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Abstract

The core of this paper is the methodology of the dynamical models’ simplification for the real time simulation.
The simplified simulation models are based on neuro-fuzzy modelling approach, which was originally designed for
predictive control-oriented modelling of nonlinear dynamical systems. The two ways of the neuro-fuzzy modelling
utilization are presented. First, the training of the predictive dynamical neuro-fuzzy model and, second, the training
of the statical approximation of the right-hand side of the system’s state space description. We demonstrate the
results on the examples of nonlinear spring damper system and double pendulum.
c© 2007 University of West Bohemia. All rights reserved.
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1. Introduction

For the real time simulation of complex dynamical systems one often needs to find sim-
plifications of the original model. In practice, such simplifications are developed usually ad
hoc and some robust unified strategy is missing. On the other hand, in the model predictive
control branch the neuro-fuzzy models for short time simulation (i.e., prediction) are utilized.
We investigate the possibilities of the adaptation of the neuro-fuzzy approach in the real time
simulation.

To identify a dynamic system from measured data, we use the algorithm called LOLIMOT
that builds the so called neuro-fuzzy model of the dynamic system under the consideration. So
far, this methodology was used in such a way that the values ofquantities have been considered
in several consequent times to model the derivatives. We propose here a different utilization
of the neuro-fuzzy identification methodology that allows also for the measured derivatives of
the quantities and, mainly, builds statical neuro-fuzzy models of the right-hand side of the state
space description of the system’s dynamics.

2. Neuro-fuzzy models and LOLIMOT

We shall briefly present here the basic concepts and terminology used in the neuro-fuzzy
identification as introduced by [1].
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2.1. Neuro-fuzzy model of a system

Roughly speaking, neuro-fuzzy model of a system, be it statical or dynamical, linear or
nonlinear, is a such a model that is composed of linear approximations of the system’s behavior
in different areas of the measured data region. The parameters of these local linear models
(LLMs) are estimated by, e.g., the least square method applied to the measured data set. The
data sub-regions are specified by the so called validity functions.

The output̂y of the neuro-fuzzy model (LOLI-model) with p inputsu = (u1 . . . uj . . . up) is
given as

ŷ =

M
∑

i=1

ŷiΦi(u) =

M
∑
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(wi0 + wi1u1 + wi2u2 + · · ·+ wipup)Φi(u) (1)

whereM is the number of the data sub-regions (see below) represented by the normalized
orthogonal Gaussian validity functionsΦi defined as
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is the so-called membership function (MSF) withcij being the centers of these sub-regions. For
each sub-region a local linear modelŷ = (1 u1 . . . up)

Tw = xTw, specified by the parameters
wi = (. . . wik . . .)T , i = 1..M , k = 0..p, is constructed.

2.2. Estimation of the LLM’s parameters

Ordering the measured data into a matrix
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where each row represents single data samplexs of all inputs,s = 1..N (N being the total
number of the measured samples), and forming the diagonal matrix Qi of the validity function
valuesΦi with respect to theith LLM and corresponding to each measured data sample as
Qi = diag(. . .Φi(us) . . .), theith LLM’s parameters can be estimated according to

wi =
(

XTQiX
)

−1
XTQiy (5)

wherey = (. . . ys . . .) is the vector of measured system outputs, the dependance of which on
the measured inputs is the subject of the identification;1 consult [1].

Note: The determination of the parameterswi is also called thetraining phaseof the LOLI-
model; the calculation of the LOLI-model outputŷ [see (1)] to given inputsu when the pa-
rameterswi and the partitioning of the data region specified byΦi(u) are known is called the
simulation phaseof the LOLI-model.

1Provided thatN ≥ p + 1.
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If, for some reason, some data samples are more important than others, introducing matrix
R = diag(. . . rs . . .), s = 1..N of desired weights for each data sample the weighted least
square method can be used:

wi =
(

XTQiRX
)

−1
XTQiRy.2 (6)

2.3. LOLIMOT - the identification algorithm

Assume we have ordered the measured data of a system behavior, i.e., inputs and output(s),
into the matrixX, each column of which (but the first one) corresponding to oneof the input
quantitiesuj, j = 1..p. The limits of the measured values constitute ap-dimensional hyper-
rectangle that is called the data region, on which the resulting LOLI-model is to approximate
the system’s behavior.

LOLIMOT3, as introduced by O. Nelles [1], is an algorithm that in each iterationi splits
the rectangular measured data region by the axis-orthogonal cuts into two halves (sub-regions)
in jth dimension and constructs the validity functionsΦi according to (2) and linear models
determined by parameterswi according to (6). Only the worst performing LLM, i.e., the one
with the largest local error

Ii =
N

∑

j=1

(ŷj − yj)
2Φi(uj), (7)

is considered for splitting in each LOLIMOT iteration whilethe split in all dimensions is tried
and only the best split, i.e., the one yilding the largest decrease of the total error

ǫi = (ŷi − yi)
2, (8)

is adopted. The algorithm stops as soon as the termination criterion, e.g., the LOLI-model
complexity is reached (maximum numberM of LLMs) or the total LOLI-model error drops
below a specified threshold, is met.

For more detailed description of the algorithm, please refer to [1] for systems with single
output (MISO) or to [2] for systems with multiple outputs (MIMO).

3. Predictive vs. statical approximation of dynamical systems

Originally, to utilize the LOLIMOT approach to identification of dynamical systemy(m) =
f(. . . , uj, u̇j, üj, . . . , y, ẏ, . . . y(m−1)), Nelles [1] suggests to adopt the input/output discrete de-
scription of the nonlinear system’s behavior, i.e.,

y(k) = g(u(k),u(k − 1), . . . , y(k − 1), . . . , ∆t); (9)

k denoting the discrete time. Thus, the regression vectorx may generally contain not only
values of the measurable quantities but also a portion of their time history. For example, to
identify the coefficients of the discrete difference equation of a nonlinear dynamical system
ÿ = f(u1, u̇1, ü2, y, ẏ) whereas it is possible to measure onlyu1, u2 andy, the regression vector
x must contain the elementsu1(k), u1(k − 1), u2(k), u2(k − 1), u2(k − 2), y(k − 1), y(k − 2)
(allowing the direct coupling amongu1 andu2, andy). The severe disadvatage of this strategy

2For nonweighted data, theR equals unitary matrix.
3The acronym of the wordslocal linearmodel tree.
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is that it strongly depends on the sampling time of the measured data that is implicitly contained
in it.4

Nevertheless, the LOLIMOT algorithm can be utilized also for state space description

χ̇ = F(χ, υ) (10)

of the system provided the positions and velocities can be measured. Than, the regression vector
x contains only the measured quantities and, consequently, the measured data does not need to
be sampled equidistantly, as the sampling does not matter. In other words, adopting the state
space description of the identified system, the resulting neuro-fuzzy model is trained as statical
function approximating the right-hand side of (10).

4. Applications

We have investigated two examples of dynamical systems: a) anonlinear spring damper
system with 1 degree of freedom (DOF), and b) a double pendulum.

In both cases, the Matlab/Simulink was used to create the dynamical model of the physical
system, an external excitation was imposed on it and the positions, velocities, and accelerations
were recorded; thus, a bundle of data was obtained that were used for training the LOLI-model.

b(ẏ)

m

F (t)

k(y)y(t)

Fig. 1. Mechanical model
of 1-DOF nonlinear
spring damper system.

Two different types of LOLI-model were created: a) thepre-
dictive one, i.e. several consecutive values of positions only were
utilized for training, and b) thestatical one, i.e. the simultaneous
values of positions and velocities were used for training (statical ap-
proximation of the rihgt-hand side of the state space model). Then,
the same external excitation as that used for training was imposed on
the created LOLI-model and the responses of the Simulink physical
model and LOLI-model were compared.5

Finally, both the system and the LOLI-model were put through
the testing excitation signal (different from the one used during the
training phase) and, again, the responses were compared.

4.1. 1-DOF nonlinear spring damper system

Consider a nonlinear spring damper system with single degree of freedom according to fig.
1; massm = 2kg. The damper is modelled by the following two forces

Fk = k1y + k2y
3 , Fb = b1y + b2y

3. (11)

The signal used to train the LOLI-model is composed of a) 8s long chirp with starting frequency
f 0 = 0.5Hz, target frequencyf 1 = 150Hz at timeT = 20s, and amplitude ofAc = 30N and
b) 7s long random signal with sampling 0.5s and amplitudeAs = 35N .

4As we have already experienced, the rule of at least 10 times higher the sampling frequency than the highest
frequency of the data cannot be applied here since the least square method tends to favour the higher frequencies
and the quality of the resulting LOLI-model can be easily unacceptable for lower frequencies.

5Note the fact that in the case of the predictive LOLI-model, no integration is necessary to calculate the values of
the inputs to the LOLI-model in the next time step from the LOLI-model output in the preceeding time step, unlike
in the statical case where the integration is necessary, as the LOLI-model output is usually the acceleration—the
derivative of the LOLI-model inputs containing positions and velocities.
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Fig. 2. Spring damper system: Responses to the training signal (position, velocity).

The matrix of recorded data had the following structure:

X̄ = (k y ẏ ÿ F ); (12)

k denoting the dicrete time.

Predictive LOLI-model The predictive LOLI-model fory was trained with 6 LLMs and the
structure of the LOLI-model inputs (i.e., of the regressionvectorx) was
output inputs

ŷ (1 y(k − 1) y(k − 2) F (k − 1))

assumming no direct influence ofŷ by F .
The responses of the system and LOLI-model to the training excitation are on fig 2 (only

the first 4 seconds).

As the testing excitation forceF the chirp signal with with starting frequencyf 0 = 0.1Hz,
target frequencyf 1 = 100Hz atT = 10s, and amplitudeA = 50N was used (simulation time
10s). The first 4 seconds of the corresponding responses are on fig 3.

Statical LOLI-model As the statical approximation of the right-hand side of the state space
description, the LOLI-model with again 6 LLMs was trained for the acceleration̈y. The struc-
ture of the regression vectorx was
output inputs

ˆ̈y (1 y(k) ẏ(k) F (k))

The same testing excitations were used as for the predictivecase. The responses of the system
and both types of LOLI-models to the training and testing excitations are on figs. 2 and 3.
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Fig. 3. Spring damper system: Responses to the testing signal (position, velocity).

4.2. Double pendulum

Consider a double pendulum according to fig. 4 made of two connected bars with the follow-
ing characterists (body index 1 denoting frame): mass density ρ = 7800kg/m3, gravitational
accelerationg = 9.81ms−2, cross sections of the barsb1 × h1 = b2 × h2 = 0.05 × 0.05m,

1

m2, I2, l2

ϕ2

2

M12

M23

k23, b23

k12, b12

ϕ3

m3, I3, l3

3

Fig. 4. Mechanical model of
double pendulum.

lengthsl2 = 0.5m, l3 = 0.8m, torsional stiffness coefficients
k12 = 50Nm/rad, k12 = 20Nm/rad, torsional damping co-
efficientsb12 = 5Nms/rad, b12 = 2Nms/rad.

To create both the predictive and statical LOLI-model of
the double pendulum, the training signals of the driving torques
M12, M23 with amplidutesA12 = 10Nm, A23 = 35Nm com-
posed of a) 10s long amplitude modulated pseudo-random bi-
nary signal run through a system of first order with time con-
stant 0.05s, b) 10s long chirp with starting frequenciesf 0

12 =
0.0015Hz, f 0

23 = 0.0025Hz and target frequenciesf 1
12 =

2Hz, f 1
12 = 3Hz, and c) 10s long stochastic signal with sam-

pling 0.1s were used.
The matrix of recorded data had the following structure:

X̄ = (k ϕ2 ϕ̇2 ϕ̈2 ϕ3 ϕ̇3 ϕ̈3 M12 M23); (13)

k denoting the dicrete time.

Predictive LOLI-model The predictive LOLI-models with
6 LLMs were trained for both system outputsϕ2, andϕ3. The

structures of the regression vectorsx) for both LOLI-models were as follows
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Fig. 5. Double pendulum: Comparison of the responses to the training excitation.

output inputs
ϕ̂2 (1 ϕ2(k − 1) ϕ2(k − 2) ϕ3(k) ϕ3(k − 1) ϕ3(k − 2) M12(k − 1) M23(k − 1))
ϕ̂3 (1 ϕ2(k) ϕ2(k − 1) ϕ2(k − 2) ϕ3(k − 1) ϕ3(k − 2) M12(k − 1) M23(k − 1))

The responses of the system and LOLI-model to the training excitation are on fig. 5.
As the testing excitation torquesM12, M23 the chirp signals with starting frequenciesf 0

12 =
0.01Hz, f 0

23 = 0.08Hz, target frequenciesf 1
12 = 8.5Hz, f 1

12 = 13Hz, amplitudesA12 = 5Nm,
A23 = 15Nm were used (simulation time 11s). The corresponding responses are on fig. 6.

Statical LOLI-model As the statical approximation of the right-hand side of the state space
description, the LOLI-models with 20 LLMs were trained for the accelerations̈ϕ2 andϕ̈3. The
structures of the LOLI-model inputs (i.e., of the regression vectorx) were the same for for both
LOLI-models:
output inputs

ˆ̈ϕ2 (1 ϕ2(k) ϕ̇2(k) ϕ3(k) ϕ̇3(k) M12(k) M23(k))
ˆ̈ϕ3 (1 ϕ2(k) ϕ̇2(k) ϕ3(k) ϕ̇3(k) M12(k) M23(k))

The responses of the system and LOLI-model to the training excitation are on fig. 5.
The same testing excitations were used as for the predictivecase; the responses are in the

fig. 6.

4.3. Discussion

Up to now results of these experiments indicate that the statical approximation of the right-
hand side of the state space description gives better results in long time simulation than the
predictive one. The necessary complexity of the statical LOLI-model (the number of LLMs) is
still an open question.
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Fig. 6. Double pendulum: Comparison of the responses to the testing excitation.

5. Conclusion

The neuro-fuzzy based identification by the LOLIMOT algorithm has been used to approx-
imate the right-hand side of the state space description of anonlinear dynamical system’s be-
havior. This approach has been tested on two examples—the nonlinear spring damper system
and double pendulum.

Besides the statical approximation of the right-hand side of the state space description, the
predictive LOLI-models have been trained and successfullyused for long time simulation.

The results seem to prove the applicability of the LOLIMOT’sapproach in the areas of the
real-time modelling of damped dynamical systems. The applicability of this framework for
systems without damping brings severe problems with the stability of the resulting simulation
model.

Acknowledgements

The authors appreciate the kind support of the MSMT project MSM 6860770003 “Devel-
opment of algorithms of computational simulations and their applications in engineering”.

References

[1] O. Nelles, Nonlinear System Identification with Local Linear Neuro-Fuzzy Models, Ph.D. thesis,
Technische Universitat Darmstadt, Germany, 1998.
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