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Abstract

The core of this paper is the methodology of the dynamicaletedimplification for the real time simulation.
The simplified simulation models are based on neuro-fuzayetiing approach, which was originally designed for
predictive control-oriented modelling of nonlinear dyriaahsystems. The two ways of the neuro-fuzzy modelling
utilization are presented. First, the training of the pcéde dynamical neuro-fuzzy model and, second, the trginin
of the statical approximation of the right-hand side of thisteam’s state space description. We demonstrate the
results on the examples of nonlinear spring damper systehdauble pendulum.
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1. Introduction

For the real time simulation of complex dynamical systems often needs to find sim-
plifications of the original model. In practice, such sinfiphtions are developed usually ad
hoc and some robust unified strategy is missing. On the otled,hin the model predictive
control branch the neuro-fuzzy models for short time sirmaia(i.e., prediction) are utilized.
We investigate the possibilities of the adaptation of theroduzzy approach in the real time
simulation.

To identify a dynamic system from measured data, we use gogitim called LOLIMOT
that builds the so called neuro-fuzzy model of the dynamstesy under the consideration. So
far, this methodology was used in such a way that the valugeanitities have been considered
in several consequent times to model the derivatives. Wpags® here a different utilization
of the neuro-fuzzy identification methodology that allousoafor the measured derivatives of
the quantities and, mainly, builds statical neuro-fuzzydeis of the right-hand side of the state
space description of the system’s dynamics.

2. Neuro-fuzzy modelsand LOLIMOT

We shall briefly present here the basic concepts and teroggalsed in the neuro-fuzzy
identification as introduced by [1].

*Corresponding author. Tel.: +420 224 357 361, e-mail: méthalasek@fs.cvut.cz.
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2.1. Neuro-fuzzy model of a system

Roughly speaking, neuro-fuzzy model of a system, be itcghtir dynamical, linear or
nonlinear, is a such a model that is composed of linear appedions of the system’s behavior
in different areas of the measured data region. The parasnetehese local linear models
(LLMs) are estimated by, e.g., the least square methodexppdi the measured data set. The
data sub-regions are specified by the so called validitytions.

The outputy of the neuro-fuzzy modeLOLI-mode) with p inputsu = (uy ... u;...u,) iS

given as
M

M
U= Z@z@i(u) = Z(in + wiuy + wigg + - - -+ wipu,) (1) (1)
i=1 =1
where M is the number of the data sub-regions (see below) reprasd&ytehe normalized
orthogonal Gaussian validity functiods defined as

&y(m) = L) )
; 1 (u)
the quantity
T — <_% <(U1 ;201‘1)2 N (ug ;201‘2)2 4t (1017;7201‘19)2)> (3)

is the so-called membership function (MSF) withbeing the centers of these sub-regions. For
each sub-region a local linear modek (1 u; ...u,)"w = x''w, specified by the parameters
w;=(...wg...),i=1.M, k = 0..p, is constructed.

2.2. Estimation of the LLM’s parameters

Ordering the measured data into a matrix

I upp ugy - Up1
1 U192 U9y - u !
P2
X = . . . . . == Xs (4)
I winy usy - UpN

where each row represents single data samplef all inputs,s = 1..N (N being the total
number of the measured samples), and forming the diagortakn of the validity function
values®; with respect to theth LLM and corresponding to each measured data sample as
Q; = diag(...P;(uy) .. .), theith LLM’s parameters can be estimated according to

w; = (X"QX) ' X"Qy (5)
wherey = (...ys...) is the vector of measured system outputs, the dependanckic wn
the measured inputs is the subject of the identificatioansult [1].

Note: The determination of the parameters is also called theraining phaseof the LOLI-
model; the calculation of the LOLI-model outpiitjsee (1)] to given inpute1 when the pa-
rametersw; and the partitioning of the data region specifieddgyu) are known is called the
simulation phasef the LOLI-model.

'Provided thatV > p + 1.
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If, for some reason, some data samples are more importanbthars, introducing matrix
R = diag(...7s...), s = 1..N of desired weights for each data sample the weighted least
square method can be used:

w; = (X"QRX) ' X"QRy 2 (6)

2.3. LOLIMOT - the identification algorithm

Assume we have ordered the measured data of a system behavjanputs and output(s),
into the matrixX, each column of which (but the first one) corresponding to @nie input
quantitiesu;, ;7 = 1..p. The limits of the measured values constitutg-dimensional hyper-
rectangle that is called the data region, on which the nesultOLI-model is to approximate
the system'’s behavior.

LOLIMOT?, as introduced by O. Nelles [1], is an algorithm that in edehationi splits
the rectangular measured data region by the axis-orthdgatsinto two halves (sub-regions)
in jth dimension and constructs the validity functiohsaccording to (2) and linear models
determined by parametevs; according to (6). Only the worst performing LLM, i.e., theeon

with the largest local error
N

L= (4 —y;)*®i(u)), (7)
j=1
is considered for splitting in each LOLIMOT iteration whilee split in all dimensions is tried
and only the best split, i.e., the one yilding the largeste@se of the total error

€ = (f’z - y@')27 (8)

is adopted. The algorithm stops as soon as the terminatitarion, e.g., the LOLI-model
complexity is reached (maximum numb&f of LLMs) or the total LOLI-model error drops
below a specified threshold, is met.

For more detailed description of the algorithm, pleaserrefd1] for systems with single
output (MISO) or to [2] for systems with multiple outputs (MO).

3. Predictive vs. statical approximation of dynamical systems

Originally, to utilize the LOLIMOT approach to identificat of dynamical system( =
O g,y i, ..y, 9, ... y™Y), Nelles [1] suggests to adopt the input/output discrete de-
scription of the nonlinear system’s behavior, i.e.,

y(k) =gu(k),u(k—=1),...,y(k—=1),..., At); 9)

k denoting the discrete time. Thus, the regression vectoray generally contain not only
values of the measurable quantities but also a portion aof timee history. For example, to
identify the coefficients of the discrete difference equatdf a nonlinear dynamical system
i = f(uq, 1y, U2, y,y) Whereas it is possible to measure only u, andy, the regression vector
x must contain the elements(k), ui(k — 1), us(k), us(k — 1), ua(k — 2), y(k — 1), y(k — 2)
(allowing the direct coupling among, andus, andy). The severe disadvatage of this strategy

2For nonweighted data, tHe equals unitary matrix.
3The acronym of the wordscal linearmodeltree.
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is that it strongly depends on the sampling time of the measdata that is implicitly contained
init.4
Nevertheless, the LOLIMOT algorithm can be utilized alsodtate space description

X =F(x,v) (10)

of the system provided the positions and velocities can kesored. Than, the regression vector
x contains only the measured quantities and, consequdmlyneasured data does not need to
be sampled equidistantly, as the sampling does not mattesthier words, adopting the state
space description of the identified system, the resultingaxuzzy model is trained as statical
function approximating the right-hand side of (10).

4. Applications

We have investigated two examples of dynamical systems: repnéinear spring damper
system with 1 degree of freedom (DOF), and b) a double pendulu

In both cases, the Matlab/Simulink was used to create thardigal model of the physical
system, an external excitation was imposed on it and theiposj velocities, and accelerations
were recorded; thus, a bundle of data was obtained that vgeckfar training the LOLI-model.

F(t) Two different types of LOLI-model were created: a) thee-
T dictive oneg i.e. several consecutive values of positions only were
utilized for training, and b) thetatical ong i.e. the simultaneous
values of positions and velocities were used for trainimgticl ap-
" )$ | b(s) proximation of the rihgt-hand side of the state space modéign,

) \-H Y

y(t) the same external excitation as that used for training wps$®ad on
the created LOLI-model and the responses of the Simulinkighy
model and LOLI-model were compared.

Fig. 1. Mechanical model Finally, both the system and the LOLI-model were put through
of 1-DOF nonlinear the testing excitation signal (different from the one usedrdy the

spring damper system.  training phase) and, again, the responses were compared.

4.1. 1-DOF nonlinear spring damper system
Consider a nonlinear spring damper system with single @egfféfeedom according to fig.
1; massn = 2kg. The damper is modelled by the following two forces
Fo=ky+ky’ . F=by+ by’ (11)

The signal used to train the LOLI-model is composed of a) Bg dhirp with starting frequency
f° = 0.5Hz, target frequency! = 150H z at timeT = 20s, and amplitude ofA, = 30N and
b) 7s long random signal with sampling 0.5s and amplitdde- 35N .

4As we have already experienced, the rule of at least 10 tingg®hthe sampling frequency than the highest
frequency of the data cannot be applied here since the lgaatesmethod tends to favour the higher frequencies
and the quality of the resulting LOLI-model can be easilyaoggptable for lower frequencies.

SNote the fact that in the case of the predictive LOLI-modelimegration is necessary to calculate the values of
the inputs to the LOLI-model in the next time step from the U@hodel output in the preceeding time step, unlike
in the statical case where the integration is necessarpeas@LI-model output is usually the acceleration—the
derivative of the LOLI-model inputs containing positionglavelocities.
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Fig. 2. Spring damper system: Responses to the traininglsfpasition, velocity).

The matrix of recorded data had the following structure:

X=(kvyyil); (12)

k denoting the dicrete time.

Predictive LOLI-model The predictive LOLI-model foy was trained with 6 LLMs and the
structure of the LOLI-model inputs (i.e., of the regressiestorx) was
output inputs
g (Qylk=1)ylk—2) F(k—1))
assumming no direct influence @by F'.
The responses of the system and LOLI-model to the trainirgaion are on fig 2 (only
the first 4 seconds).

As the testing excitation forcg the chirp signal with with starting frequengy = 0.1H z,
target frequency! = 100H z atT' = 10s, and amplituded = 50N was used (simulation time
10s). The first 4 seconds of the corresponding responses dig &

Statical LOLI-model As the statical approximation of the right-hand side of ttatdesspace
description, the LOLI-model with again 6 LLMs was trained foe acceleratiory. The struc-
ture of the regression vectarwas
output inputs
y o (Ly(k) yk) F(k))
The same testing excitations were used as for the predidise. The responses of the system
and both types of LOLI-models to the training and testingtaxions are on figs. 2 and 3.
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Fig. 3. Spring damper system: Responses to the testingl §psition, velocity).

4.2. Double pendulum

Consider a double pendulum according to fig. 4 made of twoectea bars with the follow-
ing characterists (body index 1 denoting frame): mass tepsi 7800kg/m?, gravitational
accelerationy = 9.81ms~2, cross sections of the balis x h; = by x hy = 0.05 x 0.05m,

lengthsl, = 0.5m, I3 = 0.8m, torsional stiffness coefficients
kio = 50Nm/rad, k12 = 20Nm/rad, torsional damping co-
efficientsb;, = 5Nms/rad, b = 2Nms/rad.

To create both the predictive and statical LOLI-model of
the double pendulum, the training signals of the drivingts
M9, Mss with amplidutesA;, = 10Nm, Ass = 35Nm com-
posed of a) 10s long amplitude modulated pseudo-random bi-
nary signal run through a system of first order with time con-
stant 0.05s, b) 10s long chirp with starting frequengigs=
0.0015Hz, fY5 = 0.0025Hz and target frequencieg, =
2Hz, f{, = 3Hz, and c) 10s long stochastic signal with sam-
pling 0.1s were used.

The matrix of recorded data had the following structure:

X =(k @2 P2 @2 03 ¢3 P53 Miz Mag); (13)

Fig. 4. Mechanical model of k denoting the dicrete time.

double pendulum. o o _
Predictive LOLI-model The predictive LOLI-models with

6 LLMs were trained for both system outpuis, andys. The
structures of the regression vectaisfor both LOLI-models were as follows
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Fig. 5. Double pendulum: Comparison of the responses tadliveirig excitation.

output inputs
D2 (L po(k — 1) ok —2) @3(k) p3(k — 1) @3(k — 2) Mig(k — 1) Mas(k — 1))
P3 (L p2(k) p2(k — 1) pa(k — 2) p3(k — 1) @3(k — 2) Mia(k — 1) Mas(k — 1))
The responses of the system and LOLI-model to the trainicdaion are on fig. 5.
As the testing excitation torquéd,, M3 the chirp signals with starting frequencig =
0.01Hz, f3, = 0.08H z, target frequencief, = 8.5H z, fi, = 13H z, amplitudesd;, = 5Nm,
Agz = 15Nm were used (simulation time 11s). The corresponding regsoa® on fig. 6.

Statical LOLI-model As the statical approximation of the right-hand side of ttatdesspace
description, the LOLI-models with 20 LLMs were trained foetaccelerationg, andys. The
structures of the LOLI-model inputs (i.e., of the regressiectorx) were the same for for both
LOLI-models:
output inputs

G2 (Lpa(k) 92(k) ws(k) p3(k) Mia(k) Mas(k))

@3 (L pa(k) @2(k) p3(k) @s(k) Mia(k) Mas(k))
The responses of the system and LOLI-model to the trainicgation are on fig. 5.

The same testing excitations were used as for the predictise; the responses are in the

fig. 6.

4.3. Discussion

Up to now results of these experiments indicate that thecatatpproximation of the right-
hand side of the state space description gives better sesulbng time simulation than the
predictive one. The necessary complexity of the staticdllk@odel (the number of LLMS) is
still an open question.
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Fig. 6. Double pendulum: Comparison of the responses taegimg excitation.

5. Conclusion

The neuro-fuzzy based identification by the LOLIMOT alganit has been used to approx-
imate the right-hand side of the state space descriptionnoinéinear dynamical system’s be-
havior. This approach has been tested on two examples—tiimear spring damper system
and double pendulum.

Besides the statical approximation of the right-hand sidé® state space description, the
predictive LOLI-models have been trained and successiis&d for long time simulation.

The results seem to prove the applicability of the LOLIMO@jsproach in the areas of the
real-time modelling of damped dynamical systems. The appliity of this framework for
systems without damping brings severe problems with tHalgyaof the resulting simulation
model.
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