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Abstract  

The goal of our paper is to present the numerical computational tools application for the hysteretic curve 
identification using Karray-Bouc and Ramberg-Osgood models. The Karray-Bouc model parameters will be de-
termined from Ramberg-Osgood model and Manson-Coffin curve parameters. Using special Matlab’s proce-
dures we can calculate dissipative (hysteretic) energy density per cycle and express Manson-Coffin curve in en-
ergy version.  
© 2007 University of West Bohemia. All rights reserved.  

Keywords: Manson-Coffin curve, energy fatigue curve, Karray-Bouc hysteretic model, Ramberg-Osgood model   

1. Introduction  

The engineering structures components usually undergo a non-proportional and multiaxial 
loading. The application of the cyclic σ-ε tensor response under the multiaxial loading, which
depends on the loading-path, is very difficult [12,2]. Several researchers have proposed     
uniaxial and multiaxial fatigue criteria based on an 
energy evaluation [8,10,6]. Hence, the goal of the 
paper will be to present possibilities how to deter-
mine the energy-based fatigue curve from Manson-
Coffin curve [7,10,6,15].    

Considering low and high cyclic fatigue life it 
will be needed to express the cyclic σ-ε curve mat-
hematically. The hysteretic models can be conti-
nuous and discontinuous (e.g. linear in parts). The
behaviour σ-ε can have a monotonic character 
or a cyclic character (Fig. 1) [3,12,15]. 

The first models have been described by simple 
algebraic equations mainly for the monotonic σ-ε
relationship. Further, we will use one of the first
models with the exponential character of hardening 
known as Ramberg-Osgood model (RO), i.e. 
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Fig. 1. Monotonic and cyclic σ-ε  curve. 
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The parameter E is Young’s modulus, K‘ is the cyclic strength coefficient, n‘ is the cyclic 
strain-hardening exponent and σRO is the yield stress. All these material constants can be obta-
ined from experimental dates or from Manson-Coffin curve parameters; this process will be 
presented latter.   

The Wen’s differential model in one of its possible modifications will be used for the fur-
ther analysis. Its fundamental mathematic form is following [14,4] 
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The description of the material non-linearity can be formulated using so called Karray-
Bouc model (KB) as a modification of Wen’s model in the following form [14,4] 
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where EE /T=α  and z is the stress parameter. The other parameters written into the vector 

p = [α, β, γ, n]T  influence the shape of the cyclic curve.   

2. Calculation of RO model from Manson-Coffin curve and the identification of the KB 

model  

2.1. Calculation of RO model parameters from Manson-Coffin curve 

Let‘s consider the well-known Manson-Coffin curve  
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where '
fσ is the fatigue strength coefficient, '

fε is the fatigue ductility coefficient, b is the fa-

tigue strength exponent, c is the fatigue ductility exponent. As mentioned in the introduction, 
these parameters can be used for the calculation of the Ramberg-Osgood model coefficients 
[5,9]:       
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In the case of the steel STN 411373.0 the Manson-Coffin curve will be following 

487,0078,0
411373 )2(371,0)2(003678,0 −− ⋅+⋅= NNε                             (6) 

and RO parameters can be calculated as follows 
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Tab.1 presents the results of our calculation for the chosen kinds of steels.  
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Steel 
STN 

Rm

[MPa] 
Re

[MPa] 
E 

[MPa] 
ε

[-] 

σ

[MPa]
b C 

K‘
[MPa]

n‘

411 373.0 414 299 202000 0,351 743 0,078 0,487 878,6 0,1602

411523.1 542 345 198000 0,871 1132 0,115 0,579 1163,5 0,1986

412 010.1 388 260 210600 0,326 699 0,098 0,492 873,8 0,1992

415 320.6 789 704 207000 0,936 1038 0,072 0,652 1045,0 0,1104

2.2. Identification of the KB model  

Assuming that the behaviour of monotonic curves σ-ε will be equivalent for both models 
RO and KB, the vector p can be obtained by a numerical approach using an optimising met-
hod implemented in Matlab. The objective function can be formulated [9] as follows   
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where p =[α, β, γ, n]T will be the vector of the optimised variables. The relationshipσ -ε
can be expressed as follows  
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and σ - ε  can be formulated as  
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Minimizing (8) the mathematical expression of the KB model describing material 
STN 411 353.0 for strain amplitude ε ∈ 0; 0,0282  the following expressions have been ob-
tained 
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Fig. 2 shows the graphic representation of the identification process using Nelder-Mead opti-
mising method for steel STN 411 373.0. 

Tab. 1. Table of Manson-Coffin curve and RO model parameters. 
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Results of the identification process 
for other materials are presented in Tab.2. 
Using these coefficients we can propose 
a material computational model (KB, 
RO) for FEM or other analyses. 

Using this numerical approach the 
KB computational model has been pre-
pared for the hysteretic loop analysis 
(Fig. 3) and for the numerical calculation 
of the total strain-energy density per a cy-
cle or the hysteretic energy per a cycle 
for different strain amplitudes. 

    
                                                                                                         

Tab. 2. Table of RO and KB material parameters.

3. Strain-energy density and hysteretic energy calculation 

Considering the harmonic character of the strain amplitude )2sin(max t⋅⋅= πεε , the eq. (11) 

will be solved for t∈<0,10 sec.> , εmax ∈<0,00001 ; 0,028>. By the obtained results it is pos-
sible to describe σ−ε hysteretic loop for the analysed material and a value of the stress ampli-

Steel K’ n‘ α β γ n 
11 373.0 878,6 0,1602 0,0139 0,3182 0,5935 0,3053 
11523.1 1163,5 0,1986 0,0111 0,4123 0,5143 0,1915 
12 010.1 873,8 0,1992 0,0150 0,7490 0,2034 0,1972 
15 320.6 1045,0 0,1104 0,0083 0,5505 0,5336 1,2892 

Fig. 2.  Monotonic part σ-ε curve for material STN 411353.0 
before and after the identification process.

   KB model 

RO model 

= =

Fig. 3. σ−ε hysteretic loop (STN 411353) for amplitudes 
εmax = 0,0282    εmax = 0,01065  and   εmax = 0,00435. 
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tude σmax. Using the expression σ−ε in a discrete form the dissipative (hysteretic) energy den-
sity can be calculated [1,11] as follows  
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where t1 is the time of the first stress maximum achievement and t2 is the time of the second 
stress maximum achievement. In the case of the total strain energy density it is necessary to 
add the elastic part, i.e.  
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A calculation of the total strain energy density per half cycle can be realised using a well-
known Feltner’s term [13] 
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and for the hysteretic energy density per cycle the Morrow’s relationship is often applied [13], 
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It’s important to note that these relationships are approximate, very simple, what is their facil-
ity. Our proposed numerical approach is more complicated but much more accurate. 
Of course, the relation σ-ε cannot be solved explicitly.        

4. Energy-based fatigue curve 

Applying the KB computational model, the energy-based fatigue curve will be obtained 
from Manson-Coffin curve (4). Using (14) or (15) it’s possible to express the analysed curve 
in an explicit form, mainly from the comparison point of view. The Feltner‘s explicit expres-
sion is following [13] 
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This expression can be applied for both the low and the high cycle fatigue analysis. Morrow‘s 
energy fatigue curve is applicable for the low cycle first of all. Its mathematical notation is 
known in the following form [13] 
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On the basis of the proposed ideas it’s possible to present the fatigue curves for steel 
STN 411353.0 in several modifications. Next figures show: 

- the classic Manson-Coffin curve (Fig.4), 
- the energy fatigue curve obtained by the numerical computation (Fig.5), 
- the comparison of the energy fatigue curve obtained by the numerical computation and 

by Feltner’s expresions (Fig.6) and finally 
- the comparison of the energy fatigue curve obtained by the numerical computation and 

by Morrow’s expresions (Fig.7). 
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Considering the strain energy density as the fatigue parameter the proposed solution can 
be very problematic, because it is not possible to determine the loading type from history of 
the energy W(t). This problem is typical for the case of the rainflow analysis. In [7,8] the au-
thors defined W(t) taking into account the signs of  stresses and strains in order to distinguish 
the energy under the tension (+) and under the compression (-) as follows 
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Fig. 4. ε-2N fatigue curve. 
Steel STN 411353.0. 

487,0078,0 )2(371,0)2(003678,0 −− ⋅+⋅= NNTε

078020036780 ,
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Fig. 5. Energy fatigue curve.  
Strain-energy density per a cycle  
vs. the number of the reversals. 

Total energy

Hysteretic energy

Elastic energy     

Fig.6. Energy fatigue curve.  
Strain-energy density per a cycle 
vs. the number of the reversals. 
Curve 1: presented calculation 

Curve 2: Feltner’s calculation (14) 
Curve 3: Feltner’s calculation (16) 

  

Curve 2 

Curve 1 

Curve 3 

Fig.7. Energy fatigue curve.  
Strain-energy density per a cycle 

vs. the number of reversals. 
Curve 1: presented calculation 

Curve 2: Morrow‘s calculation (15) 
Curve 3: Morrow’s calculation (17) 

  

Curve 2 

Curve 3 

Curve 1 
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For distinguishing between the positive and negative parameter of an strain energy density, 
the function sign has been introduced into the elastic energy density expression [7,8]. Another 
computational approach considering the “positive” and “negative” character of the strain en-
ergy density may be defined (from author’s experience) as follows 

)()()(
2

1
)(2 εεσ signtttW ⋅⋅⋅= .                                        (19)  

Character of the expressions (18), (19) and their comparison with strain behaviour is shown 
on Fig. (8). Energy-based fatigue life estimation can be used for multiaxial loading settings 
mainly in the cases of the non-proportional conditions [1].  

Proposed computational techniques can be compared in following simple example. Let’s 
consider a random behaviour of ε(t). By (18), (19)  we can calculate the “positive” or “nega-
tive” energy density W1(t) or W2(t) and also the rainflow analysis apply. A cumulative damage 
D is assumed as a comparative parameter. Finally, it’s compared the “classic” Manson-Coffin 
damage calculation with “energy” damage calculation using W1(t) and W2(t). Results of this 
short study are presented in Tab.3.        

                                                                                                         

Tab. 3. Table of the cumulative damage D. 

5. Conclusion 

The goal of this paper was to present the chosen computational tools for an energy-based 
fatigue life estimation. A numeric approach for an identification of the hysteretic Karray-Bouc 
material model from Ramberg-Osgood model parameters, which have been calculated from 
Manson-Coffin curve, has been proposed. Using Karray-Bouc model the energy fatigue curve 
has been obtained and consequently compared with Feltner’s and Morrow’s curves. Results 
shown in figures 6 and 7 indicate that the energy fatigue curves behaviours are a bit different. 
It leads to a claim that the energy fatigue life prediction using Feltner’s or Morrow’s methods 
can give a slightly garbled information. However, the numerical tests using rainflow decom-
position indicate feasible values of the damage.        

W1 – calculation technique W2 – calculation technique 
Manson-Coffin 

cumulative damage Feltner Morrow 
Presented 
method 

Feltner Morrow 
Presented 
method 

0,093 0,86 0,089 0,091 0,087 0,092 0,094 

Fig. 8. Comparison of the relations ε(t), W1(t) and W2(t).  

ε(t) 

W1(t) 

W2 (t) 
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