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Abstract

This paper deals with sensitivity analysis of eigenfrequencies from the viewpoint of design parameters. The

sensitivity analysis is applied to a rotor which consists of a shaft and a disk. The design parameters of sensitivity

analysis are the disk radius and the disk width. The shaft is modeled as a 1D continuum using shaft finite elements.

The disks of rotating systems are commonly modeled as rigid bodies. The presented approach to the disk modeling

is based on a 3D flexible continuum discretized using hexahedral finite elements. The both components of the rotor

are connected together by special proposed couplings. The whole rotor is modeled in rotating coordinate system

with considering rotation influences (gyroscopic and dynamics stiffness matrices).
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1. Introduction

The issue of the modeling of flexible rotating systems is still significant in the dynamics of

engineering problems. Dynamics of turbines and dynamics of wheelsets in rail vehicles are the

examples of the common applications of such systems. The presented paper is the enhancement

of the previous contributions, which were made on the topic of flexible disks. It was started by

[9] where derivation of equations of motion of flexible disks is described. In next work [10] the

flexible connection between a disk (3D continuum) and a blade (1D continuum) was presented.

The disk connection to a shaft was shown in [4]. There were described two approaches to the

connection. The first is a rigid coupling which can be used for shrinkage fit modeling and the

second is a flexible coupling which can be used for interlocking joint. The second approach for

the disk-shaft connection is used in this article.

The main aim of this paper is the eigenfrequency sensitivity analysis of flexible rotors with

respect to the chosen shape parameters of disks. Sensitivity analysis in rotor dynamics is im-

portant mainly for optimization problems in order to choose the proper design parameters. The

results of sensitivity analysis can also contribute to the better understanding of complex sys-

tem’s behaviour. General knowledge about sensitivity analysis of the systems modeled by using

finite element analysis can be found in monograph [6]. The analytical approach for the sensi-

tivity analysis of rotating systems is developed in [3]. The example of the eigenvalue sensitivity

analysis of the rotor with rigid disk is shown in [2] and of the spinning flexible disk in [1]. The

sensitivity of the modal values of a flexible rotor with respect to the angular velocity is studied

in [5].

The numerical approach for the eigenfrequency sensitivity analysis is used by the author

of this paper. In the first part of the paper the mathematical model of the flexible disk-shaft
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Fig. 1. Scheme of linear isoparametric hexahedral element (see [7]).

system including the mutual connection is presented. The second part of the paper deals with

the example of the eigenfrequency sensitivity analysis of the simple test-rotor.

2. Mathematical model

In this section the mathematical model of rotating shaft with flexible disk will be described.

The whole system consists of two subsystems – disk subsystem (subscript D) and shaft sub-
system (subscript S). The disk will be modeled as three-dimensional continuum, the shaft will
be modeled as one-dimensional continuum and the connection between the disk and the shaft

will be provided by the flexible couplings. It is supposed that the subsystems are rotating with

constatnt angular velocity ω0 around their X-axis.
The disk can be discretized by isoparametric hexahedral elements (see Fig. 1). The equa-

tions of motions are derived in [9]. The mathematical model of the uncoupled disk subsystem

can be written in the form

MDq̈D(t) + ω0GDq̇D(t) + (KsD − ω20KdD)qD(t) = ω
2
0fD, (1)

Fig. 2. Scheme of the disk coordinate systems.
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where MD is the mass matrix of the disk, the term ω0GD expresses gyroscopic effects which

react on the disk, KsD is the static stiffness matrix of the disk, KdD is the dynamic stiffness

matrix of the disk and ω20fD is the centrifugal load vector. The dimension of the subsystem

matrices is nD × nD. They are symmetrical ones except the gyroscopic matrix that is skew-

symmetrical. The disk equations of motion are written in the configuration space defined by

vector of nodal coordinates

qD = [. . . u
(D)
j v

(D)
j w

(D)
j . . .]T ∈ R

nD , (2)

where u
(D)
j is displacement of node i in x-direction, v

(D)
j is displacement of node i in y-

direction, and w
(D)
j is dispalacement of node i in z-direction (see Fig. 2), i.e. each node has

three degrees of freedom.

The shaft is modeled as an one-dimensional continuum on assumption of the undeformable

cross-section that is still perpendicular to the shaft axis. The derivation of the equations of

motion is shown in [4]. This model is based on [8] where the derivation is performed in non-

rotating coordinate system XY Z. But the new model is derived in rotating coordinate system

xyz. The shaft is discretized using shaft finite elements (see Fig. 3) with two nodes. The

dispalacement of each node i is described by six generalized coordinates – three dispalacements

u
(S)
i , v

(S)
i , w

(S)
i and three rotations ϕ

(S)
i , ϑ

(S)
i , ψ

(S)
i . The shaft conservative mathematical model

can be written in the form

MSq̈S(t) + ω0GSq̇S(t) + (KsS − ω20KdS +KBS)qS(t) = 0, (3)

where the configuration space is defined by vector

qD = [. . . u
(S)
j v

(S)
j w

(S)
j ϕ

(S)
i ϑ

(S)
i ψ

(S)
i . . .]T ∈ R

nS . (4)

Mass matrix MS , static stiffness matrix KsS and dynamic stiffness matrix KdS are symmetri-

cal, and gyroscopic matrix ωGS is skew-symmetrical. Rolling-element bearings are described

Fig. 3. Scheme of the shaft finite element.
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Fig. 4. Shaft and disk nodes and their displacements in the rotating coordinate system.

in this mathematical model by symmetrical stiffness matrix KBS . Particular forms of the bear-

ing stiffness matrix can be found e.g. in [8] or in [11].

The connection between the disk and the shaft is realized by the flexible coupling [4]. This

methodology can be used e.g. for representing the interlocking joint, that is usual design solu-

tion in some engineering applications. The conservative mathematical model of disk and shaft

subsystems mutually joined by the flexible coupling is of the form

MDq̈D(t) + ω0GDq̇D(t) + (KsD − ω20KdD)qD(t) = ω
2
0fD + fC

D , (5)

MSq̈S(t) + ω0GSq̇S(t) + (KsS − ω20KdS +KBS)qS(t) = fC
S , (6)

where all matrices and vectors except vectors fC
D and fC

S are explained in the previous section

of the paper. These vectors represent the coupling forces between particular subsystems. The

coupling forces are acting in the chosen shaft nodes, where the disk is mounted on, and in the

chosen disk nodes, that lie on the inner circumference of the disk body (see Fig. 4).

The global coupling force vector fC in global configuration space of the disk-shaft system

q =
[

qT
D qT

S

]T
(7)

can be calculated by differentiating the potential (strain) energy

fC =

[

fC
D

fC
S

]

= −
∂EC

p

∂q
. (8)

If the disk-shaft coupling is realized using ni shaft nodes and nj disk nodes for each shaft node
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the global coupling force vector can be rewritten in the form

fC = −KCq = −

ni
∑

i=1

nj
∑

j=1

KC
i,jq, (9)

where stiffness matrices Ki,j corresponding to the particular coupling between i-th and j-th
nodes are calculated as

∂EC
i,j

∂q
=KC

i,jq. (10)

The coupling is characterized by three stiffnesses kt in tangent direction to the shaft cross-

section, kr in radial direction and kax in axial direction. These stiffnesses are used for each

coupling between i-th and j-th nodes. The mathematical model of the whole system is

[

MD 0

0 MS

] [

q̈D

q̈S

]

+ ω0

[

GD 0

0 GS

] [

q̇D

q̇S

]

+

([

KsD 0

0 KsS

]

−

−ω20

[

KdD 0

0 KdS

]

+

[

0 0

0 KBS

]

+KC

) [

qD

qS

]

= ω20

[

fD

0

]

.

(11)

It is very useful to rewrite the motion equations of the whole disk-shaft system (9) in the fol-

lowing form

Mq̈(t) + ω0Gq̇(t) + (Ks − ω20Kd)q(t) = ω
2
0f , (12)

where the mass matrix is

M =

[

MD 0

0 MS

]

, (13)

the skew-symmetrical gyroscopic matrix is

ω0G = ω0

[

GD 0

0 GS

]

, (14)

the static stiffness matrix is

Ks =

[

KsD 0

0 KsS

]

+

[

0 0

0 KBS

]

+KC , (15)

the dynamics stiffness matrix is

Kd =

[

KdD 0

0 KdS

]

, (16)

and the centrifugal load vector is

ω20f = ω
2
0

[

fD

0

]

. (17)

The dimensions of the disk-shaft systemmatrices is n×nwhere n = nD+nS . The homogenous

version of this equations will be used for the eigenvalue problem in the next section.
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J. Šašek / Applied and Computational Mechanics 1 (2007) XXX - YYY

Fig. 5. Scheme of the test rotor.

3. Eigenfrequency sensitivity analysis of rotors

The eigenfrequency sensitivity analysis of the disk-shaft system (10) will be presented. The

identity Mq̇ −Mq̇ = 0 should be added to the homogenous form of the equations (10), when

we want to consider the gyroscopic effects. These equations can be written in matrix form

[

0 M

M ωG

] [

q̈

q̇

]

+

[

−M 0

0 Ks − ω2Kd

] [

q̇

q

]

= 0. (18)

The eigenvalue problem of the system (16) is then given by

A − λE = 0, (19)

where

A =

[

−ωM−1G −M−1 (Ks − ω2Kd)
E 0

]

, (20)

λ is eigennumber, and E is the unit matrix. The matrices of the system (18) are square of the

2n-th order.
The sensitivity analysis will be applied on a test rotor (disk-shaft-bearing system) shown

in Fig. 5. The reference dimensions are following. The shaft radius is r = 25 mm, the disk

radius R = 80 mm, the disk width h = 40 mm, and the shaft lengths a = b = 140 mm. The

shaft is discretized using 16 one-dimensional shaft elements and the disk is discretized using

576 solid hexahedral elements. The support is provided by the isotropic bearings with stiffness

kB = 10
9N/m in the outside nodes of the shaft (left bearing – radial and axial direction, right

bearing – radial direction).

The coefficients of the flexible couplings are chosen with respect to the ratio of the global

coupling stiffnesses and the shaft stiffnesses that can be analytically expressed (see [8]). The

whole system has 2622 degreeses of freedom. Standard steel material properties are considered.

The original in-house software is created in MATLAB system based on the developed modeling

methodology. The first fifteen eigenfrequencies of non-rotating rotor (ω0 = 0) are shown in

Tab. 1 with brief characterization.
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i fi [Hz] Note i fi [Hz] Note

1 0 free rotation around x-axis 9, 10 5939 1 nod. diam. of the disk

2, 3 708 shaft bending 11, 12 6291 shaft ends oscillation

4 1402 axial bearings oscillation 13 7065 2 nod. diam. of the disk

5, 6 2226 shaft bending 14 7072 2 nod. diam. of the disk

7 4564 torsional oscillation 15 7432 1 nod. cir. of the disk

8 5878 torsional oscillation 16 10254 axial shaft oscillation

Tab. 1. The list of eigenfrequencies with brief specification.

The first eigenfrequency is zero because the rotor can freely rotate around its axis of rotation.

The bending eigenmodes are characterized by pairing eigenmodes which have nearly equal

eigenfrequency. Torsional and axial eigenmodes are separated. Chosen eigenmodes are shown

in following figures. The 2nd eigenmode is characterized by shaft bending, whereas the 14th

eigenmode is characterized by disk bending (see Fig. 6). In the case of the 4th eigenmode the
rotor oscillates in bearings in axial direction (see Fig. 7 – left). The 7th eigenmode is torsional
(see Fig. 7 – right).

The Campbell diagram figures the first six eigenfrequencies dependence on angular velocity

from ω0 = 0 rpm to ω0 = 9000 rpm (see Fig. 8). The Campbell diagram shows the indepen-

dence of the separated eigenfrequencies (4th, 7th) on angular velocity. The pairing eigenmodes
(2nd, 14th) are characterized by two eigenfrequency roots, where the first root decreases, and
the second root increases with the grow of angular velocity.

Two parameters are chosen for the eigenfrequency sensitivity analysis. The first parameter is

the disk radiusR ∈ 〈80, 96〉 mm and the second parameter is the disk width h ∈ 〈40, 48〉 mm.

Fig. 6. The 2nd and 14th bending eigenmodes (f2 = 708 Hz, f14 = 7072Hz).

Fig. 7. The 4th axial and 7th torsional eigenmodes (f4 = 1402 Hz, f7 = 4564 Hz).
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Fig. 8. The Campbell diagram for the angular velocity from ω0 = 0 rpm to ω0 = 9000 rpm.

The both parameters are changed in 20%. The frequency dependence on design parameters of

non-rotating rotor is shown in Fig. 9.

In the event of the first six eigenmodes the eigenfrequency is declining with growing width

h. Whereas, the other eigenfrequencies rise because of the disk is stiffened (the disk oscillates

more). In the case of disk radius (parameter R) the eigenfrequencies go down in all eigenmode
cases. The system is generally more sensitive to disk radius changes. In the event of dominant
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Fig. 9. The frequency dependence on design parameters of non-rotating rotor.
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Fig. 10. The relative sensitivity to the disk radius (pi = R).
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Fig. 11. The relative sensitivity to the disk width (pi = h).

disk oscillation and the eleventh and twelfth eigenmodes the eigenfrequency is declining with

growing radius (less stiff), the eigenfrequency rises with the growing width (more stiff). The

eighth eigenfrequency is independent on disk radius changes.

The relative (effective) sensitivity (see [3]) is more useful for the comparison of sensitivity

to parameter difference than eigenfrequencies dependence. It can be expressed in numerical

form
(

∆fν

∆pi

)

rel

=
fν − fν,0

pi − pi,0

·
pi,0

fν,0

, (21)

where fν is the ν-th eigenfrequency, fν,0 is the ν-th eigenfrequency of reference system, pi is the

value of i-th parameter, and pi,0 is the value of i-th reference parameter. The reference values of
parameters are p1,0 = R = 80 mm, p2,0 = h = 40 mm. The relative sensitivities to parameter

R are shown in Fig. 10, and the relative sensitivities to parameter h are shown in Fig. 11. The
dependence on the angular velocity ω0 can be recognized here. The described phenomenon (see
above) are confirmed in these diagrams.

4. Conclusion

The several methodology for the flexible rotors modeling was presented in this paper. The

eigenfrequency sensitivity analysis of rotors with flexible disks was then performed. It is useful

to model rotors with flexible disks in case of e.g. high frequency excitation. The modal sensi-
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tivity analysis allows to recognize the eigenfrequency response to design parameters changes.

It can also help for the better identification of important dynamic properties.
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[9] J. Šašek, V. Zeman, M. Hajžman, Modal properties of rotating disks, Proceedings of 22nd confer-
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