Scrum server

The scrumserver package contains handlers for synchronization requests
described in the 9.3 chapter. These classes are responsible for parsing the request,
handling it and generating a response for the client.

71

CHAPTER 10 NATIVE ANDROID PART

10.6 ScrumApp Client
The client takes care of discovering the master devices in the network using the
above described JmDNS library and sending requests to the server. In the
tcpclient package simple HTTP client is implemented as the ClientThread
class. It uses the same JNCryptor library as the server for AES encryption and
decryption. It too uses the same hard-coded key.

10.7 File import and export
File import and export serves as a way to backup project data. Project data can be
exported and imported as JSON files. These files can be send to someone over the
Internet, using email or stored on the device's shared file system. The file import
and export functionality is controlled through a Cordova plugin, that will be
described later and the GUI for it is created using mGWT.

10.7.1 File import

The FileImport activity is a native Android activity made with native UI elements,
because it takes long time to initialize a WebView and this activity is launched from
other applications (like file managers, DropBox, email), when the rest of the
ScrumApp is not running. File import activity is responsible for importing project
from a file. This activity is registered in AndroidManifest.xml to accept share
requests for JSON files (see the figure 10.4 below). This allows other applications to
share JSON files with ScrumApp. If they contain valid project data, ScrumApp will
be able to create project from them.

<activity android:label="@string/app_name" android:name="at.ontec.scrumapp.FileImportActivity">
 <intent-filter>
 <action android:name="android.intent.action.SEND"/>
 <action android:name="android.intent.action.ACTION_VIEW" />
 <action android:name="android.intent.action.ACTION_EDIT" />
 <action android:name="android.intent.action.ACTION_PICK" />
 <category android:name="android.intent.category.DEFAULT"/>
 <category android:name="android.intent.category.BROWSABLE" />
 <data android:mimeType="text/plain"/>
 <data android:mimeType="application/json"/>
 </intent-filter>
</activity>

Figure 10.4: FileImport activity definition in AndroidManifest.xml

72

CHAPTER 10 NATIVE ANDROID PART

It saves the imported project file to the private application folder, where it can be
accessed from the ScrumApp application. On the next figure 10.5 is the Activity UI.

10.7.2 File export

For application to be able to share files with another application, it has to
implement a Content provider. Android offers some providers for common tasks
(downloads, media etc.), I used the File provider (see [and] for more on Content
providers). The File provider is defined in the AndroidManifest.xml. An Android
Intent has to be created with information about the shared data. An Intent is a
description of operation we want to perform, it can target specific Activity in this
or different application. It can be general, like any Activity that can send email.
Here (figure 10.6) I am using a generic request for any application that can handle
the application/json file format. Many applications like file managers respond to
any file share request and will offer saving the file on file system.

73

Figure 10.5: FileImport activity

CHAPTER 10 NATIVE ANDROID PART

File file = new File(cordova.getActivity().getApplicationContext().getFilesDir(), filename);
Uri uri = FileProvider.getUriForFile(cordova.getActivity().getApplicationContext(),
 "at.ontec.fileprovider", file);

Intent shareIntent = new Intent();
shareIntent.setAction(Intent.ACTION_SEND);
shareIntent.putExtra(Intent.EXTRA_STREAM, uri);
shareIntent.putExtra(Intent.EXTRA_SUBJECT, name);
shareIntent.setType("application/json");
cordova.getActivity().startActivity(Intent.createChooser(shareIntent, "Share"));

Figure 10.6: Starting a file sharing intent

10.8 Cordova plugins
These plugins serve as a bridge between the JavaScript Web based application part
and the native code. Cordova offers a simple API for plugin creation. I have created
four Android Cordova plugins for the ScrumApp, they are located in the
pg.plugins package:

● Files – plugin takes care of file operations, exporting, importing and
sharing project files

● JmDNS – plugin servers as controller for JmDNS discovery

● TCPClient – plugin controls sending and receiving messages using the
HTTP client

● TCPServer – plugin controls starting and stopping the background server
services

10.8.1 Plugin principle

Each plugin class inherits from CordovaPlugin class and overrides the execute
method, which is called every time the plugin is used from JavaScript. On the
following figure 10.7 is a part of the implementation of the execute method in
TCPServer plugin.

74

CHAPTER 10 NATIVE ANDROID PART

@Override
public boolean execute(String action, JSONArray args, final CallbackContext callbackContext)
throws JSONException
{
 if (action.equals("start"))
 {
 //Starts the service
 ...
 JSONObject result = new JSONObject();
 result.put("status", "start");
 callbackContext.success(result);
 return true;
 }
 else if (action.equals("stop"))
 {
 //Stops the service
 ...
 callbackContext.success(result);
 ...
 return true;
 }
 else if (action.equals("status"))
 {
 //Reports service status.
 ...
 callbackContext.success(result);
 return true;
 }
 else if (action.equals("available"))
 {
 //Returns if server is available on this platform
 JSONObject result = new JSONObject();
 result.put("status", "available");
 result.put("message", true);
 callbackContext.success(result);
 }
 return false;
}

Figure 10.7: JmDNS plugin Java part

The action specifies what operation will be executed, args contain parameters
passed from JavaScript in JSON Array, the callback context serves as means of
passing return value back to the JavaScript code. The plugin call is asynchronous.
To tell Cordova which plugins are installed, plugins are registered in config.xml
file (figure 10.8).

<feature name="TCPServer">
 <param name="android-package" value="at.ontec.scrumapp.pg.plugins.TCPServer"/>
</feature>

Figure 10.8: TCPServer plugin registration

75

CHAPTER 10 NATIVE ANDROID PART

On the JavaScript side, plugin can be called with following call (figure 10.9). We
have to supply two callback functions, one for success and second for error, then
we specify plugin name from the config.xml (TCPServer), the required operation
(start) and the last are arguments in an array, here only one with server name.

cordova.exec(successCallback, errorCallback, "TCPServer", "start", [serverName]);

Figure 10.9: Calling Cordova plugin from JavaScript

Many Cordova plugins for various use cases exists and can be downloaded. As
shown above it is very simple to implement own plugins.

10.9 Multiplatform HTML, CSS and JavaScript code
The assets/www folder contains all the web resources used by the WebView to
render the application. As I created the application using GWT, there are not many
interesting files here. A simple index.html file used to load the GWT JavaScript,
CSS file with some default style settings and simple JavaScript wrappers for the
Cordova plugins. The scrumappgwt folder contains all the generated GWT files.

76

CHAPTER 11 NATIVE IOS PART

11 Native iOS part

Native iOS part
The iOS application contains only the client part, running the server on iOS would
be technically possible, but only certain tasks are allowed by Apple to run
persistently in the background as described in 3.1.1.

The iOS project contains following parts:

● Cordova library

● SQLite Cordova plugin

● Client ScrumApp part

● File export and import

● My Cordova plugins for mDNS, Client and File export

● Multiplatform HTML, CSS and JavaScript code

The iOS native part is written in Objective-C (Swift was not released, when I started
implementing ScrumApp). The iOS application is much simpler than the Android
version, because of the missing server part.

The ScrumApp iOS application has one View called MainViewController, which
contains the WebView used for rendering the GWT code. The AppDelegate class
handles application events and performs initial setup. Other various application
settings are stored in the ScrumApp-Info.plist.

11.1 Cordova library
The Cordova library works very similar on iOS and Android. Both above mentioned
classes MainViewController and AppDelegate inherit most of their function
from Cordova. Plugins too are registered in the config.xml file. The Cordova tools
can generate an empty Cordova based iOS project, which I used as a base for
ScrumApp.

77

11

CHAPTER 11 NATIVE IOS PART

11.2 SQLite plugin
I used special SQLite Cordova plugin for unified access to SQLite database from iOS
and Android. See [SQLitePlg] for more information.

11.3 ScrumApp Client
The client takes care of sending requests to the server and discovering the master
devices in the network using the mDNS (Apple bonjour), which is integrated into
the iOS SDK and no third party library is needed.

The ServerBrowser class takes care of the device discovery and it offers similar
functionality as the JmDNSDiscovey on Android, it too searches the network for
the _scrum._tcp.local. remote service type and handles the following events:

1. discover – new service was found on the network

2. resolve – resolves additional information about the found service

3. remove – a service sends message that it will be no longer available

The Connection class is a simple HTTP client implementation. The client uses the
RNCryptor library, which is fully compatible with the JNCryptor Java
implementation in the Android application, allowing easy encrypted
communication between the iOS and Android ScrumApp applications. Like in the
Android version, 256bit AES encryption with the same hard-coded key is used.

11.4 File import and export
The file export on iOS is implemented using a native component for sending emails.
File import is currently only possible using iTunes, by copying the project file to the
application documents directory, where it can be loaded. Exported projects can
backed up by this way too. Document sharing via iTunes can be enabled easily by
adding a key UIFileSharingEnabled with value true to the ScrumApp-
Info.plist file.

The email composer component is launched from the Files plugin. The following
code (figure 11.1) is responsible for starting the composer as a modal View.

MFMailComposeViewController* controller = [[MFMailComposeViewController alloc] init];
 controller.mailComposeDelegate = self;
 [controller setSubject:name];
 [controller addAttachmentData:exportFileData mimeType:@"application/json" fileName:filename];
 if (controller) {
 [((AppDelegate*) self.appDelegate).viewController
 presentModalViewController:controller
 animated:YES];
 }

Figure 11.1: Starting mail composer in Objective-C

78

CHAPTER 11 NATIVE IOS PART

An email template will be created for the user with subject and attachment.

11.5 Cordova plugins
These plugins serve as a bridge between the JavaScript Web based application part
and the native code. Cordova offers a simple API for plugin creation. I have created
four iOS Cordova plugins for the ScrumApp.

● FilesPlugin – plugin takes care of file operations, exporting, importing
and sharing project files

● MDNSPlugin – plugin serves as controller for MDNS discovery

● TCPClientPlugin – plugin controls sending and receiving messages using
the HTTP client

● TCPServerPlugin – TCP server is not implemented on iOS and the only
purpose of this plugin is to tell the JavaScript part, that it is not available.

11.5.1 Plugin principle

Plugins on iOS work very similar as on Android. Each plugin is a subclass of the
CDVPlugin class. The plugin defines available operations in it's interface (figure
11.2)

#import <Cordova/CDVPlugin.h>
#import <MessageUI/MFMailComposeViewController.h>
#import "AppDelegate.h"

@interface FilesPlugin : CDVPlugin <MFMailComposeViewControllerDelegate>
- (void) filesExport:(CDVInvokedUrlCommand*)command;
- (void) filesShare:(CDVInvokedUrlCommand*)command;
- (void) filesFiles:(CDVInvokedUrlCommand*)command;
- (void) filesFile:(CDVInvokedUrlCommand*)command;
- (void) filesDelete:(CDVInvokedUrlCommand*)command;
- (void) filesImport:(CDVInvokedUrlCommand*)command;
@end

Figure 11.2: Plugin interface in header file

On the figure 11.3 below is a shortened implementation of one of the operation
from the FilesPlugin class. As on Android, the plugin receives an array of
arguments from the calling JavaScript and then uses the callback object to pass
back results. Calling plugins in iOS is asynchronous too.

79

CHAPTER 11 NATIVE IOS PART

- (void) filesDelete:(CDVInvokedUrlCommand*)command
{
 @try
 {
 NSArray* arg = command.arguments;
 NSString* filename = arg[0];
 ...
 NSDictionary* result = @{
 @"status" : @"delete",
 @"delete" : success ? @"true" : @"false"
 };
 NSLog(@"Delete file %@", result);
 CDVPluginResult *pluginResult = [CDVPluginResult
 resultWithStatus : CDVCommandStatus_OK
 messageAsDictionary : result
];
 [self.commandDelegate sendPluginResult:pluginResult callbackId:command.callbackId];
 }
 @catch (NSException *exception)
 {
 NSLog(@"Delete file error %@", exception);
 NSDictionary *jsonObj = @{
 @"status" : @"error",
 @"message" : @"Delete file failed"
 };
 CDVPluginResult *pluginResult = [CDVPluginResult
 resultWithStatus : CDVCommandStatus_ERROR
 messageAsDictionary : jsonObj
];
 [self.commandDelegate sendPluginResult:pluginResult callbackId:command.callbackId];
 }
}

Figure 11.3: Plugin operation implementation

Plugins are registered in the config.xml file like on android (figure 11.4).

<feature name="SQLitePlugin">
 <param name="ios-package" value="SQLitePlugin"/>
</feature>

Figure 11.4: Plugin registration on iOS

The JavaScript part of plugins is exactly same like on android and is shared by both
implementations.

11.6 Multiplatform HTML, CSS and JavaScript code
The www folder contains all the web resources used by the WebView to render the
application. As I created the application using GWT, there are not many interesting
files here. A simple index.html file used to load the GWT JavaScript, CSS file with
some default style settings and simple JavaScript wrappers for the Cordova plugins.
The scrumapp folder contains all the generated GWT files.

80

CHAPTER 12 COMMUNICATION PROTOCOL

12 Communication protocol

Communication protocol
The communication between the client (slave device) and server (master device) is
done using REST architecture. A simple HTTP server runs on the master and the
slaves use a simple HTTP client to communicate with the server. Communication is
always initiated by the client. MDNS is used to obtain IP address of the server
device by clients.

HTTP request
All of the requests from clients are using the HTTP post method and message
payload is sent in JSON format. The HTTP header contains an authorization field
with user login and password. Both the payload and the authorization string are
encrypted. On the following figure 12.1 is the request format.

POST / HTTP/1.1
Authorization: login:password //encrypted
Content-Type: application/octet-stream
Content-Length: payload size
Host: address:port

{ encrypted JSON payload }

Figure 12.1: HTTP request format

HTTP response
The response format from server is very similar (figure 12.2). The server does not
communicate in unencrypted format and is not designed to be used by any third
party clients.

HTTP/1.1 200 OK
Content-Type: application/octet-stream
Content-Length: payload size

{ encrypted JSON payload }

Figure 12.2: HTTP response format

81

12

CHAPTER 12 COMMUNICATION PROTOCOL

12.1 Server method list
As can be seen in the ScrumServerHandler class, there are several methods
available on the ScrumApp server. Each request to the server contains a JSON
object as payload with field cmd, which identifies the requested operation. The
response is usually a JSON object or a JSON array.

List of methods:

● get projects – returns list of available projects on the server

● test auth – tests if login and password are correct

● update project – pulls new project data since last synchronization or
whole project

● sync issues – pushes client offline changes of issues to the server

● sync stories – pushes client offline changes of stories to the server

● sync project – pushes client offline changes of project to the server

● sync tasks – pushes client offline changes of tasks to the server

● sync sprints – pushes client offline changes of sprints to the server

● edit profile – sends changes after client profile editation

● claim task – lets the team member take an open task from scrum board

● accept story – lets product owner accept a finished story

● vote – sends a client vote in scrum poker

● get votes – returns list of current votes

12.2 Message content examples
Here I will show few communication examples. I will show the payload decrypted,
as it wouldn't be interesting to show the encrypted bytes. The content length
stands for the encrypted version of the message.

82

CHAPTER 12 COMMUNICATION PROTOCOL

12.2.1 Project list

First example shows client requesting list of available project from a server.

Request

POST / HTTP/1.1
Authorization: login:password
Content-Type: application/octet-stream
Content-Length: 82
Host: 192.168.0.19:41219

{"cmd":"get projects"}

Response

HTTP/1.1 200 OK
Content-Type: application/octet-stream
Content-Length: 274

[
 {"id":"6815474812","name":"Party","description":"Test project"},
 {"id":"2550179721","name":"Test scrum","description":"abc"},
 {"id":"6891572548","name":"New project","description":"My new project"}
]

12.2.2 Vote

This example shows voting in scrum poker game.

Request

POST / HTTP/1.1
Authorization: login:password
Content-Type: application/octet-stream
Content-Length: 146
Host: 192.168.0.19:41219

{"cmd":"vote","project":"2550179721","story":"9021323674","user":"125958003","vote":"13"}

Response

HTTP/1.1 200 OK
Content-Type: application/octet-stream
Content-Length: 66

{"vote":"13.0"}

83

CHAPTER 12 COMMUNICATION PROTOCOL

12.2.3 Sync issues

Last example shows client sending a new issue to the server.

Request

POST / HTTP/1.1
Authorization: login:password
Content-Type: application/octet-stream
Content-Length: 386
Host: 192.168.0.19:41219

{
"cmd":"sync issues",
"project":"2550179721",
"issues":
 [{
 "id":"6469405778",
 "name":"New issue",
 "description":"This is very important",
 "created":"1434213464642",
 "closed":null,
 "priority":"2",
 "lastchange":"1434213464644",
 "author":"125958003",
 "type":"11",
 "status":"21",
 "project":"2550179721",
 "story":null,
 "comment":null,
 "modified":"true"
 }]
}

Response

HTTP/1.1 200 OK
Content-Type: application/octet-stream
Content-Length: 66

{"synced":1}

84

CHAPTER 13 GWT MULTIPLATFORM PART

13 GWT multiplatform part

GWT multiplatform part
GWT (Google Web toolkit) is a set of open source (Apache license) tools for web
front-end development in Java.

From the official documentation:

“GWT is a development toolkit for building and optimizing complex browser-based
applications. Its goal is to enable productive development of high-performance web
applications without the developer having to be an expert in browser quirks,
XMLHttpRequest, and JavaScript. GWT is used by many products at Google, including
AdWords, AdSense, Flights, Hotel Finder, Offers, Wallet, Blogger. It’s open source,
completely free, and used by thousands of developers around the world.” [GWT]

13.1 GWT overview
The GWT allows developers to write, test and debug the application in Java and
then using the GWT Java to JavaScript compiler, the Java code is translated to
optionally obfuscated and optimized JavaScript. GWT contains JavaScript
implementation of many standard Java classes (for example, java.lang and a part
of java.util packages). [GWT]

For more detailed information on how GWT framework works see [GWT], the
official documentation is good and well maintained.

13.1.1 Developing using GWT

GWT code can be debugged in the Chrome browser using a GWT development
plugin. The application code is run on local Java virtual machine, instead of
compiling it to JavaScript. This allows easy development without having to compile
the code after every change, the debugger supports code hot swap. [GWT]

85

13

CHAPTER 13 GWT MULTIPLATFORM PART

13.1.2 JSNI

GWT Java code is translated to JavaScript, this allows for combining the Java code
with JavaScript and connect the application to existing JavaScript code. The JSNI
(JavaScript native interface) allows this. It even allows using Java objects from GWT
in the JavaScript code. The JSNI methods use a keyword native and the JavaScript
implementation of the method is written in Java comment (figure 13.1). [GWT]

public static native void alert(String msg) /*-{
 $wnd.alert(msg);
}-*/;

Figure 13.1: GWT native method

Calling Java methods and using Java objects from JavaScript (figure 13.2) use
similar syntax as calling them from C in the JNI (Java native interface). [GWT]

[instance-expr.]@class-name::method-name(param-signature)(arguments)

Figure 13.2: Java call

The figure 13.3 below shows real example of calling Java code from JavaScript. The
callback object is a Java class and its onSuccess and onFailure methods are used.
The jsonObject created in the JavaScript is a Java object too. The setCallback
method serves for setting a callback on the MDNS Cordova plugin I created, which
is invoked when MDNS fires an event.

public static native void setCallback(Callback callback)
/*-{
 if (typeof $wnd.mdns === 'undefined') return;
 var successCallbackfunc = function(data)
 {
 var jsonObject = @com.google.gwt.json.client.JSONObject::new(
 Lcom/google/gwt/core/client/JavaScriptObject;)(data);
 callback.@com.ontec.scrumapp.client.jsni.Callback::onSuccess(
 Lcom/google/gwt/json/client/JSONObject;)(jsonObject);
 };
 $wnd.mdns.setSuccessCallback(successCallbackfunc);

 var errorCallbackfunc = function(data)
 {
 var jsonObject = @com.google.gwt.json.client.JSONObject::new(
 Lcom/google/gwt/core/client/JavaScriptObject;)(data);
 callback.@com.ontec.scrumapp.client.jsni.Callback::onFailure(
 Lcom/google/gwt/json/client/JSONObject;)(jsonObject);
 };
 $wnd.mdns.setErrorCallback(errorCallbackfunc);
}-*/;

Figure 13.3: JSNI example

86

CHAPTER 13 GWT MULTIPLATFORM PART

13.1.3 mGWT

I am using a GWT plugin called mGWT (mobile GWT) for building the application
GUI. This plugin contains classes, tools, CSS and JavaScript resources aimed at
creating mobile, touch friendly, animated user interfaces. The plugin is open
source, distributed under the Apache license. It offers universal theme and
platform themes for iOS and Android (figure 13.4). It is developed by Daniel Kurka
and the current version is 2.0. [mGWT]

I am using older version of mGWT (1.1.2). I started development in the late
summer 2013 and the mGWT project did not get any updates for a long time (over
a year) and it looked abandoned, there were bugs, that seemed no one is going to
fix, so I made several workarounds for them. When the new 2.0 version was
released, I tried updating my project, but many things were completely reworked
and were not backwards compatible and I would have to rewrite too many things. I
did not have time to do so and decided to leave the project with the patched old
version. In the old version the universal and Android theme was not so good and
did not work correctly, so I decided to use the iOS 6 theme for the whole
application, as it was the best looking and least buggy option I had (and I did not
had to fix two themes). The mGWT contains common UI elements like text fields,
sliders, buttons etc. which are all rendered using HTML, JavaScript and CSS.

13.1.4 GWT PhoneGap

GWT PhoneGap is a GWT plugin allowing easy use of Cordova JavaScript APIs from
GWT. It is implemented as JSNI wrapper around the JavaScript API. By using this
plugin I did not had to write so many JSNI wrappers, only for my own Cordova
plugins. [mGWT, gwt-pg]

87

Figure 13.4: mGWT platform themes

CHAPTER 13 GWT MULTIPLATFORM PART

13.2 ScrumApp GWT
The ScrumApp contains many classes, I will not try to write about everything, I will
rather describe some functional units. Default package with my sources is
com.ontec.scrumapp. The application sources consists of following parts:

● com.google.code.database package with database plugin

● com.googlecode.mgwt package with patched mGWT sources

● client package with entry points and various helper classes

● client.activities package with application activities and views

● client.connection package with classes taking care of parsing requests
and creating responses

● client.css package with some custom css settings

● client.dao package with database layer

● client.files package with classes handling project export and import

● client.jsni package with JSNI wrappers

● client.resources package with application resources

● client.ui package with custom UI components

● client.util package with utility classes

And two additional libraries:

● gwtphonegap is a Cordova JavaScript API wrapper

● gwt-crypto contains encryption utilities

The base package contains ScrumAppMGWT.gwt.xml file, where are defined used
GWT modules (plugins) and the application entry point class.

13.2.1 Database plugin

I used a GWT plugin from the gwt-mobile-webkit project [gwt-db], that allows
using SQLite database embedded in the browser. I modified the sources a bit so the
plugin connected to the SQLite Cordova API instead (when available) on the device
using the SQLite database embedded in the mobile device (it has better
performance and is not limited in size by the browser settings). For testing,
development and debugging in browser I used the Chrome's embedded database.

88

CHAPTER 13 GWT MULTIPLATFORM PART

13.2.2 Client

The client package contains application entry point and various helper classes:

● MgwtAppEntryPoint is an application entry point class, it takes care of
initializing the application and performing startup setup. Additionally it
initializes connection to Cordova API.

● ClientFactory and it's implementation is responsible for creating Views
(page/screen UI) when they are first needed and then stores them for
further need, so they are not created again (the operation is resource
heavy). Any other class that needs to obtain a View do it through this factory
class.

● AppHistoryObserver class takes care of rebuilding the View history
hierarchy, when application is started on other than the root View. It pushes
all the needed Views to the history, so when user navigates back, he gets to
correct previous pages. It also registers to the WebView back action
(browser back button), for example when Android back button is triggered.

● AppPlaceHistoryMapper contains registrations of tokenizers, they take
care of converting string URL parameters to Place objects and vice versa
(more about places later).

● PhoneActivityMapper creates a new Activity (page controller/logic) from
a Place object and passes the correct arguments to it from the Place object.

● PhoneAnimationMapper defines transition animations between pages.

● Tablet mappers are not implemented and could be used to create a tablet
layout (two columns layout in landscape for example).

13.2.3 Connection

The client.connection package contains classes for communication with the
master device, pulling data from server and pushing changes back. The
implementation tries to contact last known IP address and port of the master
device (stored in project table for each project), if the communication fails it starts
the mDNS discovery and searches for the master on the network, if master is found
on new address, it is stored to the database, otherwise the communication attempt
fails (there are few retries and a timeout).

89

CHAPTER 13 GWT MULTIPLATFORM PART

Important classes are:

● DeviceDiscovery is a class controlling the mDNS discovery, anyone can
register a callback and receive notifications on discovered or removed
services from network, it uses my Cordova plugin for mDNS. It automatically
starts the mDNS when first callback is added and stops it, when last callback
is removed.

● MessageDispatcher is a class that handles sending and receiving
messages over TCP using my Cordova TCPClient plugin.

● ServerStatus is a class that allows reading status of the local TCP server
service if it is running and on what address and port.

● services.ConnectionService is a class that adds a convenience layer on
the communication. It uses the MessageDispatcher and Device
Discovery classes to handle sending messages. The sender does not have
to know IP and port of the master, only the project, message and credentials
have to be provided. The ConnectionService automatically tries to find
the master on last known address or starts discovery to search the network.
Sender does not have to care about what needs to be done to deliver the
message. If max retry count is reached, sender is notified via callback about
delivery failure, otherwise he receives a server response.

Synchronization
In the client.connection.services.sync package are classes for using the
available methods of the server REST API. Those classes provide client side of the
API and copy the structure of the methods of TCPServer handlers described in
12.1.

13.2.4 DAO

The package client.dao contains database access objects (DAO) for manipulation
with data and database transfer objects (DTO) for storing the data in memory. This
mostly copies the database structure described in 9.1 and 9.2. See the actual
classes for more details.

The most interesting part is the ScrumAppDAO class, this class creates the database,
if it does not exists, handles database structure updates and provides database
handle for the rest of the application.

90

CHAPTER 13 GWT MULTIPLATFORM PART

13.2.5 Files

The files package contains a Backup class that handles exporting project data to
JSON and importing the from JSON. It communicates with my Cordova Files plugin
to store and load the data from the mobile device.

13.2.6 JSNI

The package client.jsni contains JSNI wrappers for my Cordova plugins.

13.2.7 Resources

The resources package client.resources contains application resources,
localized strings (only English version exists), image resources and some CSS
resources.

13.2.8 UI

The client.ui package contains a custom TabBar buttons for the scrum board
and a ValidationForm, which is a convenience class for easy creation of forms
with user input validation, as forms are widely used in the application.

13.2.9 Util

The client.util package contains various utility classes:

● Crypto contains methods for calculating Hashes (SHA1 and MD5).

● Estimation contains constants for the estimation and scrum poker game.

● IDPool contains methods for generating random UUIDs.

● SyncTimer is a class with synchronization timer, that takes care of starting
synchronization with master periodically. The synchronization can be
scheduled with interval in milliseconds and is paused, when application is
not in foreground.

● Vector is a class representing a 2D vector and operations with vectors. It is
used for graph painting.

13.2.10 Activities

The client.activities package contains individual pages (screens) of the
ScrumApp and some common functionality for them.

● BasicActivity is base class for activities, contains shared functionality of
all activities. Registers browser actions (history events) and refresh, resume
and pause events.

91

CHAPTER 13 GWT MULTIPLATFORM PART

● BasicView and BasicViewImpl contain shared elements: Header, footer,
back button, action button, scroll panel with layout panel for content.

Each page consists of three classes and one interface:

● View is an interface for the ViewImpl class, there can be more View
implementations, for example one with GUI for phones and second for
tablets.

● ViewImpl class defines the user interface for the page and allows the
activity to display content in it or retrieve user's input.

● Place allows an activity to be accessed via URL, it provides PlaceTokenizer
which allows serialization and deserialization of places to and from URL .

● Activity contains the page's functionality.

13.2.11 Pages

Here is a list of individual pages in the ScrumApp (in the client.activities
package).

authentication
This page is for setting and updating credentials for a project. It is started, when
user starts connecting to a new remote project. It tests provided credentials using
the server's test auth method. If provided project credentials it starts the project
data update afterwards.

backlog
This page is for displaying the product backlog as a list of stories. It allows product
owner to add, edit and remove stories, reorder the backlog and move stories to
sprint backlog. Scrum master can start the scrum poker for a story from here.

backlog.edit
This page contains a form for creating and editing product backlog stories.

editprofile
This page lets user to change his profile picture, it updates the profile settings on
the server immediately (or fails if connection to server is not available).

estimation.picker
This page serves for setting or changing the estimation for a story (without using
the scrum poker).

92

CHAPTER 13 GWT MULTIPLATFORM PART

export
This page handles exporting a project from a project list to a file using Cordova
files plugin.

files
This page shows a list of available project files in application private folder using
Cordova files plugin.

fileimport
This page is for importing a project from a file using Cordova files plugin.

issues
This page is for displaying a list of issues and allows the product owner to
manipulate them. Anyone can create an issue on this page.

issues.close
This page allows the product owner to close an issue, refuse or accept it (and
create a story from it).

issues.create
This page contains a form for creating issues.

menu
This page servers as an entry point of the ScrumApp, it is a dashboard containing
overview of relevant information about currently selected project and links to
other parts of application. ScrumApp server can be started or stopped.

project
This page shows list of local (running from this device), remembered (was
connected to, has local copy) and available projects (never connected to, no local
copy). A local or remote project can be set as current project. Also allows creating
new projects.

project.create
This page contains form for new project creation.

project.edit
This page contains form for editing project settings.

project.edit.users
This page shows list of users of a project. Scrum master can add, edit or deactivate
users here.

93

CHAPTER 13 GWT MULTIPLATFORM PART

project.edit.users.edit
This page contains form for creating or editing user by scrum master.

projectgraph
This page contains HTML canvas and draws project burndown graph on it.

scrumboard
This activity shows project scrum board. It has a tabbar component with three tabs
(open, work and done tasks) and allows manipulation with tasks.

Scrumboard.edittask
This page contains form for creating or editing tasks.

scrumpoker
This page is for the scrum poker game, it shows a story that is being estimated and
a list of users (from project) and their votes (hidden until voting is finished), each
user can vote for the story. The scrum master can end the voting and show the
voting results to everyone.

sprint.current
This page contains form for creating or editing current sprint.

sprint.graph
This page contains HTML canvas and draws sprint burndown graph on it.

sprint.next
This page contains form for creating or editing next sprint.

sprintbacklog
This page is for displaying the sprint backlog as a list of stories. It allows product
owner to add, edit and remove stories, reorder the backlog and move stories back
to product backlog, he can also accept stories when they are finished. Scrum
master can start the scrum poker for a story from here.

sprintbacklog.accept
This page contains form, where product owner can comment on story when he
accepts it.

sprintbacklog.edit
This page contains a form for creating and editing sprint backlog stories.

94

CHAPTER 13 GWT MULTIPLATFORM PART

sprinthistory
This page shows a list of finished sprints, for each finished sprint details can be
viewed (list of stories, burndown chart).

sprinthistory.sprintdetail
This page shows a list of stories for a finished sprint in the sprint history.

transferstory
This page allows product owner to select a new position for a story, when he moves
it between sprints.

95

CHAPTER 14 TESTS

14 Tests

Tests
From the possible methods of testing I decided to use manual test scenarios as they
suit my application best. A lot of application functionality rely on access to
database or networking, for unit test it would be required to create mock of the
database and networking, this would be very complex and time consuming. Maybe
if the application was designed with this in mind from start, but as I was using and
exploring the technology used in this application for first time, I had to made a lot
changes in the code. Maintaining tests with heavily changing code is time
consuming. Using any form of integration tests to test the distributed
communication is a problem, as I did not find any suitable testing framework for
this. There is a possibility to test Webview based applications using Selenium
framework on real devices, but it is hard to make it work and it does not offer any
easy way to test synchronization of multiple devices at the same time. In the
attachment 2 are described used testing scenarios. The ScrumApp did not get any
form of extensive user testing yet. Application was tested on following devices:

● Nvidia Shield Tablet (Android 5.0 and 5.1) – everything works, UI is fast
and smooth

● Sony Xperia Z3 Compact (Android 4.4 and 5.0) – everything works, UI is
fast and smooth

● Xiaomi MiPad (Android 4.4) – everything works, but UI lags and is slow
(this tablet has issues with all WebView based applications, despite having
powerful hardware)

● Samsung Galaxy Nexus (Android 4.3) – everything works, UI is not smooth,
as this device is older and has weaker hardware

● Apple iPad mini 1st generation (iOS 7) – everything works, UI is fast and
smooth (despite this iPad's old hardware, WebView applications are well
optimized on iOS)

96

14

CHAPTER 15 RESULTS

15 Results

Results
I created a multiplatform mobile application called ScrumApp using the Cordova
framework. It has all the required features specified in the specification and several
optional features are implemented. The application works on Android and iOS, only
the Android version has the server functionality (due to iOS limitations). I haven't
published the application on the Google play and Apple AppStore yet, one reason is,
that paid account is required (which I don't have) and the second is, it would
require me to further develop, maintain, provide bug fixes and support the
application and I currently don't have enough time to do it. In the attachment 3
are some screenshots of the ScrumApp.

15.1 What is done
All the basic features are implemented in some way:

● Distributed communication over Wi-Fi – works correctly, users don't have to
deal with IP addresses, as they are automatically resolved using the mDNS.

● Product and sprint backlog – product and sprint backlog are implemented,
they support story adding, editing and ordering. Stories can be moved
between product and sprint backlog.

● Story and task planning – stories can be planed in the backlog, for
estimation is implemented the scrum poker game. For task planning is the
scrum board.

● Burndown charts for sprints and project – both are implemented

● Scrum board – scrum board is implemented and three task states are
possible (open, work, done)

● Android version – The Android version has all implemented features.

97

15

CHAPTER 15 RESULTS

● iOS version – The iOS version has all implemented features except the
server part.

● Phone user interface – The phone user interface is created using GWT with
mGWT plugin and has iOS 6 visual theme.

These optional features are implemented:

● Scrum poker game – the scrum poker game is fully implemented and can be
used to estimate stories, it uses distributed communication allowing several
mobile devices to participate in the voting process.

● Project data export and import – projects can be exported and imported
from files. These files can be send by email and exported/imported by
iTunes on iOS or shared to or from any application that supports JSON files
on Android.

● Communication encryption – Network communication is encrypted using
264 bit AES encryption, only drawback is the hard coded encryption key,
that cannot be changed.

● Some form of backup way of synchronization if no Wi-Fi is available – the
file export/import can be used as a backup way of synchronization, but it is
not very convenient way.

15.2 What isn't done
Some of the optional features were not implemented, mostly to lack of time and
technical difficulties:

● Database encryption – there are several libraries for SQLite database
encryption on iOS and Android, the most promising was SQLCipher [sql-c],
which should work with the used Cordova SQLite plugin, but I did not
manage to get it working in reasonable amount of time. The use with
Cordova is not well documented, and second problem is that I am accessing
the database also from native code on Android.

● Windows Phone version – the WP version was not implemented, first
problem was, when I started development the WP 7 did not have any
support for Apple bonjour (mDNS), second problem is that used mGWT
version supports only WebKit based browsers and WebView on WP uses
trident from Internet explorer. It would also take a lot of time to create the
native WP part.

● Tablet user interface – only lack of time prevented the tablet user interface,
there are no technical obstacles for further implementation.

98

CHAPTER 15 RESULTS

● Changes history (tasks, stories) – not implemented due to lack of time.

● Saving logs – not implemented due to lack of time.

● Localization to more languages – not implemented due to lack of time.

15.3 Encountered problems
The biggest problem was the mGWT plugin for GWT. As mentioned before I am
using older version of this plugin, because updating to newer version would take
too much effort and many things would have to be rewritten to work with the new
API. This older version did not get updated for a long time and contains many bugs.
When I was writing this application I had to fix or workaround several problems
mostly broken CSS rules (not working with longer texts, enlarging buttons instead
of centering them in parent container, and some more), or customizing the TabBar
component as it lacked needed features (custom icon buttons) and the iOS 6
themed version did not worked correctly on Android and had to be fixed.

Another small problem was the bureaucracy needed to be able to develop and
deploy iOS applications on real device. Launching applications from Xcode in
simulator is simple, but to deploy them on real device, the device has to be
registered in developer account, certificates for application has to be created and
then imported to Xcode. This process is very chaotic for anyone who haven't seen it
before (it is actually simpler to hack and unlock the device to accept unsigned
applications).

When I was writing the GWT code I encountered a problem called callback hell.
This problem came to GWT and it's plugins from JavaScript, where asynchronous
calls, that return result in a callback are very common. It is caused by nesting
callbacks into another callbacks (see simplified example in GWT Java on figure
15.1).

AsyncFunction1(...) {
 @Override
 public void onResult(Result result) {
 asyncFunction2(...) {
 @Override
 public void onResult(Result result) {
 asyncFunction3(...) {
 @Override

 public void onResult(Result result) {
 …

 });
 }
 });
 }
 });
}

Figure 15.1: Callback hell

99

CHAPTER 15 RESULTS

GWT uses Java, but as it is closely connected with JavaScript, this problem occurs
here too and the resulting code looks even uglier than in JavaScript (thanks to the
anonymous classes wrapping the callbacks). I must confess, that I did not manage
to resolve this problem in any way and on many places in the GWT part there are
nested callbacks and the resulting code is not very readable, not mentioning that
this code is prone to errors and very hard to test. But it is very hard to avoid this
problem, as you can't avoid using the callbacks.

15.4 Supported devices
The ScrumApp requires an Android device with version 2.3 and above or an iOS
device with iOS 7 and above. Wi-Fi is needed for communication, but it is present in
basically all modern smarphones and tablets.

15.5 Performance
WebView application are more resource demanding than native applications, more
powerful hardware is needed to run them. Also very important is the optimization
and performance of the used WebView, which is provided by the device and is not
part of ScrumApp. iOS has had very well optimized WebView for a long time and
this application can run smoothly even on older iOS devices. The situation on
Android is more complicated, as many device manufacturers provide their own
WebView implementations, the performance can vary vastly between different
devices. Android devices with version 2.3 and lower don't use hardware
acceleration for WebView resulting in very poor performance (but this Android
version is old and there are not many devices with it today). From version 4.0 to
4.3 the WebView uses a hardware acceleration, but it's performance and
optimization is not so good (varies a lot between different devices). Version 4.4
received many WebView optimizations (WebView is based on Google Chrome
code) and runs much better (except on the Xiaomi MiPad I used for testing). From
version 5 and above the WebView is an independent system component and is
updated like a normal Android application through the Google play, performance
was also greatly improved.

Support for newer technologies like HTML5 in WebViews is very good and the
situation is much better than on desktop, as mobile devices are more often
replaced and there is no need to optimize the code for older browsers (like older
versions of Internet explorer), also except Windows phone all mayor platforms use
WebKit as a base for WebViews, making optimization easier.

100

CHAPTER 15 RESULTS

15.6 Battery usage
Using the client side of the application has no special impact on battery compared
to other applications, all the networking resources are cleaned and connections are
closed when application leaves foreground and is paused.

The server part has a small to moderate impact on battery life as it prevents the
device from going into sleep. It depends on the battery size, larger devices like
tablets will be affected much less by the background running service. When the
device is awake and being used, the added energy consumption is very low,
compared for example to the device's screen or cellular connection.

15.7 Software used for development
The iOS part of application was developed using Xcode on OS X. For Android
development I used mainly Eclipse with ADT (Android development tools) plugin,
later, when it was released I switched to Android studio (based on IntelliJ IDEA).
The GWT part was created in Eclipse with GWT plugin and development tools. Base
empty Cordova projects for both native parts were generated with Cordova tools.

This text was written in LibreOffice Writer and most of the diagrams are drawn by
me on my Android tablet in application ArtFlow.

15.8 Statistic
The ScrumApp consists of three projects:

● iOS native part is made of 9 classes made by me and it has one View
containing the WebView

● Android native part is made of 50 classes (16 are DAO and DTO objects), it
has two activities one for the WebView and second for file import

● GWT multiplatform part contains big amount of classes, because every
page consists of 3 classes and one interface (there are 29 pages), then there
are DAO classes and many callback interfaces, so it very hard to count any
relevant number here.

101

CHAPTER 16 CONCLUSION

16 Conclusion

Conclusion
In this work I explored existing mobile solutions for project management using
scrum. I compared and described available mobile multiplatform development
frameworks. I designed a model for distributed communication between mobile
devices. I created a specification with basic and optional features for a mobile
scrum management application.

I have implemented a multiplatform mobile application ScrumApp, all basic
features from the specification are implemented and about a half of optional
features as well. I have chosen the Cordova framework for the multiplatform part,
because when I started implementing this application it worked the best from the
available solutions. It is open source and free (even for commercial use). It enables
creating multiplatform applications with standard web technologies like HTML,
CSS and JavaScript. It is also well documented and supported. For the GUI and
application logic I used Google Web Toolkit, which can be used to create web front-
end applications in Java. I made this choice because I know Java better than
JavaScript and it can be used to create mobile and touch friendly web applications.

The created application uses distributed communication on LAN using Wi-FI and
no dedicated server is required. One of the devices acts as a master device
(currently only in Android) and other devices will use it to synchronize. The Apple
bonjour technology was used for device discovery on LAN. The project data are
stored on the master device in SQLite database and all client devices have a local
copy for offline access. Reading and even some data modifications are allowed on
clients and are synchronized to the master when it is available. Interactive card like
scrum poker game is also implemented. The application runs on Android and iOS.

For future improvements, the remaining optional features can be implemented.
The application could also use some refactoring, as there is some old unused code
and the code structure could be simplified. The application did not undergo any
extensive testing and any form of user testing would help greatly to discover bugs
and errors.

102

16

References
[esc] RUBIN, Kenneth S. Essential Scrum: a practical guide to the most

popular agile process. Upper Saddle River, NJ: Addison-Wesley,
2012, xliii, 452 p. ISBN 0137043295.

[aep] SCHWABER, Ken a Mike BEEDLE. Agile software development with
Scrum. Upper Saddle River, NJ: Prentice Hall, 2002, xvi, 158 p. ISBN
0130676349.

[ftb] DINWIDDIE, George. Feel the Burn: Getting the Most Out of Burn
Charts. Better Software Magazine: Software Practices,
Technologies, and Tools [online]. 2009, 2009(5) [accessed 2015-
05-22]. Available:
http://idiacomputing.com/pub/BetterSoftware-BurnCharts.pdf

[grt] Gartner. Gartner Says Sales of Smartphones Grew 20 Percent in
Third Quarter of 2014 [online]. 2014, 15.12.2014 [accessed 2015-
04-17]. Available:
http://www.gartner.com/newsroom/id/2944819

[nap] Net applications. Net applications mobile OS usage statistics
[online]. 2014, August 2014 [accessed 2015-04-17]. Available:
http://www.netapplications.com

[scg] StatCounter Global. StatCounter Global mobile OS usage
statistics [online]. 2014, August 2014 [accessed 2015-04-17].
Available: http://www.netapplications.com

[sbr] Statistic Brain. Mobile Phone App Store Statistics [online]. 2015,
March 2015 [accessed 2015-04-17]. Available:
http://www.statisticbrain.com/mobile-phone-app-store-statistics

[apd] Apple Inc. Apple developer [online]. 2015, April 2015 [accessed
2015-04-21]. Available: https://developer.apple.com/

[and] Google Inc. Android developer [online]. 2015, April 2015
[accessed 2015-04-03]. Available:
http://developer.android.com/guide/index.html

[ms] Microsoft. MSDN - Microsoft Developer Network [online]. 2015,
April 2015 [accessed 2015-04-05]. Available:
https://msdn.microsoft.com/

[cor] Apache Software Foundation. Apache Cordova [online]. 2015,
April 2015 [accessed 2015-04-08]. Available:
https://cordova.apache.org/

[qt] Qt Company Ltd. Qt Documentation [online]. 2015, April 2015
[accessed 2015-04-08]. Available: http://doc.qt.io/

[xam] Xamarin Inc. Xamarin [online]. 2015, April 2015 [accessed 2015-
04-11]. Available: http://xamarin.com/

[apc] Appcelerator Inc. The Appcelerator Platform [online]. 2015, April
2015 [accessed 2015-04-13]. Available:
http://www.appcelerator.com/

[sen] Sencha Inc. Sencha Touch [online]. 2015, April 2015 [accessed
2015-04-13]. Available: http://www.sencha.com/products/touch

[est] Estimated. Estimated [online]. 2015, April 2015 [accessed 2015-
04-15]. Availablez: http://estimated.mobi/

[jira] Atlassian. Atlassian JIRA [online]. 2015, April 2015 [accessed
2015-04-17]. Available: https://www.atlassian.com/software/jira

[asp] Softhis. AgileScrum Pro [online]. 2015, February 2015 [accessed
2015-04-17]. Available: https://itunes.apple.com/us/app/agile
scrum-pro/id547660657?mt=8

[lms] Vinicius Rochedo. Lion Monkey Scrum [online]. 2015, July 2014
[accessed 2015-04-18]. Available: https://itunes.apple.com/us/
app/lion-monkey-scrum/id506103466?mt=8

[pvt] PivotalTracker. PivotalTracker [online]. 2015, April 2015 [accessd
2015-04-19]. Available: http://www.pivotaltracker.com/

[bt] Bluetooth SIG, Inc. Bluetooth specification [online]. 2015, April
2015 [accessed 2015-04-20]. Available:
https://www.bluetooth.org/en-us

[802.11] IEEE 802.11. LOCAL AND METROPOLITAN AREA NETWORK
STANDARDS [online]. 2012, March 2012 [accessed 2015-05-05].
Available: http://standards.ieee.org/getieee802/download /
802.11d-2001.pdf

[RFC-6762] RFC-6762. Multicast DNS [online]. 2013, February 2013 [accessed
2015-05-05]. Available: https://tools.ietf.org/html/rfc6762

[RFC-6763] RFC-6763. DNS-Based Service Discovery [online]. 2013, February
2013 [accessed 2015-05-05]. Available:
https://tools.ietf.org/html/rfc6763

[sqlite] SQLite. SQLite Documentation [online]. 2015, 2015 [accessed
2015-04-22]. Available: http://sqlite.org/docs.html

[RFC-4122] RFC-4122. A Universally Unique IDentifier (UUID) URN Namespace
[online]. 2005, July 2005 [accessed 2015-05-05]. Available:
https://www.ietf.org/rfc/rfc4122.txt

[SQLitePlg] SQLite pugin. Cordova SQLite Storage [online]. 2015, April 2015
[accessed 2015-04-25]. Available:
https://github.com/litehelpers/Cordova-sqlite-storage

[JmDNS] JmDNS. JmDNS library [online]. 2011, August 2011 [accessed
2015-04-27]. Available: http://jmdns.sourceforge.net/

[jnc] JNCryptor. JNCryptor [online]. 2015, March 2015 [accessed 2015-
04-26]. Available: https://github.com/RNCryptor/JNCryptor

[rnc] RNCryptor. RNCryptor [online]. 2015, April 2015 [accessed 2015-
04-28]. Available: https://github.com/RNCryptor/RNCryptor

[GWT] GWT. GWT [online]. 2015, May 2015 [accessed 2015-05-02].
Available: http://www.gwtproject.org/

[mGWT] Mgwt. Mgwt [online]. 2014, September 2014 [accessed 2015-05-
03]. Available: http://www.m-gwt.com/

[gwt-pg] GWTPhoneGap. GWTPhoneGap [online]. 2014, October 2014
[accessed 2015-05-03]. Available: https://code.google.com
/p/gwt-phonegap/

[gwt-db] GWT Mobile WebKit. GWT Mobile WebKit Database [online]. 2010,
April 2010 [accessed 2015-05-03]. Available:
https://code.google.com/p/gwt-mobile-webkit/

[sql-c] Zetetic LLC. SQLCipher [online]. 2014, December 2014 [accessed
2015-05-05]. Available: https://www.zetetic.net/sqlcipher/

List of figures
Figure 2.1: Scrum overview..3
Figure 2.2: Iterative and incremental development.............................4
Figure 2.3: Requirements in plan driven development..........................5
Figure 2.4: Cost of decision...6
Figure 2.5: Cost of change..7
Figure 2.6: Scrum principles...7
Figure 2.7: Product owner and his relations to others...........................8
Figure 2.8: Scrum masters responsibilities...................................10
Figure 2.9: Scrum activities and artifacts.....................................12
Figure 2.10: Product backlog..13
Figure 2.11: Sprints..14
Figure 2.12: Sprint planning..15
Figure 2.13: Estimation values..17
Figure 2.14: Scrum board...19
Figure 2.15: Burndown chart..20
Figure 2.16: Burndown charts - bad examples................................21
Figure 3.1: iOS 8...24
Figure 3.2: Android..26
Figure 3.3: Windows...27
Figure 3.4: QML example...32
Figure 3.5: Xamarin.Forms..35
Figure 3.6: AppsBilder editor in browser.....................................38
Figure 4.1: Estimated...42
Figure 4.2: JIRA android..43
Figure 4.3: JIRA iOS..43
Figure 4.4: AgileScrum Pro..44
Figure 4.5: Lion Monkey Scrum..45
Figure 4.6: Pivotal tracker..46
Figure 6.1: Saving value..53
Figure 6.2: Loading value...53
Figure 7.1: Basic architecture overview......................................57
Figure 9.1: Database model...62
Figure 9.2: Database update..63
Figure 10.1: Plugin registration...68
Figure 10.2: WebView entry file...68
Figure 10.3: Service declaration...70
Figure 10.4: FileImport activity definition in AndroidManifest.xml..............72
Figure 10.5: FileImport activity...73
Figure 10.6: Starting a file sharing intent.....................................74
Figure 10.7: JmDNS plugin Java part...75
Figure 10.8: TCPServer plugin registration...................................75
Figure 10.9: Calling Cordova plugin from JavaScript...........................76
Figure 11.1: Starting mail composer in Objective-C............................78
Figure 11.2: Plugin interface in header file...................................79
Figure 11.3: Plugin operation implementation................................80
Figure 11.4: Plugin registration on iOS.......................................80
Figure 12.1: HTTP request format...81

Figure 12.2: HTTP response format..81
Figure 13.1: GWT native method..86
Figure 13.2: Java call...86
Figure 13.3: JSNI example...86
Figure 13.4: mGWT platform themes..87
Figure 15.1: Callback hell...99

List of abbreviations

A2DP Advanced Audio Distribution Profile

ADT Android Developer Tools

AES Advanced Encryption Standard

API Application Programming Interface

BSD Berkeley Software Distribution

BT Bluetooth

CSS Cascading Style Sheets

CVS Comma Separated Values

DAO Database Access Object

DB Database

DNS Domain Name System

DTO Database Transfer Object

GPL General Public License

GSM Global System for Mobile Communications

GUI Graphical User Interface

GUID Globally Unique Identifier

GWT Google Web Toolkit

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

ID Identifier

IDE Integrated Development Environment

IP Internet Protocol

JNI Java Native Interface

JSNI JavaScript Native Interface

JSON JavaScript Object Notation

JmDNS Java Multicast Domain Name System

LGPL GNU Lesser General Public License

mDNS Multicast Domain Name System

mGWT Mobile Google Web Toolkit

MS Microsoft

NDK Native Development Kit

OBEX OBject EXchange

OS Operating System

PBKDF2 Password-Based Key Derivation Function 2

PO Product Owner

QML Qt Meta Language

RAM Random Access Memory

REST Representational State Transfer

SDK Software Development Kit

SM Scrum Master

SMS Short Message Service

SQL Structured Query Language

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TM Team Member

UI User Interface

URL Uniform Resource Locator

UUID Universally Unique Identifier

WLAN Wireless Local Area Network

WP Windows Phone

WPAN Wireless Personal Area Network

WWDC Apple Worldwide Developers Conference

WYSIWYG What You See Is What You Get

XML Extensible Markup Language

CD content
● [bin] – this folder contains distributable compiled files, iOS installation is

not present, as it is only possible to install applications from Apple AppStore
or using Xcode on iOS devices.

 [Android] – this folder contains installable android APK file.

 [GWT] – this folder contains compiled JavaScript from GWT

● [src] – this folder contains sources

 [Android] – Android Studio project for native Android part

 [GWT] – GWT sources in form of eclipse project

 [iOS] – Xcode project with native iOS part

● [doc] – this folder contains documentation

 [Android] – JavaDoc for Android project

 [GWT] – JavaDoc for GWT project

 [Resources] – Images and other resources

 [Text] – Thesis text in PDF and ODT files

● readme.txt – CD content description

Attachment 1 – Database tables
Here is a list of all tables, their structure and types.

Dbvers
This table serves for database updates and it's purpose was explained in the text.

Preferences
Preferences is another simple table used for storing various key-value data. It has
two columns: key and value. The key is unique. The PreferencesDAO class
ensures that only one row with each key exists. Key and value are by default stored
as strings.

Type
Type is an enumeration table containing two sets of values one is for stories and
issues and second is for tasks. It also specifies the color used to display type. It has
three columns:

● id – primary key

● name – type name (Bug, Todo ...)

● color – HTML color for displaying the type

This table is filed with default values, which cannot be user edited. See method
createDB in ScrumAppDAO for actual values.

Role
Role is an enumeration table for user roles, there are two columns:

● id – primary key

● name – role name (Scrum master, Product owner, Team member)

This table is filed with default values, which cannot be user edited. See method
createDB in ScrumAppDAO for actual values.

Status
Status is an enumeration table containing three sets of values one is for stories,
second for issues and last is for tasks. It has two columns:

● id – primary key

● name – status name (Free, In progress, Done ...)

This table is filed with default values, which cannot be user edited. See method
createDB in ScrumAppDAO for actual values.

Priority
Priority is an enumeration table containing a set of values for issues priority:

● id – primary key

● name – priority name (low, normal ...)

● color – HTML color for displaying the priority

This table is filed with default values, which cannot be user edited. See method
createDB in ScrumAppDAO for actual values.

User
User is a table containing information about one user. There are no cross project
users, if a user is in two projects he has to be defined in both and there will be two
rows in the user table for him (this is by design to simplify the synchronization, as
there is no global user table defined anywhere, each device only knows users in
projects it has access to).

Columns:

● id – primary key

● name – user's full name

● login – user's login, he uses it to authenticate himself to the server

● password – user's password, he uses it to authenticate himself to the server,
the password is stored in hashed form (SHA1)

● nick – user's nick, shown on most GUI items like tasks and stories

● color – HTML color to allow user to select whatever color he likes

● valid – flag for setting if the user is activated and can connect to the master
device, invalid users are refused, if they try to synchronize

● project – reference to project, specifies to which project the user belongs to

● lastchange – used for synchronization, will be described later

● modified – used for synchronization, will be described later

User_role
User role is a junction table between user and role table. This allows one user to
have more than one role.

Columns:

● id – primary key

● user – reference to user

● role – reference to role

● lastchange – used for synchronization, will be described later

● modified – used for synchronization, will be described later

Project
Project table stores information about a project.

Columns:

● id – primary key

● name – project name

● description – project description

● local – flag, if project is local and this device act as a master for this project

● enabled – flag, if a local project is enabled and allows others to synchronize
with it

● leader – reference to user, represents the scrum master of this project

● backlog – reference to sprint, represents the product backlog for this
project, it is created automatically with a new project

● current – reference to sprint, represents current sprint

● next – reference to sprint, represents next sprint

● address – used by slave devices, represents last known IP address of master
device

● start – project start date stored as integer

● end – project end date stored as integer

● lastchange – used for synchronization, will be described later

● modified – used for synchronization, will be described later

Credentials
Credentials is a table which stores logins and passwords for for project, so user
does not have to write them every time he starts the application.

● id – primary key

● login – login for project

● password – password for project

● project – reference to project

Sprint
Sprint table hold information about a single sprint.

Columns:

● id – primary key

● name – sprint name

● start – sprint start date stored as integer

● end – sprint end date stored as integer

● project – reference to project, which the sprint belongs to

● lastchange – used for synchronization, will be described later

● modified – used for synchronization, will be described later

Story
Story table holds information about a story and their order (priority) in the sprint.
Each story has a reference on the next one creating a linked list ordered by priority.
A special story called TOP serves as a list head and is invisible to the user.

Columns:

● id – primary key

● name – story name

● description – story description

● created – date when was the story created stored as integer

● added – date when was the story added to print backlog stored as integer

● finished – date when was the story finished stored as integer

● estimation – estimation of this story in story points stored as real

● author – reference to user, author of the story

● type – reference to type, type of story

● status – reference to status, status of story

● sprint – reference to sprint, which this story belongs to

● comment – product owner's comment on this story

● next – reference to story, represents the next story in the backlog

● lastchange – used for synchronization, will be described later

● modified – used for synchronization, will be described later

Task
Task represents a single task. Each story is broken down into several tasks.

Columns:

● id – primary key

● name – task name

● created – date when was the task created stored as integer

● finished – date when was the task finished stored as integer

● estimation – estimation of this task in hours stored as real

● author – reference to user, author of the task

● assigned – reference to user, user working on the task

● type – reference to type, type of task

● status – reference to status, status of task

● sprint – reference to sprint, which this task belongs to

● story – reference to story, which this task is part of

● lastchange – used for synchronization, will be described later

● modified – used for synchronization, will be described later

Issue
Issue represents a bug, todo etc. and can be created by anyone, the product owner
then can convert issues to stories or refuse them.

Columns:

● id – primary key

● name – issue name

● description – issue description

● priority – reference to priority, represents this issue priority

● created – date when was the issue created stored as integer

● closed – date when was the issue closed stored as integer

● author – reference to user, author of the issue

● type – reference to type, type of issue

● status – reference to status, status of issue

● project – reference to project, which this issue belongs to

● story – reference to story, which this issue was converted into

● lastchange – used for synchronization, will be described later

● modified – used for synchronization, will be described later

Voting
Voting table is used for storing results of running or last finished scrum poker
game.

Columns:

● project – reference to project, which this scrum poker result belongs to

● story – reference to story that is being estimated

● user – reference to user, whose vote this is

● vote – the actual vote of this user

Sync
Sync is a table used only for synchronization, it contains information about tables
and if they require synchronization from client to server (have some uncommitted
changes).

Columns:

● project – reference to project, which is subject to synchronization

● tablename – table name from the project

● lastchange – date of last change in the table

● required – flag if there have been made changes

Attachment 2 – Test scenarios
Create project
Create an empty project.

Prerequisites: be on an Android device.

Step Expected result Result

1 Go to projects page and press
new button

Project creation form shows Project creation form showed

2 Press OK without filling
anything

Error message with required
fields should show

Error message showed

3 Fill the required fields
correctly

Application should go to
projects page and the created
project should be listed here
and set as current project

Project created successfully

Test passed

Add user
Add a new user to local project.

Prerequisites: be on android and local project must be selected as current

Step Expected result Result

1 Go to users page and press
add

User creation form shows User creation form showed

2 Press OK without filling
anything

Error message with required
fields should show

Error message showed

3 Fill the required fields
correctly

Application should go to users
page and the created user
should be listed here with
correct name and roles

User created successfully

Test passed

Connect to a remote project
Connect to a remote project and download its data.

Prerequisites: Wi-Fi running and connected, master device with at least one
available project must be on the same network.

Step Expected result Result

1 Go to projects page select the
remote project and press
connect

Login page shows Page showed

2 Fill in wrong credentials and
press OK

Error message shows Error message showed

3 Fill correct credentials and
press OK

Application should go to
projects page and show
success dialog, project should
be listed here and set as
current project

Project downloaded
successfully

Test passed

Create sprint
Create a new sprint in empty project.

Prerequisites: be connected to a remote project as a product owner.

Step Expected result Result

1 Select edit current sprint on
the dashboard

Sprint creation form shows Sprint creation form showed

2 Press OK without filling
anything

Error message with required
fields should show

Error message showed

3 Fill the required fields
correctly

Application should go to
dashboard page and the
created sprint should be
showed here with correct
data

Sprint created successfully

Test passed

Create issue
Create a new issue.

Prerequisites: be connected to a remote project.

Step Expected result Result

1 Go to issues page and press
new button

Issue creation form shows Issue creation form showed

2 Press OK without filling
anything

Error message with required
fields should show

Error message showed

3 Fill the required fields
correctly

Application should go to
issues page and the created
issue should be listed in open
tab

Issue created successfully

4 Go to issues page on master
device

The new issue should appear
here in few seconds

New issue appeared

Test passed

Close issue
Close an issue.

Prerequisites: be connected to a remote project as a product owner, at least one
open issue must be created.

Step Expected result Result

1 Go to issues page and select
an open issue

Issue close form should show Issue close form showed

2 Fill the required fields
correctly accepting the issue

Application should go to
issues page and the closed
issue should be listed on the
closed tab

Issue closed successfully

3 Go to product backlog page New story with data from the
issue should appear

New story appeared

4 Go to issues page on master
device

The closed issue should
appear in closed in few
seconds

Closed issue appeared

5 Go to product backlog page on
master device

New story with data from the
issue should appear in few
seconds

New story appeared

Test passed

Create story
Create a new story.

Prerequisites: be connected to a remote project as a product owner.

Step Expected result Result

1 Go to product backlog page
and press new

Story creation form shows Story creation form showed

2 Press OK without filling
anything

Error message with required
fields should show

Error message showed

3 Fill the required fields
correctly

Application should go to
product backlog page and the
created story should be listed
here

Story created successfully

4 Go to product backlog page on
master device

New story should appear in
few seconds

New story appeared

Test passed

Move story
Move story from product backlog to sprint backlog.

Prerequisites: be connected to a remote project as a product owner.

Step Expected result Result

1 Go to product backlog page,
select s story and press pull to
sprint

Pull to sprint form shows Pull to sprint form showed

2 Select a position and pres OK Application should go to
product backlog page and the
story shouldn't be here

Story disappeared

3 Go to sprint backlog page The moved story should be
here on selected position

Story moved successfully

4 Go to sprint backlog page on
master device

The moved story should be
here on selected position in
few seconds

Story moved successfully

Test passed

Delete story
Delete story from product backlog.

Prerequisites: be connected to a remote project as a product owner, at least one
story must be created in product backlog.

Step Expected result Result

1 Go to product backlog page,
select a story and press delete

Application should go to
product backlog page and the
story shouldn't be here

Story deleted successfully

2 Go to product backlog page on
master device

The deleted story shouldn't be
here

Story deleted successfully

Test passed

Scrum poker game
Play the scrum poker game.

Prerequisites: One master device and two clients should be connected to the same
project, at least one story should be in product backlog.

Step Expected result Result

1 Go to product backlog page on
master device, select a story
and press start scrum poker

Scrum poker game page
should be shown with the
selected story

Scrum poker game page
showed

2 Pres join scrum poker on
client 1 and 2

Scrum poker game page
should be shown with the
selected story

Scrum poker game page
showed

3 Make a vote on all three
devices

Devices that voted should be
marked in the list, only your
vote should be visible

Voting showed, only my vote
was visible

4 End voting on master device All devices should show the
voting result

Result showed on all devices
correctly

Test passed

Create task
Create a new task.

Prerequisites: be connected to a remote project, at least one story must be created.

Step Expected result Result

1 Go to scrum board page and
press new task button

Task creation form shows Task creation form showed

2 Press OK without filling
anything

Error message with required
fields should show

Error message showed

3 Fill the required fields
correctly

Application should go to
scrum board page and the
created task should be listed
in open tab under the story it
belongs to

Task created successfully

4 Go to scrum board page on
master device

The new task should appear
here in few seconds

New task appeared

Test passed

Claim task
Claim a task.

Prerequisites: be connected to a remote project, at least one task must be created.

Step Expected result Result

1 Go to scrum board page, select
an open task and press claim
task button

Task should move to work tab
and should be assigned to you

Task claimed successfully

2 Go to scrum board page on
master device

The claimed task should
appear here in work tab in
few seconds

Claimed task appeared

Test passed

Free task
Free a task.

Prerequisites: be connected to a remote project, at least one task must be created
and assigned in work state to you.

Step Expected result Result

1 Go to scrum board page, select
a work task and press free
task button

Task should move to open tab
and should no longer be
assigned to you

Task freed successfully

2 Go to scrum board page on
master device

The freed task should appear
here in open tab in few
seconds

Freed task appeared

Test passed

Close task
Close a task.

Prerequisites: be connected to a remote project, at least one task must be created
and assigned in work state to you.

Step Expected result Result

1 Go to scrum board page, select
a work task and press close
task button

Task should move to done tab Task closed successfully

2 Go to scrum board page on
master device

The closed task should appear
here in done tab in few
seconds

Closed task appeared

Test passed

Create next sprint
Create a next sprint.

Prerequisites: be connected to a remote project as a product owner.

Step Expected result Result

1 Select edit next sprint on the
dashboard

Sprint creation form shows Sprint creation form showed

2 Press OK without filling
anything

Error message with required
fields should show

Error message showed

3 Fill the required fields
correctly

Application should go to
dashboard page

Sprint created successfully

Test passed

Switch to next sprint
Switch to next sprint, moving all unfinished stories with it.

Prerequisites: be on an Android device current and next sprint must be created,
some open and finished stories should be in the sprint backlog.

Step Expected result Result

1 Select switch to next sprint on
the dashboard and pres OK

A new sprint should appear
on the dashboard, all
unfinished stories should be
moved to this new sprint, the
old sprint should appear in
the sprint history

Switched to next sprint
successfully

2 Go to master device A new sprint should appear
on the dashboard, all
unfinished stories should be
moved to this new sprint, the
old sprint should appear in
the sprint history

Switched to next sprint
successfully

Test passed

Export project
Export a project to a file.

Prerequisites: A project must exist on the device.

Step Expected result Result

1 Go to project list page, select a
project and press export

Export form shows Export form showed

2 Write a name for the backup
and pres export

Application should go to the
the project list page and a new
backup with selected name
should appear in the backup
page

Project data exported
successfully

3 Go to backup page, select the
created backup and pres share

Android: Share dialog with
compatible applications
should show

Share dialog showed

iOS: Email composer should
show with the exported file as
attachment

Email composer showed

4 Open the exported file Exported file contains project
data in JSON

File contains correct data

Test passed

Import project
Import a project from a file.

Prerequisites: Project backup file must exist.

Step Expected result Result

1 iOS: Copy the backup file to
application documents using
iTunes

The backup should appear in
the backup page

Backup showed in the
backups list

Android: Select the
application file in some file
manager on the device and
open it with ScrumApp and
press import

The backup should appear in
the backup page

Backup showed in the
backups list

3 Go to backup page, select the
importedbackup and press
import

Import form shows Import form showed

4 Select user, enter correct
password and press import

The project should appear in
the project list page or be
overwritten if it existed and
should have all data from the
backup

Import successful

Test passed

Attachment 3 – Screenshots

Screenshot 2: Dashboard Screenshot 3: Backups Screenshot 1: Closed issues

Screenshot 6: Project list Screenshot 4: Profile editation Screenshot 5: Scrum board

Screenshot 8: List of users Screenshot 7: Editation of current sprint

Screenshot 9: Sprint backlog Screenshot 10: Sprint burndown chart

Screenshot 12: List of finished sprints Screenshot 11: Detail of finished sprint

University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and Engineering

ScrumApp

User manual

Pilsen, 2015 Jan Strejc

Table of contents
1 Program 1

1.1 Compilation and developement...1
1.2 Installation...2
1.3 System requirements..2

2 User interface 3
2.1 General controls..3
2.2 Dashboard..4
2.3 Working with projects...4
2.4 Adding and editing users...5
2.5 Working with sprints..6
2.6 Working with issues...6
2.7 Product and sprint backlog...8
2.8 Scrum board..8
2.9 Scrum poker..9
2.10 Backups, File import and export.......................................9

CHAPTER 1 PROGRAM

1 Program
1.1 Compilation and developement
The most convenient way for compiling all three projects is using an IDE.

GWT
1. First you will need installed Eclipse IDE and a GWT plugin for it with GWT

SDK.

You can follow this page for instructions:

http://www.gwtproject.org/usingeclipse.html

2. Then open the project located on CD in folder /src/GWT with Eclipse

3. You can use Eclipse and development mode to run the multiplatform part of
application in a compatible browser (Chrome is preferred). Not all
functionality will work in this mode as networking and other are not
available. Database will work using embedded SQLite in Chrome. See the
GWT documentation for up to date guide.

4. For compiling the Java sources to JavaScript you can right click the project
and select Google > GWT Compile. This will create compiled JavaScript in
selected folder.

5. You can copy the resulting JavaScript to one of the native projects to their
www folder to use it.

Eclipse and GWT SDK works on Windows, Linux and Mac.

Android
1. First you will need installed Android studio IDE and Android SDK.

You can follow this page for instructions:

https://developer.android.com/sdk/index.html

2. Then open the project located on CD in folder /src/Android with Android
studio. You can run the application in emulator or on real device.

Android studio and Android SDK works on Windows, Linux and Mac.

1

http://www.gwtproject.org/usingeclipse.html
https://developer.android.com/sdk/index.html

CHAPTER 1 PROGRAM

iOS
1. First you will need installed Xcode on your Mac, you can download and

install it from iTunes.

2. Then open the project located on CD in folder /src/iOS with Xcode studio.
You can run the application in simulator.

3. To run the application on real device you need an Apple developer account
and set up your device to enable development, You also need to set up the
application in the developer account, this process is not simple, please see
the official documentation from Apple for more details:

https://developer.apple.com/library/mac/documentation/IDEs/Conceptua
l/AppDistributionGuide/LaunchingYourApponDevices/LaunchingYourAppo
nDevices.html

1.2 Installation
The application is not available on Google play and Apple AppStore. Installation on
iOS can be currently done only using Xcode and the above described method.

Installation on Android requires allowed installation from unknown sources in the
device's settings. You can then install the application from provided installable APK
package located on CD in /bin/Android folder.

1.3 System requirements
Application requires iOS 7 and newer or Android 2.3.4 and newer.

The mobile device must have Wi-Fi.

2

https://developer.apple.com/library/mac/documentation/IDEs/Conceptual/AppDistributionGuide/LaunchingYourApponDevices/LaunchingYourApponDevices.html
https://developer.apple.com/library/mac/documentation/IDEs/Conceptual/AppDistributionGuide/LaunchingYourApponDevices/LaunchingYourApponDevices.html
https://developer.apple.com/library/mac/documentation/IDEs/Conceptual/AppDistributionGuide/LaunchingYourApponDevices/LaunchingYourApponDevices.html

CHAPTER 2 USER INTERFACE

2 User interface
2.1 General controls
The ScrumApp application is organized into pages, each page has a header bar that
contains the page name in center. On left side the header has a back navigation
button, that goes to previous page, devices with hardware or software back button
(android) can use it instead. On many pages on right part of the header is an action
button often used to add new content to the page.

The rest of the page is occupied by it's content and can be vertically scrolled. Some
pages have special controls in a footer, like tab switcher on the scrum board.

When multiple actions are available for some content, (for example after clicking a
project in the project list) a multi choice menu is displayed on the bottom of the
page (screenshot 1).

3

Screenshot 1: General controls

CHAPTER 2 USER INTERFACE

2.2 Dashboard
The dashboard (screenshot 2) is a central point of the application, it serves as an
overview of currently selected project and sprint and as a menu for navigating to
other parts of application.

2.3 Working with projects
On the projects page selected from dashboard is a list of projects organized into
groups (screenshot 3):

● On top is currently selected project.

● Next are local projects, for which this device acts as a master. You can edit,
disable, export and delete local projects.

● Remembered projects are remote project, for which local data copy is
available (you have connected to them). You can export, edit your
credentials and delete local copy of data for remembered projects.

● Available projects are remote projects available on the network. You can
connect to available projects, if you provide correct credentials.

4

Screenshot 2: Dashboard

CHAPTER 2 USER INTERFACE

This list removes duplicities, if a project is in remembered it won't show int
available, but it will have a green dot as it's master device is available on the
network. Local and remembered projects can be set as current (only one project
can be selected as current and worked with).

2.4 Adding and editing users
On the users page there is a list of users in the project (screenshot 4), if you are a
scrum master, you can edit their profiles, add new users or disable users to prevent
them from accessing the project. You can also assign roles to users, there can be
only one scrum master (you, it is not possible to change scrum master), one
product owner and several team members, if needed one user can have more than
one role.

Users can edit their profile on the edit profile page in the dashboard. They need a
working connection to master device to save the changes. (screenshot 5)

5

Screenshot 3: Projects

CHAPTER 2 USER INTERFACE

2.5 Working with sprints
Information about current sprint can be seen on dashboard. Old sprints can be
viewed on the sprint history page, velocity, finished stories, tasks and burndown
chart is displayed here (screenshot 6, 7 and 8).

Only product owner can edit or create sprints from the dashboard. He can create
or edit current or next sprint. When product owner switches to the next sprint, all
unfinished stories from the current sprint are moved to it.

2.6 Working with issues
The issues page contains two lists of issues, one for open and one for closed
(screenshot 9). Anyone can create issues, but only product owner can accept them
or refuse them. I he accepts the issue he can create a new story from it
immediately.

6

Screenshot 4: Users list Screenshot 5: Profile editation

CHAPTER 2 USER INTERFACE

7

Screenshot 9: Issues

Screenshot 6: Sprint history Screenshot 7: Sprint history detail

Screenshot 8: Burndown chart

CHAPTER 2 USER INTERFACE

2.7 Product and sprint backlog
The product and sprint backlogs allow the product owner to manage stories. As a
product owner you can create new stories here, edit them an order them. You can
also move stories from the product backlog to the sprint backlog (screenshot 10).
The scrum master can start the scrum poker game to estimate a story from here.

2.8 Scrum board
Scrum board (screenshot 11) is for task management, it shows stories from current
sprint and allows breaking them down to tasks. Any one can add a task to a story.
Tasks are organized to three tabs:

● open – unassigned tasks, any team member can claim it and start working
on it, if he has a working connection to master device.

● work – tasks that are in progress are displayed here, you can free (move to
open) or close (move to done) tasks that are assigned to you. You can also
edit them.

● done – these tasks have been finished (closed)

8

Screenshot 10: Sprint backlog Screenshot 11: Scrum board, done tasks

CHAPTER 2 USER INTERFACE

2.9 Scrum poker
The scrum poker game can be launched from product or sprint backlog by scrum
master. It is always played with one story at a time. After scrum master started the
game, other users from the project can join it from the dashboard. Scrum poker
game has two phases:

● Voting phase – users can vote their estimation for the story and they see on
the list who already voted, but not their actual estimation. Scrum master can
end the voting, when enough users voted. (screenshot 12 and 13)

● Results – When voting ends all users see estimations of others and can
discuss it. Scrum master can then start the poker again for the story or move
to another story from the backlog. (screenshot 14)

2.10 Backups, File import and export
From the project list you can export project's data of a local or remembered
project. It will then be available in the backup list (screenshot 15). Here you can
import the backups back overwriting the current data or send it to someone (email
or iTunes on iOS, sharing by any compatible application on Android). You can also
import a backup you received from someone (in iTunes on iOS or by sharing it with
the ScrumApp from another application like file managers or email on Android,
screenshot 16).

9

Screenshot 14: ResultsScreenshot 12: Voting Screenshot 13: Estimation

CHAPTER 2 USER INTERFACE

10

Screenshot 16: File importScreenshot 15: Backups

