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Abstract 
This thesis summarizes the current state of the art of methods for detection of 
event-related potential waveforms in brain-computer interface systems. The 
brain-computer interface helps disabled people to control applications which 
they are not able to control via a standard user interface due their handicap. 
The critical part of every brain-computer interface based on event-related 
potentials is the method which detects the event-related potential waveforms in 
the input signal.  

Nowadays, the detection methods are based on one or more methods from the 
following domains: statistical methods, methods in time-frequency domain, 
methods based on decomposition/approximation, artificial neural networks. 
Representatives of all these domains are described in this thesis. 

However, all these methods have weaknesses and it is the oportunity for 
inovation. Therefore, an inovative method for detection of event-related 
potential waveforms based on adaptive filtering will be scope of the Ph.D. 
thesis. 
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1 Introduction 

The beginning of electroencephalography (EEG) is dated to year 1929, when Hans 

Berger reported a brand new set of experiments in which he demonstarted that it is 

possible to measure the electrical activity of the brain by electrodes placed on the scalp. 

The signal from electrodes was amplified and the changes in voltage were plotted over 

time. 

A big progress in processing of data obtained by electroencephalography becomes with 

computer revolution, especially methods for a discrete signal processing. As a result of 

using methods for discrete signal processing in electroencephalography, a new branch 

of science was established – the neuroinformatics. 

One of the most fascinating parts of research in neuroinformatics is the research of 

a brain-computer interace (BCI): a system which is able to control an application on the 

basis of commands distinquished from a brain activity. The greatest importnace have 

the brain-computer interface systems for disabled people who cannot control a specific 

application via a standard interface. 

Nowadays, the major part of brain-computer interfaces is based on event-related 

potentials (ERP) (especially the P3 potential). From the discrete signal processing point 

of view, the most chalanging task is to recognize whether the signal acquired by 

electroencephalography contains an ERP waveform or not. There are a few 

phenomenons which make this task nontrivial:  

 electromangetical noise from surrounding environment, 

 biological artifacts, 

 EEG itself, 

 and the fact that ERP waveforms are unique for every one person. 

Therefore, design, implementation, and validation of a suitable method for ERP 

waveforms detection is the key factor for successful implementation of a BCI system as 

well as one of the main topics on conferences on neuroinformatics. 

This thesis presents the state of the art of methods for ERP waveforms detection with 

a special emphasis on its application in BCI systems. Presented methods cover all 

mainstream approaches:  

 statistical,  

 time-frequency,  

 approximation/decomposition,  

 and artificial neural networks. 

Note that we tested all presented methods in our neuroinformatics research group at the 

Department of Computer Science and Engineering, and we are familiar with them. 

The thesis is organized as follows: At the beginning, the brief introduction to 

electroencephalography and event-related potentials is given. The next chapter deals 

with brain-computer interfaces based on ERPs – its design and principles are desribed. 

Then, basic principles and suitability of methods for ERP waveforms detection from all 

categories mentioned above are described. At the end, the scope of Ph.D. thesis is given 

as well as its aims.  
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2 Electroencephalography 

2.1 Origin of the measurable EEG activity 

The central nervous system (CNS) generally consists of nerve cells and glia cells, which 

are located between neurons. Each nerve cell consists of axons, dendrites, and cell 

bodies (see Figure 1). Nerve cells respond to stimuli and transmit information over long 

distances. An axon is a long cylinder, which transmits an electrical impulse. Dendrites 

are connected to either the axons or dendrites of other cells and receive impulses from 

other nerves or relay the signals to other nerves. [9] 

 

The activities in the CNS are mainly related to the synaptic currents transferred between 

the junctions (called synapses) of axons and dendrites, or dendrites and dendrites of 

cells. A potential of 60–70 mV with negative polarity may be recorded under the 

membrane of the cell body. This potential changes with variations in synaptic activities. 

If an action potential travels along the fibre, which ends in an excitatory synapse, an 

excitatory postsynaptic potential (EPSP) occurs in the following neuron. If two action 

potentials travel along the same fibre over a short distance, there will be a summation of 

EPSPs producing an action potential on the postsynaptic neuron providing a certain 

threshold of membrane potential is reached. If the fibre ends in an inhibitory synapse, 

then hyperpolarization will occur, indicating an inhibitory postsynaptic potential (IPSP). 

[18; 19; 2] 

Following the generation of an IPSP, there is an overflow of cations from the nerve cell 

or an inflow of anions into the nerve cell. This flow ultimately causes a change in 

potential along the nerve cell membrane. Primary transmembranous currents generate 

secondary inonal currents along the cell membranes in the intra- and extracellular space. 

The portion of these currents that flow through the extracellular space is directly 

 
Figure 1:  Schema of a nerve cell. [17] 
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responsible for the generation of field potentials. Changes in these field potentials, 

usually with less than 100 Hz frequency, are called EEG activity. [9] 

2.2 EEG characteristics 

Electroencephalography is an electrophysiological method used by doctors and 

researchers for monitoring of a brain activity. EEG has a very good time resolution by 

monitoring the potentials, whereas assignment of these potentials to a place of its origin 

is inaccurate. [20] 

In the medicine praxis, the measuring of the EEG is used for [20]: 

 examination, whether the patient suffers from epilepsy or migraines, or 

not 

 confirmation or exclusion of the brain death 

 determining prognosis for patients in coma 

 monitoring of the brain activity during a deep anesthesia 

 EEG biofeedback therapy for people (especially young ones) who suffers 

by learning disabilities, hyperactivity, or impaired concentration 

2.3 Major EEG rhythms 

There are four major brain waves distinguished by their different frequency ranges (see 

Figure 2). These frequency bands from low to high frequencies respectively are called 

delta (δ), theta (θ), alpha (α), and beta (β): [9] 

 1. δ wave – frequency from 0.5 Hz to 4 Hz; amplitude usually from 10 μV to 300 

μV. Delta waves are primarily associated with deep sleep and may be present in the 

waking state. It is very easy to confuse artifact signals caused by the large muscles of 

the neck and jaw with the genuine delta response. This is because the muscles are near 

the surface of the skin and produce large signals, whereas the signal that is of interest 

originates from deep within the brain and is severely attenuated in passing through the 

skull. [9] 

2. θ wave – frequency from 4 Hz to 7.5 Hz; amplitude usually more than 20 μV. 

Theta waves appear as consciousness slips towards drowsiness. Theta waves have been 

associated with access to unconscious material, creative inspiration and deep 

meditation. A theta wave is often accompanied by other frequencies and seems to be 

related to the level of arousal. The theta wave plays an important role in infancy and 

childhood. Larger contingents of theta wave activity in the waking adult are abnormal 

and are caused by various pathological problems. [9] 

3. α wave – frequency from 8 Hz to 13 Hz; amplitude from 30 μV to 50 μV. Alpha 

waves have been thought to indicate both a relaxed awareness without any attention or 

concentration. The alpha wave is the most prominent rhythm in the whole realm of 

brain activity and possibly covers a greater range than has been previously accepted. [9] 

4. β wave – frequency from 13 Hz to 30 Hz; amplitude usually from 5 μV to 30 

μV. A beta wave is the usual waking rhythm of the brain associated with active 

thinking, active attention, focus on the outside world, or solving concrete problems, and 
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is found in normal adults. A high-level beta wave may be acquired when a human is in 

a panic state. [9] 

 

2.4 Acquiring and recording of an EEG activity 

EEG signal is a time variation of potential difference between two electrodes placed on 

scalp surface of a subject (the invasive method is used in medicine praxis only). EEG 

signal can be also defined as a weighted summation composed of signals produced by 

huge amount of neurons placed in parts of brain called cortex and thalamus. Intensity of 

the neuron groups electric activity depends on distance from the electrode (further 

neurons contribute less to the EEG than neurons closer to the electrode). There is no 

way to separate single contribution of one neuron from another. [15] 

The commonly used electrodes placement schema is called 10-20 system (the numbers 

refer to percentage ratio between axis with electrodes), which is shown in Figure 3. 

 
Figure 2:  Major brain waves. [2] 
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The data from electrodes are recorded by an electroencephalograph. Its output is called 

electroencephalogram. [20] 

2.4.1 Electroencephalograph 

An electroencephalograph is used for recording of the EEG signal. Because of the low 

voltage of the EEG activity, its voltage must be amplified by an input amplifier at first. 

But the goal is to amplify only the EEG activity, not the noise. One way to avoid 

amplifying the noise is to use the differential amplifier with two inputs: 

1. direct input (active) 

2. inverted input (reference) 

The differential amplified amplifies the difference in voltage between these two inputs.  

2.4.2 Electroencephalogram 

Electroencephalogram contains a time variation of potential difference between an 

electrode and the reference electrode for all used electrodes in a form which is suitable 

for a next processing. Because the EEG signal is discrete, a linear function is used as an 

interpolation between each two immediately adjacent samples (see Figure 4). 

 
Figure 3:  Top view of the 10-20 system for electrodes placement. For a detail view from all perspectives see Appendix B. [2] 
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2.5 Artifacts 

Artifacts are signals with non-cerebral origin which appear in EEG signal. Artifacts are 

divided into two following categories: 

 Artifacts with biological origin: All muscles in the human body are 

controlled by electrical impulses. These impulses spread in CNS from 

the brain to muscles and produce much more electrical activity than the 

brain activity monitored during EEG measurement. Biological artifacts 

are e.g. head movements, swallow, eye movements, perspiration, etc. 

[20] 

 Artifacts from the surrounding electromagnetic field, e.g. 50 Hz from 

mains. 

An example of a few artifacts is shown in Figure 5. 

 
Figure 4:  An example of an EEG signal. Ten seconds of the record which was sampled with 1 kHz frequency is shown. [20] 
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To detect artifacts, two following criterions are usually used: 

1. Amplitude criterion: This criterion is based on an empirically verified 

fact that during the common EEG activity (even if ERPs are present), no 

higher amplitudes than 30µV occur. When the artifacts are detecting on 

an averaged data, the amplitude threshold value can be lower. For this 

criterion, the baseline correction (see Chapter 3.6) is a necessary 

preprocessing method. [20] 

2. Gradient criterion: This criterion is based on monitoring of difference 

between each two immediately adjacent functional values. The artifact is 

detected for the difference higher than a chosen threshold. By definition, 

this criterion is not sensitive to a baseline. [20] 

  

 
Figure 5:  Examples of artifacts. [16] 
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3 Event-related potentials 

An event-related potential (ERP) is the measured brain response that is the direct result 

of a specific sensory, cognitive, or motor event. More formally, it is any stereotyped 

electrophysiological response to a stimulus [15]. Experimental neurologists discover 

many different kinds of stimuli which evoke ERPs. 

3.1 ERP waveform 

There are three properties which describe an ERP waveform (see Figure 6): 

 latency 

 frequency 

 amplitude 

The amplitude represents the rate of neural activity as the response to the stimulus [22]. 

The time between the stimuli occurrence and the response occurrence is considered as 

the time necessary for information processing in the brain and it is called latency [20]. 

The frequency characterizes the ERP waveform. 

 

3.2 ERPs naming conventions 

Notwithstanding some ERPs have acronyms; most of them are signed with a string 

composed from a character and a number or numbers. The character signs polarity of 

the ERP waveform: 

 P for positive waveform 

 N for negative waveform 

 C for waveforms which have not dedicated one polarity 

If the character is followed by a one-digit number, then the number says the order of the 

wave. For example N4 is the fourth negative ERP waveform. Otherwise, the character is 

followed by a three-digit number, which express an accurate latency of the ERP 

waveform in miliseconds. For example P100 is the positive waveform which appeares 

100 ms after a stimulus. 

Generally speaking, there is no equation in the way that N1 = N100, P2 = P200, etc. A 

good example is the N2 waveform. It is the second negative waveform, but it appears 

 
Figure 6:  Properties of an ERP waveform. [22] 
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typically around 400 ms after a stimulus. So it can be signed as N400 or N2, but 

definitely not as N200. 

In Figure 7, a few well-known ERP waveforms are show: 

 

3.3 Major ERP components 

Note that this is not a complete list of all known ERPs.  

3.3.1 Visual sensory responses 

 C1 The first major visual ERP component is usually called the C1 wave. Unlike 

most other components, it is not labeled with a P or an N because its polarity can 

vary. The C1 wave typically onsets 40-60 ms poststimulus and peaks 80-100 ms 

poststimulus, and it is highly sensitive to stimulus parameters, such as contrast 

and spatial frequency. [15] 

 P1 The C1 wave is followed by the P1 wave, which typically onsets 60-90 ms 

poststimulus with a peak between 100-130 ms. Note that the P1 onset time is 

difficult to assess accurately due to overlap with the C1 wave. In addition, P1 

latency will vary substantially depending on stimulus contrast. [15] 

 N1 The P1 wave is followed by the N1 wave. There are several visual N1 

subcomponents. The earliest subcomponent peaks 100-150 ms poststimulus, and 

there appear to be at least two posterior N1 components that typically peak 150-

200 ms poststimulus. [15] 

 P2 A distinct P2 wave follows the N1 wave. This component is larger for stimuli 

containing target features. The P2 wave is often difficult to distinguish from the 

overlapping N1, N2, and P3 waves. [15] 

3.3.2 Auditory sensory responses 

 N1 Like the visual N1 wave, the auditory N1 wave has three distinct 

subcomponents which peak around 75 ms, 100 ms, and 150 ms. The N1 wave is 

sensitive to attention. [15] 

 
Figure 7:  Typical amplitudes, frequencies, latencies, and waveforms of well-known ERPs. [15] 
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 Mismatch negativity (MMN) The MMN is observed when subjects are 

exposed to a repetitive train of identical stimuli with occasional mismatching 

stimuli (e.g. a sequence with many 800Hz tones and occasional 1200Hz tones). 

The mismatching stimuli elicit a negative-going wave and typically peaks 

between 160 and 220 ms. [15] 

 The N2 family Clearly different components were identified in the N2 time 

range. A repetitive, nontarget stimulus will elicit an N2 deflection that can be 

thought of as the basic N2. If other stimuli are occasionally presented within 

a repetitive train, larger amplitude is observed in the N2 latency range. If these 

deviants are task-irrelevant tones, this effect will consist of mismatch negativity. 

If the deviants are task-relevant, then a somewhat later N2 effect is also 

observed, called N2b (the mismatch negativity is sometimes called N2a). This 

component is larger for less frequent targets, and it is thought to be a sign of the 

stimulus categorization process. Both auditory and visual deviants will, if task-

relevant, elicit an N2b component. [15] 

 The P3 family There are several distinguishable ERP components in the time 

range of the P3 wave. The two major components are P3a and P3b. Both are 

elicited by unpredictable, infrequent shifts in tone pitch or intensity, but the P3b 

component is present only when these shifts are task-relevant. When ERP 

researchers refer to the P3 component, they almost always mean the P3b 

component (this also applies for this thesis). [15] 

3.4 Averaging 

The amplitude of ERPs is quite low, up to 30 μV (the background EEG activity has 

amplitudes even 100 μV). Therefore, it is necessary to use averaging technique to 

highlight them and suppress the background EEG [9; 23]. 

Averaging is the common method for highlighting of ERP waveforms. During the 

averaging of the same kind of ERP waveforms, the noise is reduced and the waveform 

is highlighted (see Figure 8). 
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On the input of the averaging method, there is a set of epochs. Generally speaking, it is 

not a good idea to take all target-epochs from an ERP experiment and use them for 

averaging – some ERP waveforms could be significantly shifted, some target epochs 

could not contain the ERP waveform at all, some ERP waveforms could be affected by 

an artifact which cannot be / was not detected by an artifact rejection method. 

It seems to be useful to have a method which would determinate whether use the epoch 

for averaging or not. The analysis of variance seems to be the suitable method. 

3.5 Analysis of variance for selecting epochs for averaging 

3.5.1 Principle 

For purposes of the analysis of variance (ANOVA), let the epoch’s index be the first 

variable, and the epoch’s functional values be the second variable. If all epochs contain 

the same ERP waveform, they are similar to each other. It means that there is no 

dependency between epoch’s index and epoch’s functional values. If there is an epoch 

which does not contain the ERP waveform, this epoch is not similar to the other epochs. 

It means that there is a dependency between epoch’s index and epoch’s functional 

values. [20] 

The basic principle of ANOVA follows (for a detailed description of ANOVA principle 

see [24]). There is the following table on the input: 

  

 

The first epoch 

 

Average of 7 epochs 

 

Average of 15 epochs 

Figure 8:  Averaging of epoch which contains the P3 waveform. [20] 

Figure 9:   
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Index of 
an 
epoch 

Epoch’s functional values Sum of the 
functional 
values 

Average of the 
functional 
values 

1 y11, y12, y13, …                                            …, y1n y1       

2 y21, y22, y23, …                                             …, y2 y2       

… … … … 

k yk1, yk2, yk3, …                                            …, ykn yk       

Sum y    

Table 1:  ANOVA input table. 

The values of    and     should be approximately equal for     , … ,  . The degree of 

difference (called determinative ratio) is defined as follows: 

Intergroup sum of squares: 

                    
 

   

                                                    

Intergroup sum of squares: 

                   

  

   

 

   

                                                 

Total sum of squares: 

                 

  

   

 

   

                                                 

Following equation is valid: 

                                                                          

The determinative ratio is defined as follows: 

   
   

  
     ,                                                               

The closer the value P
2
 is to 1, the bigger is the difference between epochs. In [15], the 

0.05 is recommended as a threshold value when the epochs are similar enough. It means 

that there is a 95% probability that the similarity between the epochs is not 

a coincidence. [20] 

3.5.2 Practical use 

Into the set for epochs averaging, one epoch by one are added. If the determinative ratio 

exceeds the threshold value, then the epoch is not suitable for averaging and therefore it 

is rejected from the averaging set. It is easy to see that the first epoch must be suitable 

for averaging. [20] 
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3.6 Baseline 

When the ERP waveform amplitude is measured, the voltage is usually affected by an 

average prestimulus voltage. The average prestimulus voltage is called baseline value 

except of the case when its value is zero. The baseline can have a significant effect on 

the result of every method for ERP processing (detection algorithms, ERP waveforms 

averaging method, etc.). Therefore, it is necessary to compensate the base in every ERP 

epoch. In [15], it is recommended to calculate the average voltage in the 200 ms before 

stimulus onset and then subtract the baseline value from every single functional value of 

the epoch. 

3.7 10 simple rules for designing ERP experiments 

In [21], following 10 rules for designing a successful ERP experiment were published: 

1. Peaks and components are not the same thing. There is nothing special about the 

point at which the voltage reaches a local maximum or minimum. 

2. It is impossible to estimate the time course or peak latency of a latent ERP 

component by looking at a single ERP waveform – there may be no obvious 

relationship between the shape of a local part of the waveform and the 

underlying latent components. 

3. It is extremely dangerous to compare an experimental effect (i.e., the difference 

between two ERP waveforms) with the raw ERP waveforms. 

4. Differences in peak amplitude do not necessarily correspond to differences in 

component size, and differences in peak latency do not necessarily correspond to 

changes in component timing. 

5. Never assume that an averaged ERP waveform accurately represents the single-

trial waveforms. 

6. Whenever possible, avoid physical stimulus confounds by using the same 

physical stimuli across different psychological conditions. This includes 

“context” confounds, such as differences in sequential order. 

7. When physical stimulus confounds are unavoidable, conduct control 

experiments to assess their plausibility. Never assume that a small physical 

stimulus difference cannot explain an ERP effect (even at a long latency). 

8. Be cautious when comparing averaged ERPs that are based on different numbers 

of trials. 

9. Be cautious when the presence or timing of motor responses differs between 

conditions. 

10. Whenever possible, vary experimental conditions within trial blocks rather than 

between trial blocks. 
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4 Brain-computer interface 

Brain–computer interfacing (BCI) (also called brain–machine interfacing (BMI)) is 

a challenging problem that forms part of a wider area of research, namely human–

computer interfacing (HCI), which interlinks thought to action. BCI can potentially 

provide a link between the brain and the physical world without any physical contact. In 

BCI systems the user messages or commands do not depend on the normal output 

channels of the brain [8]. Therefore the main objectives of BCI are to manipulate the 

electrical signals generated by the neurons of the brain and generate the necessary 

signals to control some external systems [9]. 

To avoiding of misunderstanding, a few definitions from journal articles and technical 

papers follow: 

 A BCI, sometimes called a direct neural interface or a brain-machine interface, 

is a direct communication pathway between a human or animal brain (or brain 

cell culture) and an external device. In one-way BCIs, computers either accept 

commands from the brain or send signals to it (for example, to restore vision) 

but not both. [3] 

 A BCI is a communication system in which messages or commands that an 

individual sends to the external world do not pass through the brain’s normal 

output pathways of peripheral nerves and muscles [1]. 

 BCI systems measure specific features of brain activity and translate them into 

device control signals [2]. 

From a practical point of view, an EEG/ERP based BCI system can be used to control 

external devices such as computers, wheelchairs or virtual environments. One of the 

most important applications is a spelling device to aid severely disabled individuals 

with communication, for example people disabled by amyotrophic lateral sclerosis. [14] 

From BCI definitions above, the fact that there is no exact definition of a brain activity 

which has to be used for a BCI is resulting. A BCI can be based on non-invasive 

methods of monitoring brain activity, such as magnetoencephalography (MEG), 

positron emission tomography (PET) and functional magnetic resonance imaging 

(fMRI) (see [5; 6; 7]) [4]. However, these methods for brain activity monitoring are not 

portable, technically demanding, and very expensive (see Appendix A for comparison). 

Therefore, they are not convenient for use in BCI systems. 

Looking at the reasons why MEG, PET, and fMRI are not convenient for use in BCI 

systems, it is clear that EEG is not affected by any of them. An electroencephalograph is 

a portable, relatively not technically demanding, and – in comparison with MEG, PET, 

and fMRI – cheap method for monitoring of the brain activity. 

Basically, there are three different principles a BCI system in EEG domain can be based 

on: 

 changes in EEG activity 

 event-related potentials 

 steady state visually evoked potentials (SSVEP) 
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In following chapters, the emphasis will be placed on the principles of BCIs based on 

ERPs and SSVEPs. BCI systems based on changes in EEG activity are out of scope of 

this thesis. 

4.1 The parts of an ERP based BCI system 

A schema of the BCI based on ERP is shown in Figure 10. Its principle is – in a nutshell 

– following: The user who controls the BCI is stimulated by a stimulator. The 

stimulation is performend in such a way, that the result of the stimulation is an ERP 

(most often the P3) synchronized in time that it is possible to determine which action 

should be invoke in the controlled application. The ERP is captured by 

electroencephalograph along with other brain activity (EEG) and with signal with non-

cerebral origin (artifacts, etc.). Then, the signal is preprocessed by methods into a form 

acceptable by the feature extraction process. When features are extracted, the classifier 

decides whether the signal contains the ERP or not. If yes, the desired action is 

identified by the extraction of meaning module (using synchronization with the 

stimulator) and is send to the controlled application. Otherwise, the stimulator produces 

a new stimulus. 

 

Of course, the process described above is too general to cover all on ERPs based BCI 

systems. Following chapters describes modules of the BCI system one by one 

considering P3 based BCI (example of a BCI calculator) and SSVEP based BCI 

(example of a BCI speller). 

 
Figure 10:  Generall BCI schema. 
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4.1.1 Stimulator 

The stimulator is a very important part of every BCI. From BCI user’s point of view, 

stimuli produced by the stimulator create the user interface (UI). 

4.1.1.1 P3 based 

The stimulation is based on odd-ball paradigm – two easy identifiable stimuli are 

delivered repeatedly. One stimulus is delivered with significantly lower probability than 

the second one. The stimulus with lower probability of delivering is called target 

stimulus, the stimulus with higher probability of delivering is called non-target stimulus. 

The difference between these two stimuli is that the target stimulus is followed by the 

P3 waveform in contrast to the non-target stimulus which is not followed by the P3 

waveform. 

The UI for BCI calculator is shown in Figure 11. The whole rows and whole columns 

are flashing. The flashing is happening in series. At each series, all rows and all 

columns flash once in a random order. The next series is not started until all rows and 

all columns flashed. The number of series depends on used preprocessing method and 

BCI design.  

 

The user focuses on the number or operation which he wants to enter. Its flash evokes 

the P3 potential. Information about the time of each row/column flash is stored and 

synchronized with the acquired EEG/ERP signal. This synchronization is necessary for 

the extraction of meaning module. 

In study [14], it was proved that for this kind of BCI, it is more suitable use flashing 

rows and columns instead of flashing of single characters (from detection accuracy 

point of view). 

4.1.1.2 SSVEP based 

In a BCI system based on steady-state visual evoked potentials (SSVEP), the system 

reflects the user’s attention to an oscillating visual stimulus [12]. Therefore, flashing 

lights, flashing panels or flashing UI elements are usually used. Their responses appear 

in the visual cortex and correspond to SSVEPs at the same frequencies and higher 

harmonics [13].  

The UI for BCI spelling system is shown in Figure 12. Arrows and the Select button 

(control elements) are flashing – each of them with a different frequency which cannot 

 
Figure 11:  BCI calculator UI. 
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be masked by the other frequencies (including harmonic frequencies) or the basic EEG 

rhythms. 

 

The user focuses on one of control elements to move the cursor over the desired 

character or to confirm selection of the desired character. BCIs based on SSVEP do not 

need time synchronization between flashing elements and EEG/ERP signal. 

4.1.2 Signal acquisition 

The raw EEG/ERP signals have amplitudes of the order of μvolts and contain frequency 

components of up to 300 Hz. To retain the effective information the signals have to be 

amplified before the ADC and filtered, either before or after the ADC, to reduce the 

noise and make the signals suitable for processing and visualization. The filters are 

designed in such a way not to introduce any change or distortion to the signals. 

Highpass filters with a cut-off frequency of usually less than 0.5 Hz are used to remove 

the disturbing very low frequency components such as those of breathing. On the other 

hand, high-frequency noise is mitigated by using lowpass filters with a cut-off 

frequency of approximately 50–70 Hz. Notch filters with a null frequency of 50 Hz are 

often necessary to ensure perfect rejection of the strong 50 Hz power supply. In this 

case the sampling frequency can be as low as twice the bandwidth commonly used by 

most EEG systems. The commonly used sampling frequencies for EEG recordings are 

100, 250, 500, 1000, and 2000 samples/s. [9] 

Usually, Fz, Cz, Pz, O1, and O2 electrodes are used. 

4.1.3 Signal preprocessing 

4.1.3.1 P3 based 

The signal preprocessing methods for BCI based on P3 are as follows: 

 
Figure 12:  Example of UI for BCI spelling system based on SSVEP. [11] 

Figure 13:  SSVEP based speller [BCI11]. 
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1. The EEG/ERP signal is divided into epochs. Each epoch starts with the time 

when a stimulus appeared and is so long that the whole P3 waveform fits into it 

(usually around 500 ms). 

In the Figure 14, the first minute of stimulation is shown. The epochs are 

highlighted by green color in their whole length. 

 
2. Epochs which contain artifacts are rejected from the next processing. 

3. Baseline is corrected in all epochs. 

4. Epochs related with the same stimulus are averaged and only the averages go to 

the next processing. 

4.1.3.2 SSVEP based 

Because the undesirable frequencies are filtered on signal acquisition level, the only 

useful preprocessing method for SSVEP based BCI is the artifacts rejection (no dividing 

into epochs or averaging is necessary and baseline correction is unnecessary because it 

does not have any impact on SSVEP frequencies). 

4.1.4 Feature extraction 

This phase is closely related to the used classification method: 

4.1.4.1 P3 based 

 For artificial neural networks is this phase realized by a feature vector extraction 

method. 

 For the detection based on the matching pursuit algorithm is this phase realized 

by the matching pursuit algorithm itself. The same is valid for continuous 

wavelet transform and discrete wavelet transform. 

 For Hilbert-Huang transform is this phase realized by empirical mode 

decomposition. 

4.1.4.2 SSVEP based 

 Usually, the discrete short time Fourier transform is used. 

4.1.5 Classification 

4.1.5.1 P3 based 

Following methods suitable for P3 detection are described in this thesis: 

 linear discriminant analysis 

 
Figure 14:  The time without stimulation is visible at start. Then the stimulation is started. Three series of flashing are 

performed (24 epochs). It is enough to detect one number or operation. Then, a short pause can be seen and then, 

entering of the next number or operation is started. 
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 continuous  wavelet transform 

 discrete wavelet transform 

 matching pursuit algorithm 

 Hilbert-Huang transform 

 self-organizing map 

 ART2 neural network 

Of course, this is not a complete list of algorithms and methods which are suitable for 

P3 waveform detection, but these methods cover all mainstream approaches. 

4.1.5.2 SSVEP based 

Fast Fourier transform is a suitable method for SSVEP detection and is described in this 

thesis. Usually the frequencies are classified into N+1 classes where N is the number of 

frequencies used for stimulation. The N+1th class represents the do nothing state. 

4.1.6 Extraction of meaning 

4.1.6.1 P3 based 

Decision whether the epoch contains the P3 waveform or not along with related stimuli 

are on the input of the extraction of meaning module. When the decision is positive (the 

epoch contains the P3 waveform), the action assigned to the related stimuli is performed 

(in case of the ERP calculator, a number or an operand is entered). 

In the Figure 15, the result of the mathematical example 2 + 4 = is shown. Epochs of 

each row and column for the number 2 are viewed. The P3 waveforms are visible in 

column 2 and row 1. Therefore the number 2 was detected (it is its position in the 

matrix of numbers and operands – see Figure 11). 



 

 

Page  

 

23 

 

4.1.6.2 SSVEP based 

Extraction of meaning in case of SSVEP based BCI is quite simple. The related action 

is performed when one of the frequencies which are used for stimulation is detected. 

4.2 Is everybody able to use an ERP based BCI system? 

Looking at the BCI principle a question arises: Is everybody able to use an ERP based 

BCI system? Of course, from neurological point of view, the ERPs are observable for 

all healthy people. But the question is whether they can use them for controlling 

a system via BCI. An interesting study about this issue is [14]: 

Two BCI based on P3 for spelling were used for characters entering accuracy testing. 

The first one was used flashing rows and columns, the second one used single character 

flashing. Both BCI used the same UI – a matrix with 36 characters. During the 

experiment, one hundred subjects used the BCIs to spell the word WATER in five 

minutes. Data acquired during this phase were used as a learning data for the detection 

algorithm. Then, the subjects spelled the word LUCAS and the detection accuracy was 

calculated for each letter separately. When the spelling was done, subjects filled out 

a questionnaire about age, sex, education, sleep duration, working duration, cigarette 

consumption, and coffee consumption.  

Results are following: 72.8 % of the subjects were able to spell with 100% accuracy 

with the rows/column flashing and 55.3 % of the subjects spelled with 100% accuracy 

 
Figure 15:  Epochs of each row and column related to number two. 
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in the single characters flashing. Less than 3% of the subjects did not spell any character 

correctly. People who slept less than 8 h performed significantly better than other 

subjects. Sex, education, working duration, and cigarette and coffee consumption were 

not statistically related to differences in detection accuracy. This study shows that high 

spelling accuracy can be achieved with the P300 BCI system using approximately 5 min 

of training data for a large number of non-disabled subjects, and that the rows/column 

flashing is superior to the single character flashing. 89 % subjects were able to spell 

with accuracy 80–100 % with rows/column flashing. [14] 
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5 Methods suitable for ERP waveforms detection 

5.1 Linear discriminant analysis 

Linear discriminant analysis (LDA, known also as Fisher's linear discriminant, after its 

inventor) is a commonly used technique for data classification and dimensionality 

reduction. LDA easily handles the case where the within-class frequencies are unequal. 

This method maximizes the ratio of between-class variance to the within-class variance 

in any particular data set thereby guaranteeing maximal separability. [39] 

For demonstration of LDA principle, let the data are displayable in a two dimensional 

system, and let the data are separable into C classes: 

       
        

… …
        

 ,        
        

… …
        

 , … ,         
        

… …
        

        

 Then, operations related with LDA are as follows: 

 Let µi be the mean vector of set i, i = 1, 2, ..., C 

 Let Mi be the number of samples within set i, i = 1, 2, ..., C 

 Let      
 
    be the total number of samples 

Then, 

 the within-class scatter matrix is defined as follows: 

                   
                                           

  

   

 

   

 

 the between-class scatter matrix is defined as follows: 

                 
 

   

                                                

 where   
 

 
   

 
    is mean of the entire dataset 

LDA computes a transformation (using eigen vectors) that maximizes the between-class 

scatter while minimizing the within-class scatter (for detailed description of the 

maximization principle, see [39]): 

         
       

       
                                                         

The example of two-set problem is shown in Figure 16. 
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5.1.1 ERP detection with LDA 

In general, N-dimensional feature vector is obtained from each epoch. Then the feature 

vectors are manually divided into two sets (contain ERP waveform vs. do not contain 

ERP waveform). The LDA is computed and a linear function (hyperplane) which 

divides the N-dimensional space to two subspaces – each one for one set – is 

established. One subspace contains feature vectors of epochs which contain an ERP 

waveform. The other subspace contains all other feature vectors. 

Let     ,   , … ,        be the hyperplane. During the classification process, for each 

feature vector of each epoch, the items are substituted into the hyperplane equation and 

enumerated. When the result is higher than zero, the feature vector belongs to the first 

set. Otherwise, the feature vector belongs to the second set. 

 

5.2 Fourier transform 

The Fourier transform (FT) is an operation that transforms data from the time domain 

into the frequency domain [25]. According to different fields of its application, FT 

exists in a few different variants. Note, that Fourier transform expect a periodical signal 

on its input. For non-periodical signals, this request is usually solved in such a way, that 

the signal is considered as a one period of a periodical signal. 

5.2.1 Continuous Fourier transform 

The continuous Fourier transform (CFT) is defined as follows: 

                    

  

  

                                                     

 
Figure 16:  LDA for two-class problem. [39] 
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where the independent variable t is a time, and f is a frequency. Then, F(f) is a 

characteristic of the frequency in the whole length of the input signal x. 

 

From both equation (10) and Figure 17 it is clear that the time information is lost during 

the Fourier transform. This is a disadvantage which makes CFT unusable for ERPs 

detection as well as for SSVEP detection. 

5.2.2 Discrete Fourier transform 

For use in discrete time typical for computers, the discrete Fourier transform (DFT) is 

available. The DFT can be computed in three different ways: 

 by finding a solution of a system of equations 

 by a correlation 

 by the fast Fourier transform (FFT) algorithm 

Explanation of these methods (especially FFT) is out of scope of this thesis. Principles 

of all three methods are described in [27]. 

5.2.3 Short-time Fourier transform 

The purpose of the short-time Fourier transform (STFT) is to keep a time information 

when the Fourier transform is performed. The basic idea is to split the input signal by a 

window. The window is a function which is nonzero on a short interval only (this 

approach is used in the continuous STFT (CSTFT), in the discrete STFT (DSTFT), the 

position of the nonzero part of the window is solved by a floating index of the input 

signal). 

 
Figure 17:  An example of spectral analysis of an EEG trace shown in (A). The trace includes strong oscillation in the alpha 

band. Accordingly, the power spectrum in (B) shows the clear presence of a component slightly below 10 Hz (arrow) 
representing this alpha rhythm. For clarity, the spectrum in (B) was smoothed using rectangular 1.5 Hz window. [25]  
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Calculating the Fourier transform for windows which covers whole length of the input 

signal, the Fourier transform of the whole input signal is obtained. 

The STFT can be expressed as follows: 

              ,                                          

  

  

 

where w(t) is a window, x(t) is an input signal in the time domain, τ is a time shift of the 

window w(t), and f is the analyzed frequency. In Figure 18, the DSTFT principle is 

shown. 

 

5.2.3.1 SSVEP detection with DSTFT 

The basic idea is load the EEG/ERP data from the electroencephalograph until the 

length of the data does not fit the window’s length. Then the FFT will be performed. In 

case that in the FFT result one of the frequencies used for stimulation appear, the 

SSVEP is detected. 

 

5.3 Wavelet transform 

Wavelet transform (WT) is a suitable method for analyzing and processing non-

stationary signals such as EEG/ERP signal. WT has a good time and frequency 

localization, which is necessary for ERP detection. For EEG/ERP signal processing it is 

possible to use Continuous Wavelet Transform (CWT) or Discrete Wavelet Transform 

(DWT). The wavelet transform is used to divide a time function into called wavelets. 

See Figure 19 for an example of some well-known wavelet functions. 

 
Figure 18:  DSTFT principle: The window is shifted over the input signal and the FFT is computed for each window. At the end, 

we know which frequencies appeared in concrete time intervals. Note that the window positions are a bit overlapping – it 
is because the fast frequencies which could appear on the border between the windows.[26] 
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5.3.1 Principles of continuous wavelet transform 

Let ψ(t) is a wavelet. Then, its functional values for every dilatation a and translation b 

can be expressed as follows: 

  ,      
 

  
  

   

 
                                                          

The continuous wavelet transform of a signal f for the dilatation a and the translation b 

of the wavelet ψ is defined in [64] as follows: 

    ,  ,         
 

  
  

   

 
   

  

  

                                         

Let’s show the principle of CWT with Mexican hat wavelet. Mexican hat is defined as 

follows: 

  
   

 
     

      

 
    

 
 
 
   
 

 
 

                                         

where a (dilatation) corresponds to a frequency, and b (translation) describes shifting 

the wavelet over the signal (see Figures 20 and 21). The value of translation is 1, when 

the CWT is performed. 

 
Figure 19:  Some well-known wavelets: (a) Gaussian wave, (b) Mexican hat, (c) Haar wavelet, (d) Morlet. [WT6] 
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The CWT algorithm can be devided to four following steps: 

1. A mother wavelet, starting and ending value of dilatation, step of dilatation, and translation are 
set.  

2. Sum of values of correlation for current dilatation (see Figure 22) and for every translation 
step to cover the whole signal is computed. 

3. The value of dilatation is increased by dilatation step. The algorithm continues with step 2. 

4. The calculation is stopped when maximum value of dilatation is reached. 

 
Figure 21:  Translation of the wavelet (Mexican hat). [37] 

 

 
Figure 20:  Dilatation of the wavelet (Mexican hat). [37] 
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The result of the wavelet transform is visualized in a scalogram, where each coefficient 

represents a degree of correlation between the transformed wavelet and the signal. 

Scalogram is gray scaled and the highest values are white (see Figure 23). 

 

5.3.2 Principles of discrete wavelet transform 

The continuous wavelet function known from CWT is replaced by two discrete signals 

– wavelet function and scaling function. See Figure 24 for the Haar wavelet example. 

 

Given the limited spectrum band of wavelet functions, the convolution process with this 

function can be interpreted as a limited band-pass filter [61]. In terms of digital signal 

processing, wavelet transform can be considered as a bank of filters with signal 

decomposition into sub-frequency bands. The slowest fundamental frequency 

components are detected using a scale function. Wavelet function is then documented 

by a high pass filter and the scale function is a complementary low pass filter. Relevant 

coefficients are determined taking the convolution of signal and the corresponding 

analyzing function [60; 62]. The scale is inversely proportional to the frequency; the 

 
Figure 24:  Haar wavelet (scaling function on the left, wavelet function on the right).[60] 

 

 
Figure 23:  Input signal and its scalogram. [60] 

 

 
Figure 22:  Principle of discrete correlation. [60] 

 



 

 

Page  

 

32 

low frequencies correspond to large scales and to the dilated wavelet function. Using 

the wavelet analysis at large scales, we obtain global information from the signal (an 

approximate component). At small scales we obtain detailed information (a detailed 

component) representing rapid changes in the signal [62]. 

Calculation of DWT coefficients is implemented by a gradual application of wavelet 

function (high frequency filter) and scale function (low frequency filter) to the given 

signal using Mallatov decomposer scheme (see Figure 25). For each level of 

decomposition p so-called detailed component       of the input signal is the output of 

high pass filter      r. The approximation component       is the output of low 

frequency filter      . Using the convolution and the subsequent subsampling the 

following equations are valid [62]: 

                       

   

   

                                             

                       

   

   

                                              

for n = 0, ..., N/2, where            is the analyzed signal, and both sequences 

      and       define decomposition filters. 

 

 
Figure 25:  Principle of discrete wavelet transform [60] 
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5.3.3 ERPs detection with WT 

When we look for the ERP waveform we compute correlation between a wavelet 

(which is scaled to correspond to the ERP waveform) and the EEG/ERP signal in the 

corresponding part of the signal, where the ERP waveform could be situated. This 

approach avoids a false ERP waveform detection in the signal parts which couldn’t 

contain the ERP waveform. Wavelet coefficients are affected by the match of scaled 

wavelet and the signal and also by the signal amplitude. When the degree of the 

correlation is higher than an established threshold, the ERP waveform is considered to 

be detected. [36] 

Of course, the more is the used wavelet similar with the detected ERP waveform, the 

higher is degree of correlation in case that input signal contains the ERP waveform. The 

simplest idea is to create a model of the detected ERP waveform and use this model as 

a wavelet. Unfortunately, there are conditions which have to be valid and which are too 

strict to enable this approach: 

1. The energy of the wavelet must be finite: 

             

  

  

                                                 

where E is the energy, and   is the wavelet. 

2. If       is a Fourier transform of     , i.e. 

                     

  

  

                                          

then following condition must be valid: 

 
      

 
    

  

 

                                                      

According to this condition, the average of all functional values of the function 

     must be equal to zero. 

Because of these conditions and the fact that ERP waveforms do not have average value 

of all functional values equal to zero, it is necessary to do a lot of tests and choose 

suitable wavelet empirically as well as the correlation threshold value for ERP 

waveforms detection. 

Following examples show P3 detection with both CWT and DWT. In Figure 26 and 

Figure 27 the P3 component peak is 480 ms after stimulus; this shift is caused by 

averaging several epochs. The averaging method is used to improve signal-to-noise 

ratio (SNR). With higher SNR it is easier to detect ERP. [36] 
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The disadvantage of CWT is its computational complexity, which is linearly growing 

according to the number of signal samples. Increase of number of input signal samples 

does not have so heavy impact in case of DWT. To detect ERP components, we tested 

1 kHz sampling frequency. Than the epoch, which has to be at least one second long, 

has 1024 samples. CWT computation on 1024 samples takes approximately 0.75 

second. Therefore CWT is not suitable for BCI application in contrast to DWT. We can 

say that the time of DWT computation on the same sample is insignificant. [36]  

 

5.4 Matching pursuit algorithm 

5.4.1 Basic principle 

The matching pursuit (MP) algorithm decomposes any signal to the sum of so-called 

atoms, which are selected from the dictionary. That means that the input signal x can be 

express by atoms    and suitable constants    as follows: 

 
Figure 27:  P3 component can be seen in the scalogram (DWT, Haar). [60] 

 

 
Figure 26:  P3 component can be clearly seen in the scalogram (CWT, Mexican hat). [60] 
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The atom that most closely approximates the input signal is chosen during each 

iteration. This atom is subtracted from the input signal and the residue enters the next 

iteration of the algorithm. The total sum of atoms selected successively in algorithm 

iterations is an approximation of the original signal – more iterations we do, more 

accurate approximation we get [43]. The error difference between input signal and its 

approximation leads to zero with growing number of iterations of the MP algorithm. 

The MP algorithm is most often associated with Gabor atoms dictionary. Gabor atoms 

are defined as the Gaussian window: 

                                                                        

modulated using cosine function as follows: 

   , , ,        
   

 
                                              

Each atom is uniquely defined by a ordered quadruple (s,u,v,w) where s means scale, u 

is shift, v is frequency, and w is phase shift.  

Let      ,  ,  ,  is a modulation vector, let       ,  ,  ,    is a modulation vector 

chosen in k
th

 iteration, and let f is an input signal. The criterion for choosing    at each 

iteration is a scalar product   ,   which is maximal for   . With respect to this, it is 

possible to express the input signal after one iteration as follows: 

    ,    
     

                                                        

where Rf is a difference between  f and    
. Following formula is a generalization for M 

iterations of MP algorithm: 

        ,    
 

   

   

    
                                            

where      is a difference between f and sum of all M Gabor atoms. Figure 28 shows 

three iterations of the MP algorithm. For each iteration, the input signal which enters the 

iteration, chosen atom, and the difference between input signal and chosen atom are 

shown. At the bottom, the input signal reconstruction made of chosen atoms is shown. 
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5.4.2 Output visualization 

The result of MP algorithm is a two-dimensional matrix. Row dimension represents 

number of Gabor atoms. Column dimension is composed from all paramteres of 

a Gabor atom: scale, shift, frequency and phase shift. This form of output is suitable for 

a next algorithmic processing because it contains all necessary information, but it is not 

suitable as a final output for scientists. For this purposes, the Wigner-Ville transform is 

usually used, which allows seeing important information of the MP algorithm output by 

a naked eye. 

Wiener–Khinchin theorem says that the power spectral density of the signal x (which 

equals to Fourier transform of signal x squared) can be calculated as a Fourier transform 

of autocorrelation of the signal x [41]: 

                
 

 
 

  

  

    
 

 
                                   

where the Fourier transform of the signal x is given by: 

                 

  

  

                                              

 
Figure 28:  Example of three iterations of MP algorithm 
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Substituting equation (26) into equation (25) we get the following formula for the power 

spectral density of x: 

                     
 

 
 

  

  

    
 

 
      

  

  

                    

If we remove the middle integral, corresponding to the integration over time, we get 

a time-dependent spectral density as a two-dimensional function: 

                
 

 
     

 

 
   

  

  

                              

which is the Wigner-Ville transform of x. This transform exhibits several elegant and 

desirable mathematical properties, hence it is sometimes considered a fundamental 

time-frequency representation. Unfortunately, it has also one major drawback which is 

the presence of cross-components in the time-frequency plane, as illustrated in Figure 

29. [41] 

 

Minimization of the presence of cross-terms in time-frequency estimates can be 

achieved by using such a kernel that the cross-terms won’t appear. 

Wigner-Ville distribution computed directly from equation (20) gives: 

            

   

   

     
                 ,    

   

       

   

   

   

   

       

where        ,    . The double sum causes occurrence of the cross-components. If 

we omit this double sum, we get the Wigner-Ville transform without unwanted cross-

components. 

5.4.3 ERPs detection with MP algorithm 

The ERPs detection with MP algorithm is based on decomposition of the EEG/ERP 

signal into atoms. The main idea is that during this decomposition, according to 

 
Figure 29:  The cross-component is labeled by 2ab. [41] 
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information about basic principle given above, the signal trend is approximated by 

a few first atoms whereas the signal details are approximated by the next atoms in later 

iterations. And it is just ERP waveform which should be a significant part of the signal 

trend. 

According to equation (22) each atoms is defined by a ordered quadruple (s,u,v,w). This 

quadruple enables to evaluate the Gabor atom at any time (for each value of 

parameter t) and do its Wigner-Ville transform. When we are trying to detect an ERP 

waveform, we know its typical latency, so we will be looking for an atom which 

position corresponds with ERP’s latency and which approximates well the trend of the 

signal – its power spectral density is significantly high. 

Figures 30, 31, and 32 demonstrates described method for the P3 waveform detection. 

The input signal which contains the P3 waveform on position 300 ms, which can be 

easily seen, was approximated by twenty Gabor atoms. 

 

The atom which best approximates the P3 waveform is shown in Figure 31. It is also the 

atom selected in first iteration of the MP algorithm. 

 

Now, it is time to use the Wigner-Ville transform which is able to show whether the 

power spectral density of this atom is high enough to prove the P3 waveform 

occurrence in the input signal. 

 
Figure 31:  The atom which best approxiamtes the P3 waveform. [20] 

 

 
Figure 30:  Input signal with P3 waveform. [20] 
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The Wigner-Ville transform shows all twenty Gabor atoms the input signal was 

decomposed by MP algorithm into. The significant area with high power spectrum 

density at the bottom on the middle in Figure 32 is the Wigner-Ville transform of the 

Gabor atom from Figure 31. Its area of occurrence corresponds with typical P3 

waveform latency. This idea for ERP waveforms detection using the MP algorithm was 

published in [42]. 

5.4.4 ERPs detection issues 

However, the ERP waveform is not always approximated by one Gabor atom only. 

There are two different examples of the P3 component detection in Figure 33. On the 

left half of the figure, the favorable situation is shown - the P3 waveform is 

approximated by one Gabor atom only and the value of the correlation between this 

atom and the input signal is high enough to pass the threshold. On the right half of the 

figure, the unfavorable situation is shown. The P3 waveform is partially approximated 

by two Gabor atoms - the first one and the third one. The value of the correlation 

between the EEG/ERP signal and both the first and third Gabor atom is not high enough 

to pass the threshold. It leads to a false negative detection result. 

 
Figure 32:  Wigner-Ville transform of 20 Gabor atoms which approximates the input signal. [20] 
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There are two ideas to solve this issue: 

1. If we could select all atoms which partially approximate the ERP waveform, 

calculate the vector sum of these atoms and consider this vector sum as a new 

atom, we would be able to detect the ERP waveform successfully. The solution 

is to use an algorithm (e.g. self-organizing map) which categorizes atoms into 

groups in such a way that atoms in each group are similar to each other. Once 

we have these groups, we can manually mark the groups which contain atoms 

which can approximate (or partially approximate) ERP waveforms. 

2. Do the input signal reconstruction from the Gabor atoms and then compute 

correlation between the reconstructed signal and a model of the ERP waveform 

[43]. This modification is described in the next chapter. 

5.4.4.1 Modification of ERP waveforms detection  

The basic idea is use the MP algorithm as the method of input signal filtering and then 

to compute correlation between filtered (reconstructed) signal and an ERP waveform 

model. [20] 

 
Figure 33:  The favorable decomposition is shown on the left half and the unfavorable decomposition is shown on the right. In 

order from top to bottom: the input signal with the P3 waveform; the first, second, and third Gabor atom; visualization of 

Gabor atoms by the Wigner-Ville transform. 
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First, we approximate the input signal (Figure 34) using several Gabor atoms and then 

we reconstruct the input signal from them. Loss of information caused by 

approximation is considered as filtering of the input signal (Figure 35). [36] 

                           

 

                            

The following phase includes the detection itself when an ERP waveform model (Figure 

36) is used. This model is obtained e.g. by averaging a sufficient number of epochs 

containing raw ERP signal or by filtering of ERP waveform from one epoch. The ERP 

waveform model is shifted on the restored signal in the expected range of ERP 

waveform. Correlation between the ERP waveform model and the reconstructed signal 

is computed for each shift. A maximum value of the correlation and the attaching shift 

value are stored. After calculating all possible correlations the stored maximum value is 

compared to the threshold. If the maximum value is equal to or greater than the 

threshold, ERP waveform is detected in the corresponding location. [20] 

 

5.5 Hilbert-Huang transform 

The Hilbert-Huang transform (HHT) was designed to analyze nonlinear and non-

stationary signal [22]. In fact, the HHT is composed of two independent 

transformations: 

1. Empirical mode decomposition (EMD) 

2. Hilbert spectral analysis (HSA) 

 
Figure 36:  ERP waveform model in the corresponding location. [20] 

 

 
Figure 35:  Reconstruction of the input signal from five Gabor atoms. [20] 

 

 
Figure 34:  The input signal. [20] 
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In a nutshell, the EMD approximates the input signal by a sum of intrinsic mode 

functions (IMF). After the decomposition, each IMF is analyzed by HSA which 

determines frequency and amplitude at each functional value of the IMF function. 

5.5.1 Intrinsic mode function 

An intrinsic mode function (IMF) is a function which fulfills both following conditions: 

1. In the whole data set, the number of extrema and the number of zero crossings 

must be either equal or differ by one at most [22]. 

2. The mean value of the envelope defined by the local maxima and the local 

minima is zero at any point [29; 30; 31]. 

An IMF represents simple oscillatory mode as counterpart to a simple harmonic 

function, but it is much more general by its definition. The conditions which IMF 

fulfills are necessary for defining instantaneous frequency [22]. 

5.5.2 Empirical mode decomposition 

The goal of the empirical mode decomposition is to decompose the input signal to the 

IMFs and the residuum. The EMD is a data driven method and IMFs are derived 

directly from the signal itself [32]. Given an input signal x(t), the effective algorithm of 

EMD – known as sifting - can be summarized as follows[29; 32; 33]: 

1. Two smooth splines are constructed connecting all the maxima and minima of 

x(t) to get its upper envelope, Max(t) and its lower envelope, Min(t); The 

extrema can be simply found by determining the change of sign of the derivative 

of the signal. Once the extrema are identified, all the maxima are connected by 

a cubic spline line as the upper envelope. The procedure is repeated for the local 

minima to produce the lower envelope. All the data points should be covered by 

the upper and lower envelopes. 

2. Compute the mean      
              

 
 

3. Extract the detail                 

4. The process is repeated for d(t) until the resulting signal, the first IMF (imf1(t)), 

satisfies the criteria of an intrinsic mode function. 

The residue                     is then treated as new data subject to the sifting 

process as described above, yielding the second IMF from r1(t). The procedure 

continues until either the recovered IMF or the residual data are too small, in the sense 

that the integrals of their absolute values or the residual data have no turning points. 

Once all of the wavelike IMFs are subtracted from the data, the final residual 

component represents the overall trend of the data. [32] 

By construction, the number of extrema is decreased when going from one residual to 

the next, and the whole decomposition is guaranteed to be completed with a finite 

number of modes. At the end of the described process, the input signal x(t) can be 

described by following expression: 
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5.5.3 Stopping criteria 

The extraction of a mode is considered as satisfactory when the sifting process is 

terminated [32], it means that the two conditions mentioned in Chapter 5.5.1 must be 

fulfilled. The first one – that the number of extrema and the number of zero crossings 

must be either equal or differ by one at most – is relatively easy to fulfill. The second 

one – that mean of the envelopes is meant to be zero – is very difficult to fulfill [22]. 

Two stopping criteria were proposed. The first one is standard deviation (SD) [29; 34]: 

    
                

 

  
      

 

   

                                         

The SD can lead to unsatisfying result in case that for some value of t the value of the 

denominator is too close to zero. This situation could cause that the value of SD will 

practically be equal to infinity. Because of this reason, the usage of Cauchy 

convergence test (CCT) was demonstrated in [35] as an alternative to SD: 

     
                

  
   

   
      

 
   

                                           

 
Figure 37:  EMD example 
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5.5.4 Hilbert transform 

The Hilbert transform returns the analytic signal from real data sequence. The analytic 

signal: 

                                                                     

has its real part, which represents the original data, and its imaginary part , which 

contains the Hilbert transform. The imaginary part is a version of the original real 

sequence with a 90° phase shift. The Hilbert transformed series has the same amplitude 

and frequency content as the original real data and includes phase information that 

depends on the phase of the original data. The Hilbert transform is useful for calculating 

instantaneous attributes of time series, especially the amplitude and frequency. [36] 

The Hilbert transform is useful for calculating instantaneous attributes of time series, 

especially the amplitude and frequency. The instantaneous amplitude is the amplitude of 

the complex Hilbert transform; the instantaneous frequency expresses the rate of change 

of the instantaneous phase angle. [22] 

5.5.5 Standard discrete-time analytic signal 

The analytic signal for a sequence has a one-sided Fourier transform (with no negative 

frequencies). To approximate the analytic signal, the Hilbert method calculates a FFT of 

the input sequence, replaces those FFT coefficients corresponding to negative 

frequencies with zeros, and calculates an inverse FFT of the result [22]. Hilbert 

transform uses following algorithm [37, 22]: 

1. FFT of the input sequence is calculated. The result is stored into a vector x. 

2. A  vector h with length n indexed by index i with following values is created: 

 1 for i = 1, (n/2)+1 

 2 for i = 2, 3, ..., (n/2) 

 0 for i = (n/2)+2, ... , n 

3. An element wise product of x and h is stored in e. 

4. The inverse FFT of the e is calculated and the first n items are returned as a 

result. 

5.5.6 Determining information about frequencies and amplitudes 

When the EMD process is done, it is possible to calculate the analytic signal by using 

the algorithm described in Chapter 5.5.5. Calculation of the analytic signal Z(t) is 

defined as follows [28; 22; 31]: 

                                                               

where X(t) is the original signal, and Y(t) is the Hilbert transform of X(t). Then, the 

instantaneous attributes of Z(t) are defined: 
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where a(t) is the instantaneous amplitude, θ(t) is the instantaneous phase and ω(t) is the 

desired instantaneous frequency (see Figure 38 for an example of Hilbert spectrum 

visualization) [22]. 

 

5.5.7 ERPs detection with HHT 

The basic idea of ERPs detection is based on knowledge of ERPs’ typical frequencies 

and latencies. Both frequencies and latencies of waveforms of which the input 

EEG/ERP signal is composed from, does not disappear during the EMD process. They 

are only decomposed into IMFs – including frequencies and latencies ERPs are made 

of. 

The first step is to decompose the EEG/ERP signal to IMFs using EMD. Then, the 

Hilbert transform is calculated for each IMF. Each IMF’s Hilbert transform is searched 

for frequency and amplitude typical for the detecting ERP using method presented in 

Chapter 5.5.6 in region of estimated prevalence of the ERP. 

 

5.6 Artificial neural networks 

An artificial neural network (ANN) is an information-processing system that has certain 

performance characteristics in common with biological neural networks. ANNs have 

been developed as generalization of mathematical models of human cognition or neural 

biology, based on the assumption that: [44] 

 
Figure 38:  Hilbert spectrum visualization. [38] 
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1. Information processing occurs at many simple elements called neurons. 

2. Signals are passed between neurons over connection links. 

3. Each connection link has an associated weight, which, in a typical neural net, 

multiplies the signal transmitted. 

4. Each neuron applies an activation function (usually nonlinear) to its net input 

(sum of weighted input signals) to determine its output signal. 

5.6.1 Mathematical model of artificial neural networks 

The basic unit of any ANN is a formal neuron, which is a simplified mathematical 

description of a real neurophysiological neuron. Its structure is shown in Figure 39: 

 

Generally speaking, the formal neuron is composed from: 

 Vector [x1, … , xn] where xi is a model of dendrite 

 Vector [w1, … , wn] where wi is a synaptic weight 

 Inner potential ξ which is defined as follows: 

       

 

   

                                                                  

 h is a threshold value. 

 y is the output value 

For purpose of generalization, the threshold value is represented by negative 

synaptic weight w0 which belongs to the constant input x0. In this case, the sum in 

equation (38) starts with 0. The output y = σ(ξ) is activated when the inner potential 

reaches the threshold value: 

        
         
          

            

 

   

                                     

 
Figure 39:  The mathematical model of a formal neuron. [45] 
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5.6.2 Typical architectures 

It is convenient to visualize neurons as arranged in layers (typically, the first layer is an 

input layer and the last layer is an output layer). Within each layer, neurons usually have 

the same activation function and the same pattern of connections to other neurons. To 

be more specific, in many neural networks, the neurons within a layer is connected to 

a neuron in another layer, then each hidden unit is connected to every output neuron. 

[44] 

To arrangement of neurons into layers and the connection patterns within and between 

layers is called the net architecture [44]. The basic determination of ANN is to single-

layer ANN and multilayer (note that the input layer is not countered as a layer). 

5.6.2.1 Single-layer  

A single-layer network has one layer of connection weights. Often, the units can be 

distinguished as input units, which receive signals from the outside world, and output 

units, from which the response of the net can be read. In the typical single-layer net, the 

input units are fully connected to output units, but are not connected to other input units, 

and the output units are not connected to other output units. [44] 

5.6.2.2 Multilayer 

A multilayer network is a net with one or more layers between the input layer and the 

output layer. Typically, there is a layer of weights between two adjacent layers. 

Multilayer nets can solve more complicated problems than single-layer nets can. [44] 

5.6.3 Learning 

Before we start using ANN for a classification, it is necessary to adapt it – found values 

of all weight vectors in such a way that the ANN is able to do a successful 

classification. Looking for a suitable weight vectors is called learning [46]. There are 

two ways to learn the ANN: 

5.6.3.1 Unsupervised learning 

Self-organizing neural networks group similar input vectors together without the use of 

training data to specify what a typical member of each group looks like or to which 

group each vector belongs. A sequence of input vectors is provided, but no target 

vectors are specified. The net modifies the weights so that the most similar input vectors 

are assigned to the same output unit (the term cluster is often used). [44] 

5.6.3.2 Supervised learning 

In perhaps the most typical neural network setting, training is accomplished by 

presenting a sequence of training vectors, or patters, each with an associated target 

output vector [44]. A sequence of input vector is provided as well as information to 

which group each vector belongs to. During the learning process, the ANN does 

classification of each input vector separately. In case that the input vector is classified 

into the right class, the weights are not modified. In the other case, the weights are 

modified in such a way that the input vector will be classified into the right class next 

time. 
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5.6.4 Artificial neural networks vs. ERP waveforms detection 

ANN are very useful for solving tasks which are too complicated that it is not possible 

to describe all necessary relations by an exact mathematical model, or in case that this 

model is too complicated and its algorithmization is practically impossible [49]. The 

feature which allows using ANN in these cases is just the learning process: 

Learning is the significant feature of neural networks. This fact clearly expresses the 

main difference between currently used algorithms and problem-solving approaches 

based on neural networks. So far we have been putting all our effort into creating strict 

rules for transformation of input data into output data. Because of neural networks, we 

do not need to create the strict rules anymore. The “rules“ are created by neural 

networks during the learning process.[48] 

ANNs are suitable for ERP detection because of the nature of ERP waveforms. There is 

a theoretical description how the ERP waveforms should looks like, how fast are they 

typical frequencies, how high are their typical amplitudes, and many milliseconds it 

typically takes when the ERP waveform appears after stimulus. But in praxis, every 

single ERP waveform obtained from every single measured subject at any time is a little 

bit different from each other previously obtained ERP waveform.  Defining some exact 

rules for ERP waveform detection is a not trivial task and often must be done for each 

measured subject and for each scenario. 

This is a good opportunity to use an ANN for ERP waveforms detection. But before we 

can start with learning, we have to do three steps: 

1. Obtain training data set and split it to target / non-target epochs. 

2. Choose a suitable feature vector. 

3. Found right values for all parameters of ANN to classify the ERP waveforms 

well. 

When the ANN is well learned, the ERP waveform detection process using ANN can 

start as shown in Figure 40. 

 

 
Figure 40:  The unsupervised learning process and ERP waveforms classification process of a general ANN. 
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In case of supervised learning process, the Manual marking of clusters phase is 

substituted by a supervisor’s control.  

5.6.5 Feature vectors 

The feature vector is defined as an output of an algorithm which extracts all significant 

information from signals which will be classified by an ANN. The only restriction of 

the feature vector is that number of its values has to be equal to number of neurons in 

the input layer of the ANN.  

Choosing a suitable feature vector is a critical decision for further successful clustering. 

There are no exact or universal rules to identify optimal feature vector. In following list, 

there are some examples of feature vectors used in EEG domain: 

 Subasi and Ercelebi used lifting-based discrete wavelet transform (LBDWT) 

coefficients of EEG signals as an input of classification system with two discrete 

outputs: epileptic seizure or non-epileptic seizure [52]. 

 Lotte et al. used a raw EEG signal, and amplitude values of smoothed EEG in 

[53]. Pradhan et al. used a raw EEG signal in [54], too. 

 Gotman and Wang used average EEG amplitude, average EEG duration, 

coefficient of variation, dominant frequency, and average power spectrum in 

[55]. 

In experiments at our department, we tested following feature vectors: 

 Result of DWT. 

 Following feature vectors based on Gabor atoms: 

o All functional values of Gabor atom. 

o Functional values of Gabor atom subsampled to 32 samples. 

o Parameters of Gabor atom (scale, shift, frequency, and phase). 

o Feature vector which is composed of Gabor atom wave energy and wave 

local maximum/minimum. This feature extraction is shown in Figure 41. 

Note that wave energy is multiplied by -1 in case that the wave is below 

the time axis. 

 

 
Figure 41:  Transformation of Gabor atom into feature vector. 
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5.6.6 ART2 neural network 

The ART (Adaptive Resonance Theory) network developed by Carpenter and 

Grossberg [12] is based on clustering. Its output is direct information about an output 

class. There are several ARTs (ART1, ART2, ARTMAP) differing by architecture and 

input feature vector type (binary or real valued) they are able to process [50]. For ERP 

waveforms detection, the ART 2 network, processing real-valued feature vector is 

suitable – it is a single-layered network with unsupervised learning.  

The ART2 topology in Figure 42 contains three kinds of neurons (for detailed 

description of ART2 neural network architecture see [44]): 

 Neurons if F1 layer which is called input layer. Each neuron represents one 

feature in feature vector. 

 Neurons in F2 layer which is called output layer. Each neuron is related to one 

cluster. 

 Neurons in R layer. This group of neurons creates so-called reset mechanism. 

 

The ART2 learning algorithm is divided to so-called epochs. In each epoch, all feature 

vectors are submitted one by one to input layer. Each feature vector comes from the F1 

layer to the F2 layer. The F2 layer is competitive, i.e. all neurons in this layer compute 

response to the feature vector coming from the F1 layer.  The neuron which response is 

the highest is marked as a winner. Now, it is the responsibility of the reset mechanism 

whether the winner’s weight vector will be adapted on the feature vector or not. The 

 
Figure 42:  AT2 architecture [51] 
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reset mechanism computes the similarity between the winner and the feature vector. If 

the similarity value is lower than a threshold value defined by user, then the competition 

starts again but without the winner. Otherwise, the winner is adapted on the feature 

vector (for more information about the adaptation process see [44]). [57] 

It is important to note that the weight vectors values are sensitive to order of feature 

vectors during learning process [46]. It means that in case the feature vectors will be the 

same during the learning process, but will be submitted to the input layer in different 

order, the values of the weight vectors will be different. 

5.6.6.1.1 ERP waveforms detection with ART2 

The ART2 is a suitable ANN for ERP waveforms detection according to schema in 

Figure 40 because: 

 ART2 is a suitable ANN for data clustering [65] 

 It has unsupervised learning algorithm. It means that it is not necessary to mark 

each feature vector from learning set as target/non-target. Instead of it, the whole 

clusters will be marked as target/non-target when the network will be well-

learned. This corresponds with assumption, that the unsupervised learning 

algorithms are applied when the classification of a given set of sample patterns 

is unknown or not available [65]. 

 The unsupervised learning algorithm does not exhibit truly unsupervised 

learning capabilities in the sense that the number of classes in data must be 

specified in advance [65]. This is a big plus because in case waveforms in one 

cluster are not similar enough we can increase the number of clusters. On the 

other hand, in case those waveforms which should be in one cluster will be 

present in two or more clusters, we decrease the number of clusters [43]. 

Weight vector for each cluster is set when the ART2 is well-learned. To have an idea 

how typical waveforms of each cluster look like it is possible to show the learning 

feature vectors which belongs to each cluster. To demonstrate this option, we used the 

matching pursuit algorithm with Gabor atoms dictionary to preprocess an EEG/ERP 

signal. This signal contained the P3 waveforms. Gabor atoms subsampled to 32 samples 

were used as feature vectors. In Figure 43, the cluster which contains the waveforms 

which contains peaks corresponding to the P3 latency and amplitude is shown. 
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Now, it is possible to start with P3 waveforms detection. The Gabor atoms are 

submitted one-by-one to ART2’s input layer. The P3 waveform is detected in case that 

a Gabor atoms is classified into the cluster which is shown in Figure 43. 

5.6.7 Self-organizing map (Kohonen map) 

This chapter about self-organizing map (SOM) is taken from our paper [56]. There are 

N kinds of SOM topology where N is a dimension of a space where neurons are 

equidistantly placed. N is an integer value from the interval      . For the ERP 

waveforms detection the most common solution is suitable: a two-dimensional 

organization of neurons. From now on, the SOM is considered as a two-dimensional 

map of neurons. 

 
Figure 43:  P3 waveform cluster 
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The SOM is a one-layer network composed of neurons yjk. Each neuron is connected 

with each item xi in the input feature vector via a weighted connection       
. Because 

the values from the input feature vector are directly forwarded to neurons SOM is 

a feed-forward neural network. 

In the SOM, the winner weight vector and the weight vectors of all neurons in its 

neighborhood are modified during the learning process. It is necessary to choose 

a radius which defines size of the neighborhood. During experiments at our department, 

we used square neighborhood which radius was defined as follows: 

         
 

  
 
   

 
                                                      

where α is the learning rate parameter, b is the base of exponential lost (the radius 

decreases with each next training pattern exponentially), p is the current learning 

progress 

      
                                                              

where done is the number of training patterns which were already used and all is the 

number of all training patterns, and    is total number of neurons. 

As a result of the learning algorithm we get a specific weight vector for each neuron. It 

would be worth to have the set of weight vectors such that only one neuron would be 

marked as a winner for all similar atoms. Unfortunately, it does not work in the case of 

 
Figure 44:  Schema of two-dimensional SOM architecture. [56] 
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the SOM because the selected atom weight vector and also weight vectors of all atoms 

in its neighborhood are updated during the learning process. 

If we want to have all neurons with the similar weight vector in one cluster, we need a 

method to recognize these neurons and consider them as one cluster. At first, it is 

necessary to choose a metric for weight similarity. We decided to use a well-known 

method for measuring signal similarity – correlation. Equation (42) shows computing of 

correlation between two signals x and y: 

        ,    
                

   

           
              

   

                          

where: 

   
 

 
   

 

   

                                                                

   
 

 
   

 

   

                                                                

5.6.7.1 Weight vectors similarity visualization 

For better understanding, look at visualization of similarity between neuron weights 

where each neuron is shown as a 3x3 matrix. On the index [i-1, j-1] is the value of 

correlation between the neuron on the index [i, j] and the index [i-1, j-1], etc. Note that 

there is always zero on the index [i, j]. For visualization, the values of the correlation 

result are recalculated from the interval of real values <-1, 1> to the interval of integer 

values <0, 255> (the gray scale). 

 

According to the description given above, visualization of weights similarity of neurons 

looks as shown in Figure 46. 

 
Figure 45:  Mask for visualization of weights similarity between neurons. 
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It is easy to see clusters in Figure 46, but we need to implement an algorithm which is 

able to find these clusters as well. As a solution, we used an algorithm which is well-

known in computer vision – connected-component labeling. 

5.6.7.2 Connected-component labeling 

Connected-component labeling (CCL) is a two-pass algorithm. It uses a map of neurons 

as an input. In the first pass, CCL iterates throw each neuron by row. The neighboring 

neurons are given by a mask: 

 

According to correlation between the weight vector of the neuron [i, j] and weight 

vectors of neighboring neurons three situations can occur: 

1. If correlation with all neighboring neurons is too low to be in the same cluster with 

neuron on the index [i, j] then a new cluster number is set to neuron on the index 

[i, j]. 

2. If correlation of just one of neighboring neurons is high enough to be in the same 

cluster as neuron on the index [i, j] then the neuron on position [i, j] is put to the 

same cluster. 

3. If correlation of more than one of neighboring neurons is high enough to be in the 

same cluster as neuron on the index [i, j one of them is randomly selected and the 

neuron on position [i, j] is put to the same cluster. If neighboring neurons with 

high enough correlation value belong to different clusters, save that these clusters 

are equivalent to a special data structure. 

In the second pass, CCL iterates throw each neuron by row and gets rid of equivalent 

cluster numbers for one cluster using the special data structure from the first pass. After 

 
Figure 47:  Mask which defines neighboring neurons during the first pass of the CCL algorithm. 

 

 
Figure 46:  Neuron weights similarity in a two-dimensional map with 100 neurons. 
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the second pass, each cluster is signed with just one cluster number (even if the cluster 

consists of one neuron only). 

 

5.6.7.3 ERP waveforms detection with SOM 

The idea of ERP waveforms detection with SOM is quite simple. When the SOM is 

well-learned and clusters are identified by the CCL algorithm, it is possible to start with 

detection of an ERP waveform. According to SOM principle, for each feature vector a 

cluster is identified. If the cluster is a cluster which approximates the ERP waveform 

then the ERP waveform is detected. Otherwise the ERP waveform is not detected. 

  

 
Figure 48:  Neuron weights similarity in a two-dimensional map with 100 neurons with manually highlighted clusters which are 

related to Gabor atoms which approximate ERP P3 waveform. 

 



 

 

Page  

 

57 

6 Scope of the Ph.D. Thesis 

In this thesis, the overview of methods for ERP waveforms detection is given. Of 

course, it is practically not possible to describe all existing methods for ERP waveforms 

processing (e.g. following methods are suitable as well: principal component analysis 

(PCA), independent component analysis (ICA), support vector machines (SVM), etc.). 

This thesis describes at least one method from all mainstream approaches for ERP 

waveforms detection: 

 methods based on statistical approach 

 methods in time-frequency domain 

 methods based on approximation/decomposition of the EEG/ERP signal 

 methods based on artificial neural networks 

6.1 Disadvantages of introduced methods 

All proposed methods except of artificial neural networks have a common disadvantage: 

if they should work on any EEG/ERP signal obtained from any measured subject, then 

their classification rules must be general (intervals of frequencies, latencies, amplitudes, 

etc. expected from detecting ERP waveforms must be wide enough to cover all values 

which can appear). This approach leads to false positive detections (because the 

intervals are too wide). On the other hand, strict enabled values of ERP waveforms 

attributes lead to good detection result for one measured subject, but they lead to false 

negative detections. The strict enabled values are unusable for other all other subjects. 

According to previous paragraph, it could look like the best solution for ERP 

waveforms detection is based on artificial neural networks. But ANNs have 

disadvantages depending on learning process: 

 ANN with supervised learning: It is well-known that for successful learning of 

an ANN it is necessary to use a relatively large set of learning data (what is 

large depends on concrete domain). Obtaining a large set of ERP data from 

different subjects in a time-consuming task. But no extra skills are required and 

the experiment scenario for data acquisition is usually much less complicated 

then a scenario typically used in BCI systems. The problem with marking of 

learning data. This process takes very long time and only an expert in EEG/ERP 

domain (usually a neurologist) is able to mark the data right and divide them to 

appropriate classes. 

 ANN with unsupervised learning: Advantage of the unsupervised learning is that 

we do not have to have an EEG/ERP expert for marking learning data. The ANN 

does clusters on its own – and there the disadvantage is hidden. We do not have 

a direct control over which learning feature vector will be assigned to which 

cluster. We can define number of neurons in output layer, we can define some 

ANN parameters (e.g. parameter of reset mechanism in ART2), but the direct 

control is still missing. As a result of the learning process, we get clusters which 

are suboptimal, but we are usually not able to fix it. 
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Looking at disadvantages mentioned above, we were looking for an ERP waveforms 

detection method which is suitable for use in BCI systems. One option seems to be the 

use of adaptive filters. 

6.2 Adaptive filters 

This adaptive filters characteristic is taken from [59]: An adaptive filter is defined as a 

self-designing system that relies for its operation on a recursive algorithm, which makes 

it possible for the filter to perform satisfactorily in an environment where knowledge of 

the relevant statistics is not available. Adaptive filters are classified into two main 

groups: linear, and non linear. Linear adaptive filters compute an estimate of a desired 

response by using a linear combination of the available set of observables applied to the 

input of the filter. Otherwise, the adaptive filter is said to be nonlinear. Adaptive filters 

may also be classified into: 

 Supervised adaptive filters, which require the availability of a training sequence 

that provides different realizations of a desired response for a specified input 

signal vector. The desired response is compared against the actual response of 

the filter due to the input signal vector, and the resulting error signal is used to 

adjust the free parameters of the filter. The process of parameter adjustments is 

continued in a step-by-step fashion until a steady-state condition is established. 

 Unsupervised adaptive filters, which performs adjustments of its free parameters 

without the need for a desired response. For the filter to perform its function, its 

design includes a set of rules that enable it to compute an input-output mapping 

with specific desirable properties. In the signal-processing literature, 

unsupervised adaptive filtering is often referred to as blind deconvolution or 

blind adaptation. 

Adaptive filters find applications in highly diverse fields: channel equalization, system 

identification, predictive deconvolution, spectral analysis, signal detection, noise 

cancellation, and beamforming. 

6.2.1 Adaptive filters and BCI – idea 

The idea of adaptive filters use in BCI system is following: at first, the adaptation on 

preprocessed EEG signal (common activity) without any ERP will be done. The target 

of this adaptation is to learn the adaptive filter to suppress the EEG signal – it means, 

that on the output of the adaptive filter, there will be (in optimal case) constant zero 

function. Then, when an ERP waveform appears along with EEG activity on the input 

of the adaptive filter, there a typical response for the ERP waveform appear on output of 

the adaptive filter. At this time, it is not possible to say how this response will look like. 

But we expect that this response will be unique for each ERP waveform and it will be 

detectable by a suitable method. In the ideal case, the Ph.D. thesis will provide a 

suitable method for ERP waveforms detection which can be used in BCI systems, e.g. it 

responds in real time. 
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7 Conclusion 

This thesis brounght a brief introduction to BCI systems based on ERPs with emphasis 

on suitable methods for detection of ERP waveforms. At least one method from all 

mainstream approaches for ERP waveforms detection was described. Nowadays, the 

BCI systems are not widely used, but for a few people who need them, they work well. 

But there are still great opportunities for inovation: 

 The time which is neccesary for enter a one character with BCI spelling system 

based on the P3 waveform is quite long. 

 There are approximatelly 3 % of people who are not able to use ERP based BCI 

systems at all. 

 It is not comfortable to use a BCI based on SSVEP for a long time. 

 The learning process of methods which need them (typically ANNs) takes a long 

time. An expert (usually a neurologist) is necessary to mark the training data set 

when the algorithm needs a supervised learning procedure. 

 Computational complexity of some algorithms is at the edge or behind the edge 

for real-time signal processing (BCI desing has to obey, e.g. put as long time 

delays as needed between entering of two characters). 

We will focus on the two last points mentioned above. We assume that solution could 

be use of adaptive filters. By definition, adaptation is much simplier process than 

learning and does not require supervision. To the computational complexity - we know 

from discrete signal processing that use of a filter is not a time-comsuming task. Last, 

the kernel of an adaptive filter can be based on many different approaches/algorithms. 

7.1 Aims of the Ph.D. thesis 

 Identify or design EEG/ERP signal preprocessing methods suitable for adaptive 

filters. 

 Identify or design adaptive filter(s) applicable in ERP waveforms detection 

process in BCI systems. 

 Implement the selected adaptive filter(s) in a suitable programming language. 

 Validate the proposed solution on a simple BCI based on ERPs or SSVEP. 
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Appendix A 

Brain activity 
monitoring method 

Advantages Disadvantages 

Non-invasive EEG Cheap; easy to use; high time 
resolution 

Low spatial resolution; low 
signal to noise ratio 

Invasive EEG Good spatial resolution In 
comparison with non-
invasive EEG; high signal to 
noise ratio 

Invasive 

Magnetoenceplhalography 
(MEG) 

Spatial resolution up to 3 
mm; good time resolution; 
non-invasive method 

Extremely expensive; the 
measurement is difficult; 
magneticlly shielded room is 
necessary 

Positron emission 
tomography (PET) 

Better spatial resolution than 
SPECT; ability to detect which 
receptors are activated in the 
brain 

Measured subject is exposed 
to radiation; it does not 
monitor an 
electrophysiological 
phenomenon - it monitors 
metabolism of oxygen and 
sugar 

Single-photon emission 
computed tomography 
(SPECT) 

In comparison wit PET, it 
does not requires an 
cyclotron 

Measured subject is exposed 
to radiation; it monitors the 
blood cyrclulation in the 
brain – not a 
electrophysiological 
phenomenom 

Functional magnetic 
resonance imaging (fMRI) 

High spatial resolution; non-
invasive method 

Extremely expensive; time 
resolution cca 1 second. 

Table 2:  Comparison of methods for monitoring of the brain activity. [66; 67; 68] 
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Figure 49:  10-20 electrodes placement system from all views. 


