
University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

Formal Specification and Practical
Verification of Contextual Component
Compatibility

Premek Brada

Technical Report No. DCSE/TR-2011-06
December, 2011

Distribution: public

Technical Report No. DCSE/TR-2011-06
December 2011

Formal Specification and Practical
Verification of Contextual Component
Compatibility

Premek Brada

Abstract

In this report we formally describe and practically verify a method which en-
sures run-time type consistency of component-based applications, by performing
type-based substitutability checks as part of the component binding and update
processes. The method takes into account the environment of the currently de-
ployed component version and uses its so-called contextual complement in the
checks. This novel approach overcomes the limitations of the standard notion
of compatibility by allowing non-contravariant differences on the required side of
the component’s surface. The verification of the method uses an implementation
for the OSGi component framework together with a simple GUI tool to perform
component substitution experiments.

This work was supported by the Czech Science Foundation under the grant
number P103/11/1489 “Methods of development and verification of component-
based applications using natural language specifications”.

Copies of this report are available on
http://www.kiv.zcu.cz/publications/
or by surface mail on request sent to the following address:

University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

Copyright c©2011 University of West Bohemia in Pilsen, Czech Republic

Contents

1 Introduction 2

1.1 Goals and Structure of this Paper 2

2 Related Work 3

3 Component Type and Deployment Context 4

3.1 Type Representation of Component Interface 4

3.2 Component Context . 6

4 Component Substitutability 9

4.1 Contextual Substitutability . 10

5 Realization and Experimental Tool for the OSGi framework 12

5.1 Architecture of the Tool Set . 12

5.2 Key Methods and Algorithms . 13

5.3 Tool for Experimental Verification of Contextual Substitutability . 14

6 Conclusion 15

1

1 Introduction

Component frameworks like Spring or OSGi [18] are increasingly often used to
develop software systems with complex architectures, despite their relative sim-
plicity in terms of the underlying component models.

Even though it is easier to manage complex architectures with components, safe
evolution of these architectures — and preserving the internal consistency of the
application throughout the evolution in particular — is still a challenging task.
This is especially true for dynamic architectures (those which can evolve during
application run-time) where changes cannot be fully anticipated by the architects
and are not necessarily governed by any rules or patterns.

In our work we address the common scenario in which consistency verification
is needed — the dynamic replacement of a component currently deployed in an
architecture by another component, be it a completely different one (leading to
the verification of substitutability) or a new version of the current one (resulting
in the verification of backward compatibility as a special case). The verification is
governed by the general principle of substitutability, summarised by Wegner and
Zdonik [25]: a replacement component should be usable whenever the current one
was expected, without the client noticing it.

Relevant verification methods vary but in the general case of an “open world sce-
nario” where there need not be any relation between the current and replacement
components, we need to check substitutability in-situ for the pair of components
or component sets under substitution.

1.1 Goals and Structure of this Paper

Research approaches to safe substitution aim to ensure reliable substitutability
by employing formal methods. However, the models used in these approaches
tend to be too complicated to be usable by average software developers and the
methods often suffer from prohibitive algorithmic or space complexity (cf. for
example [15, 16]).

Industrial systems on the other hand almost exclusively use rather simple meta-
data, most often version identifiers (e.g. [18]), to manually tag components as
being compatible with their previous versions. The key disadvantage of this
approach is fragility caused by the reliance on human effort to provide correct
meta-data.

We have therefore developed a practically-oriented method of verifying substitu-
tability of black-box components. It uses the (sub)type relation as its foundation
since its formal strength is sufficient to prevent serious run-time errors while its
evaluation can be done on current state of the practice component models, with

2

relative simplicity and low algorithmic complexity.

The method is only as strong in terms of formal verification of component’s sub-
stitutability as the component contract specification at hand allows. Mostly, it
will therefore offer type-safety guarantees for current industrial component frame-
works but it is able to incorporate the assessment of extra-functional properties
compatibility [14] or advanced formal checking (e.g. to assert behavioural protocol
compliance [19]) where appropriate data are available as part of the component’s
specification.

A novel and significant aspect of the method is the possibility to overcome the
limits of standard subtyping — strict covariance of provided and contravariance of
required features — by considering the environment in which the components are
deployed (e.g. the application architecture or component framework’s container),
hereafter termed the deployment context.

The report is structured as follows. The following section provides an overview of
the state of the art in component substitutability. Section 3 contains foundational
formal definitions of component type and deployment context, and section 4
defines the notion of contextual substitutability.

The second part of the paper contains validation of the formal part. In section 5
we describe an implementation of the method for the OSGi component framework
and a tool to perform a set of experiments using XML configuration and a GUI
front-end.

2 Related Work

This work contributes to the challenging area of correctness and robustness in
component frameworks “in the absence of a closed-world assumption” [22]. This
is still a relevant issue, since for example Taylor [23] notes that in service-oriented
architecture research there has been “little attention to orchestrating [architec-
tural] changes across service (. . .) boundaries”.

On a very high abstraction level, Georgas et al. [12] use a model of application
architecture at run-time to manage its evolution. Constraints can be specified
on the policies governing the evolution (adaptation) in order to preserve chosen
architectural properties. The work however does not provide concrete details
about the model, the constraints and ways to check them.

Many research approaches have addressed this need using holistic approaches
with global integrity properties [21, 11]. Chaki et al. [9] for example use composi-
tional reasoning and dynamic assume-guarantee checks to provide formally sound
evaluation of substitutability with similar practical properties as our contextual
one.

3

Most of these methods are however based on advanced formal systems (e.g. mo-
del checking, behavioural subtyping) often supported by specialized specification
notations. These methods tend to suffer from prohibitive algorithmic or state
complexity [16, 9] and the notations tend to be too complicated to be usable by
average software developers [15].

Few research works have been concerned with use in industrial component fra-
meworks. Polakovic et al. [20] implement architectural consistency checks for
a resource-constrained component model, using a combination of compile-time
type conformance verification and error handling code. Our approach would be
hardly feasible in such cases due to the resource demands.

The work closest to ours in its spirit is Belguidoum and Dagnat’s [3] which ex-
tends an earlier version of our contextual substitutability [5] with the notion of
forbidden dependencies. This prevents multiple conflicting implementations of
the same component feature (e.g. a messaging service) to invalidate context in-
variants. While this is an important observation, the substitutability itself is
formalized on a rather abstract level and further refinement of service compari-
son methods, effects of component (de)installation, and forbidden dependencies
representation is needed for a full applicability of the approach.

Last but not least, several methods that use type systems have been proposed
[11, 17]. They moreover enable multi-component substitution which goes beyond
our method proposed in this paper. However, their approaches have not been
validated on industrial component frameworks.

3 Component Type and Deployment Context

To provide a sound basis for type-based substitutability and compatibility veri-
fication, a formal model at the type level of the compared components has to be
available. In this section we describe such a model together with the representa-
tion of component’s view of its deployment context.

3.1 Type Representation of Component Interface

A component implementation, available in some form of distribution package,
may comprise many different elements — executable code, meta-data, resource
objects, etc. All elements that are part of the component’s interface (i.e. are
accessible on the surface of the component’s black box) may participate in inter-
component interactions — both the provided ones, used by component’s clients,
and required ones, which express component’s dependencies that need to be sat-
isfied in order to guarantee the provided functionality or properties.

4

We capture the structure of the component interface in the form of component
type, a structured data type [8] which contains all such elements and their role
with respect to inter-component interactions. The information about the com-
ponent and its interface elements is assumed to be available from some kind of
specification; the internals of the implementation are abstracted from since the
component is a black box.

Definition 1 A component interface element is a tuple e = (n, T, r, o, a) where
n ∈ String ∪ {ε} is the element’s name (possibly empty), T is element’s type
(in the respective specification language type system), r ∈ {provided, required}
is the element’s role on the component interface, o ∈ Boolean is an indication
whether the presence of the element at run time is optional, and a ∈ N ∪ {∗}
denotes arity (how many counterpart elements can be bound to it; ‘*’ stands for
“any”).

Examples of component interface elements are: a named OSGi service typed to an
interface or class, a Java interface implemented by a EJB component (in this case
e.n = ε)1, or property with a primitive type of a SOFA component. Optionality
of the element can be indicated directly in the component specification (as in
OSGi “optional” directive on imported packages or similar Fractal attribute of a
component’s interface) or via element cardinality.

Definition 2 Let EC = {ei}i∈I (for a finite index set I) be the set of all compo-
nent interface elements of a component implementation C which can be observed
from outside of its black box.

The component type C of C is a pair of provided and required element sets: C =
(EP , ER) | (EP ∪ER = EC) ∧ (EP ∩ER = ∅) where (∀e ∈ EP : e.r = provided)
∧ (∀e ∈ ER : e.r = required).

The component as a run-time instance of C is a tuple c = (id, C, P,R) where
id is a unique identification of the instance, C its component type, P and R are
the sets of interface elements actually present at the instance’s interface. (We
will abbreviate the expression “component C with type C” to just “component C”
where unambiguous.)

The element role (provided, required) is distinguished in the component type
for a fundamental reason: it affects handling of component during type opera-
tions, namely matching and subtype comparison. In this respect this definition
of component type and its associated (sub)typing rules, while similar to standard
structured data types, reflect the core notion of component-based programming.

1Notational remark: Throughout the text, we use the dot notation to denote the individual
parts of a tuple, so for A = (a, b) the expression A.a denotes the first part of A’s structure.

5

The latter two parts of the component’s tuple represent its effective type at the
given time. It holds that c.P ⊆ c.C.EP and c.R ⊆ c.C.ER because (some of) the
optional elements may be omitted by the instance. We note further that the set
of c’s interface elements may change in time, i.e. ∃t1 6= t2 · c.P/t1 6= c.P/t2 and
likewise with c.R.

The subtype relation for interface elements is the standard reflexive transitive
one, so it is a preorder on types:

Definition 3 We say that component interface element ei is a subtype of ele-
ment ej (denoted ei <: ej) if all of the following conditions hold:

• ei.T <: ej.T (the element types are in a subtyping relation);

• ei.r = ej.r;

•
{
¬ej.o⇒ ei.o = false if ei.r = provided,
ej.o⇒ ei.o = true if ei.r = required;

•
{
ei.a ≥ ej.a if ei.r = provided,
ei.a ≤ ej.a if ei.r = required.

The next subsection formalizes the representation of the environment in which a
component is deployed.

3.2 Component Context

We noted in the introduction that it is useful to capture the deployment environ-
ment of a particular component for evaluating substitutability. This component
deployment context contains the other components and architectural connections
within the environment in which the component is employed. The environment
can be a component cluster (a closely coupled part of a component application),
the component-based application or the whole run-time environment surrounding
a deployed component in the run-time framework.

Definition 4 The deployment context of a component instance c is a tuple D =
(K,B) where K = {ci}i∈I , c ∈ K is the set of components existing in the deploy-
ment environment of c, and B = {(ep, er) | ∃Cp, Cr ∈ K · (Cp 6= Cr)∧ (ep ∈ Cp.P)
∧ (er ∈ Cr.R) ∧ er is bound to ep} are the bindings between component elements
within the context.

A deployment context D is architecturally consistent if all the inter-component
bindings are correctly resolved (including the matching of types of bound elements)
and the components are correctly functioning.

6

A subset of this environment which is particularly interesting from the substi-
tutability point of view is a component’s complement within the deployment
context. The model of the complement uses the same abstractions as that of the
component type described in the previous subsection.

Definition 5 Assume an architecturally consistent context D and component c ∈
D.K with component type C. The contextual complement of c in D is a “virtual”
component type C̄D = (P̄ , R̄) such that

• P̄ = {e | (∃cr ∈ D.K · cr 6= c, e ∈ cr.R) ∧ (∃ep ∈ c.P · (ep, e) ∈ D.B)} – this
set consists of the actual client elements of c’s provided ones.

• R̄ =
⋃

s cs.P | cs ∈ D.K, cs 6= c – this set consists of all elements available
in D which can satisfy a component’s requirements;

The complement can be seen as an inverted effective type of c at the given time
(cf. the P,R element sets of the component instance). It captures the following
two aspects of the context from the point of view of the component:

1. The real usage of the component’s provided elements, as given by the bind-
ings to particular required elements of other components.

2. The elements available in the environment that can possibly satisfy any
c’s substitute component’s requirements, most commonly via other compo-
nent’s provided elements.

Figure 1: Component in an architecture and the elements forming its contextual
complement

Several interesting observations can be made about the contextual complement
from typing perspective. They are summed up in the following lemma.

7

Lemma 6 (Properties of contextual complement) Assume a component c
with type C = (P,R) and its contextual complement C̄D = (P̄ , R̄) according to
the definitions above. Let P ′ = {e′ | (e′ ∈ P) ∧ (∃ē ∈ P̄ · (e′, ē) ∈ D.B)} be the
set of actually bound provisions of C. Then it holds that

1. P ′ ⊆ P (not all provisions need to be bound).

2. ∀ē ∈ P̄ , e ∈ P · (e, ē) ∈ D.B : e.T <: ē.T (context’s bound required elements
can have generalized types).

3. ∀e ∈ R · e.o = false ∃R̄e ⊆ R̄ such that R̄e 6= ∅ ∧ ∀ē ∈ R̄e : ē.T <: e.T (all
component’s mandatory requirements are satisfiable by the context, via one
or more elements with possibly specialized types).

Proof. The proof of these properties is straightforward:

1. If all e ∈ c.P are bound to client elements in the context, then P ′ = P ;
otherwise, |P | − |P ′| is the number of unbound provided elements.

2. Assume there is a required element ēx of some component cx ∈ D.K bound
to a provided element e of c (consequently ēx ∈ R̄) such that ēx.T <:
e.T . Then the binding of the provided e to the other component’s required
ēx would be type-unsafe, since e cannot cover all the type features of ēx.
This violates the assumption of architectural consistency of the deployment
context. (In practice, the run-time framework would decline to establish
such binding a-priori.)

3. (a) Assume P̄e = ∅, meaning the non-optional required element e isn’t
bound to any corresponding provider. This again violates the architectural
consistency assumption. (b) Assume e.T <: ē.T which is a situation ana-
logical to point 2. The type unsafety of the binding between e and ē would
eventually lead to a malfunction of c, which contradicts the assumptions
(with the same practical interpretation).

Note finally that the P̄ captures the real types of elements bound to the actually
used c.P elements, not simply the types of these, and that there is no requirement
for element name uniqueness in the P̄ , R̄ sets.

The idea of component’s complement and its properties is illustrated on Figure
1. Component Gate is deployed in a simple architecture, bound to the Control
and ParkingPlace components. An additional TrafficLane component is installed
in the run-time framework. The deployment context of Gate comprises the two
counterparts of its provided interfaces in the R̄ set, and the three other provided
interfaces available in the framework as its P̄ set.

8

4 Component Substitutability

The principle of substitutability introduced in Section 1 provides a very general
definition of the notion. In the context of component-based software engineering,
it can be elaborated upon by taking into account the features available in the
current state-of-the-art component models.

The replacement component is substitutable for a component currently deployed
in a consistent application architecture if it satisfies the following general require-
ments [4]:

1. Presents the same operational interface (at the syntactic and typing level)
to its environment.

2. Exchanges the same data (with respect to their location and format) as the
current one.

3. Conforms to the semantics and behavioural specifications of the current
component in all interactions in which it is engaged.

4. Exhibits compatible extra-functional (quality of service) characteristics.

In the approach presented here we concentrate on the first area, which is a delib-
erate simplification of the issue. The rationale for this decision is based on the
challenges faced when working with industrial component frameworks. There,
specifications of advanced aspects are not available or cannot be reconstructed
from implementation in most cases; therefore, especially semantic compatibility
is hard to verify.

We therefore need to base the formal notion of substitutability only on such ar-
tifacts and abstractions that are products of standard component development
process. This lead us to (a) working with information directly available in the
component distribution package — semi-formal component interface specifica-
tions, possible meta-data created during development, and data extracted by
run-time component introspection; (b) using the least common denominator of
the formal foundations — the type system and its subtyping rules — which are
always available for any programming or specification language and provide a rea-
sonable degree of trust in the conclusions as to the run-time safety of substitute
component.

Let us now define the basic kind of type-based substitutability (presented in
earlier versions in [6]). The following section then presents the novel kind of
substitutability which considers the deployment context.

Definition 7 We say that a (replacement) component type R = (P ′, R′) is
strictly substitutable for the (current) component type C = (P,R) if (∀e ∈

9

P ∃e′ ∈ P ′ : e′.n = e.n ∧ e′ <: e) ∧ (∀e′ ∈ R′ ∃e ∈ R : e′.n = e.n ∧ e <: e′). This
fact is denoted as R ≺ C.

The definition corresponds to the natural understanding of “vertical” compatibi-
lity [3]: the replacement component provides at least the same, and requires at
most the same, component interface elements with respect to their names and
types (irrespective of element’s optionality). It uses the common notion of co-
and contra-variance at the component type level (cf. [24] or [7]). This defini-
tion ensures a-priori substitutability of any pair of a component instance and its
replacement which have the types C and R.

4.1 Contextual Substitutability

The principle of substitutability tells us that this property does not concern just
the two components (current, replacement) in question: we also need to take into
account their use by clients. From this point of view, changes in the provided
and required parts of component interface do not affect substitutability equally.

In many component-based architectures not all of the component’s provided fea-
tures are utilised, i.e. bound to clients. On a case-by-case basis, these unused
features can therefore be omitted when evaluating substitutability in the given
deployment context. Similarly, it is common that new features are added during
component evolution which results in the need to add corresponding dependencies
to make them work. In the programming language research this led to the no-
tion of covariance. In the case of deployed software components, we can take the
advantage of the knowledge of deployment context and match the replacement
component’s extended requirements with any of those provided by the context’s
components.

From the architectural point of view this is a clean solution since the component
should be agnostic of who is providing the required functionality, as long as it
conforms to its stated specification. This leads to the following definition:

Definition 8 Given a currently deployed component c with type C and its contex-
tual complement C̄D, we say that the (replacement) component type R = (P ′, R′)
is contextually substitutable for C if it holds that R ≺ C̄D that is if (∀ē ∈ P̄
∃e′ ∈ P ′ : e′ <: ē) ∧ (∀e′ ∈ R′ ∃ē ∈ R̄ : ē <: e′). This is denoted R ≺D C.

In plain words, the contextually substitutable replacement component provides
at least the same features as are those used by the clients of the current one, and
requires at most what is available in the context. It can be said it is horizontally
compatible [3] with the context.

10

Figure 2: New component version vs. the contextual complement of the currently
deployed one

Continuing with the example introduced in the previous section, Figure 2 shows
a second version of the Gate component that should replace the original one. Its
requirements are clearly greater than those of the original version, moreover one
of the provided interfaces has changed its type. However, comparing Gate v2 to
the contextual complement of its currently deployed version shows that it can
actually be used in the given architecture (provided the LaneGateStats interface
is a subtype of CountingStats).

Intuitively, one would expect that strict substitutability implies contextual.

Proposition 9 (Strict substitutability implies contextual) Assume
components c and r with types C and R respectively. It holds that ∀D · c ∈
D.K : R ≺ C ⇒ R ≺D C, i.e. if R is strictly substitutable for C then it is
also contextually substitutable for C in any architecturally consistent deployment
context D.

Proof.

We first need to prove that ∀D : C ≺D C̄D meaning that C “fits in” its (any)
context. Using the standard notation C = (P,R) and C̄D = (P̄ , R̄) this can be
done in two parts:

• ∀ē ∈ P̄ ∃e ∈ P : e <: ē (P is a substitute for P̄) – follows from Lemma 6
items 1 and 2.

• ∀e ∈ R ∃ē ∈ R̄ : ē <: e (R is a “supertype of” R̄) – follows from Definition
4 (|R| ≤ |R̄|) and Lemma 6 item 3.

From the assumptions of the proposition we have R ≺ C, the above says that
effectively C ≺ C̄D and since the substitutability relation is transitive, it follows
that R ≺ C̄D.

11

This fact can be useful in certain common scenarios, e.g. in the special case of
component backward compatibility : for a subsequent revision of a component we
can easily prove strict substitutability with its immediatelly preceding revision
at component release, store appropriate indication in its meta-data, and use it
when upgrading the component.

Only if no such indication is available the assessment of substitutability must be
carried out at the component binding or upgrade time. At this time it also makes
sense to perform the contextual substitutability checks.

Due to its time-dependent nature, both the component’s effective type (the ac-
tually used provided and required elements) and the deployment context may
change in component instance’s lifetime. Once compatibility is verified during
upgrade, architectural consistency needs therefore to be continuously verified
and ensured by other means.

5 Realization and Experimental Tool for the

OSGi framework

Building on our previous work [6] we have implemented a contextual substituta-
bility verifier for the OSGi framework [18] and a top-level GUI tool that helps to
simulate various situations in which the contextual compatibility can be checked.

5.1 Architecture of the Tool Set

The overall technical design of the verifier was driven by several goals motivated
by the need for practical utility. One of them was a simplified scope (evaluate
compatibility of subsequent bundle2 revisions, not any-to-any substitutability
checks), another one a non-intrusive integration in the host framework.

The verifier application has the form of a set of OSGi bundles. The overall
architecture of the implementation comprises three layers — a simple user in-
terface, bundle and context representation loaders plus substitutability verifier
(comparator), and an underlying Java type system model and subtyping rules
implementation.

The first two layers are shown in Figure 3. Once the type representations for
both the contextual complement and the replacement bundle are created by the
Loader bundles (forming a tree data structure with provisions for primitive types

2Bundle is the OSGi term for a component.

12

and circular references), they are submitted to the Bundle Comparator which
implements the substitutability verification. The result of its work is essentially
an annotated type tree. It is aggregated into a single assertion about the type re-
lation between the bundle and the complement. The Substitution Verifier bundle
wraps the whole process, taking care of activating the loaders and comparator,
and interpreting its result for the user.

Figure 3: Architecture of the OSGi bundle compatibility verifier

Since no suitable run-time type representation of OSGi bundles is available,
we use a custom-build model [1] called BundleTypes. It consists of domain
classes capturing selected characteristics of the whole bundle, both at the module
layer (its exported and imported packages) and the service layer (provided and
depended-on services). This representation then references a lower layer model,
called JavaTypes, which captures the type information of the individual Java
classes.

5.2 Key Methods and Algorithms

The reconstruction of the type representations uses different means depending on
the bundle in question. For the replacement bundle we use bytecode analysis with
the ASM library3 wrapped by a custom classloader and create stubs for shared
(JRE, OSGi core, . . .) or unreachable classes, because the replacement bundle is
accessible only as standalone .jar file. For the imported packages in particular we
have to assemble their type representation [2] from class and operation references
extracted from the bundle bytecode.

The type representation of the current bundle and its contextual complement can
be obtained through standard OSGi framework services (package admin, bundle
metadata and classloader methods) and Java reflection API. This information is
easily reachable since the bundle’s metadata and bindings to client and provider
components are available in the respective framework registries.

3http://asm.ow2.org/

13

Concerning subtype relation implementation, the design of the algorithms had
to reconcile the differences between the theoretical notion of the type relation
— as used in the previous section — and the rules employed by Java as the
actual specification language, its linking mechanism and the run-time system of
the OSGi framework.

Most prominently, Java uses subclassing rather than subtyping [10] in its type
matching rules and differentiates subtyping from binary compatibility [13]. This
relation is actually the source of the underlying element “subtype” relation since
OSGi bundles are bound and updated as binary .jar files.

Although OSGi is rich in features and modifiers at the module layer (optional
imports, “uses” constraint, version ranges, etc.) most of them do not affect sub-
stitutability on the exported side and the effective type on the imported side
(which reflects the effects of these modifiers) is easily obtained. At the service
layer, element substitutability is verified implicitly — all service interfaces must
be declared in the exported/imported packages so their type comparison is han-
dled at the module layer.

5.3 Tool for Experimental Verification of Contextual Sub-
stitutability

A simple tool has been created to enable experiments with contextual substitu-
tability on OSGi bundles. It’s purpose is to load an application configuration
(consisting of a set of bundles), starting a pre-defined subset of bundles, and
enable the user to observe the changes in substitutability of individual bundles
as he or she interactively activates/deactivates chosen bundles.

The configuration of the experiment is an XML file which describes three types
of data:

• bundle groups (components) – a set of identifiers denoting version sets of
OSGi bundles;

• repository – a folder whose each sub-folder (named according to one bundle
group identifier) contains the corresponding bundle version set, i.e. the .jar
files of individual versions of the given bundle;

• setting – a pre-defined combination of bundle versions which will be run on
experiment startup, creating a particular configuration of the application.

An experiment is initiated by loading the configuration, upon which the initial
set of bundle versions according to the default setting is installed and started on
the underlying OSGi framework. The GUI then works as a special-purpose shell

14

Figure 4: Tool configuration

to the framework, enabling the user to change the configuration of the application
in terms of its composing bundles selected from the available bundle groups.

Each time a bundle in the bundle versions group is activated, the substituta-
bility of the other versions in the group against the (newly) running one are
re-evaluated in the changed context of other running and installed bundles. The
information about substitutability is indicated to the user by the icons on each
bundle rectangle.

6 Conclusion

In this paper we presented the formal definition and practical implementation
of a component substitutability verification method. Its key contributions are
the novel use of the component’s deployment context to enable safe substitution
for non-subtype replacement components, and the ability to provide sufficiently
strong formal guarantees of type consistency even when applied on current in-
dustrial component frameworks.

The current implementation of the substitutability verifier has several shortcom-
ings. At the bundle representation and comparison level, it does not handle
fragment bundles and optional imports. It also intentionally omits dynamic
imports and bundle dependencies (known bad practices in the OSGi world).

15

Figure 5: The GUI of the tool

Also, the chosen architecture — implementing the tool as user-space bundles
— enables its portability but prevents integration into the bundle installa-
tion/resolving/updating process (which would be a desirable goal since it would
provide user-transparent compatibility verification). These issues are the subject
of further improvements of the implementation.

This type-based substitutability verification method can be wrapped into easy to
use tools and data that promote its practical use. One such practical extension
implemented by our team is the automated creation of correct semantic version
identifiers for the OSGi framework. Another application, the contextual substi-
tutability experiment demonstrator, has been described in the previous section.

Concerning further research, the formal definitions of the method should be ex-
tended to clusters of components (e.g. to support safe substitution of larger sub-
sets of applications) and applied more specifically to inter-component relations
in dynamic architectures. The practical implementation for OSGi will need to
supply the missing aspects of the component model, and overcome the issues of
tighter integration in the frameworks.

16

References

[1] Bauml, J. and P. Brada, Automated versioning in OSGi: a mechanism
for component software consistency guarantee, in: Proceedings of Euromi-
cro SEAA (2009).

[2] Bauml, J. and P. Brada, Reconstruction of type information from java byte-
code for component compatibility, in: 5th workshop on Bytecode Semantics,
Verification, Analysis and Transformation (Satellite Event of ETAPS 2010),
Paphos, Cyprus, 2010 .

[3] Belguidoum, M. and F. Dagnat, Formalization of component substitutability,
Electronic Notes on Theoretical Computer Science 215 (2008), pp. 75–92.

[4] Beugnard, A., J.-M. Jézéquel, N. Plouzeau and D. Watkins, Making compo-
nents contract aware, Computer 32 (1999), pp. 38–45.

[5] Brada, P., “Specification-Based Component Substitutability and Revision
Identification,” Ph.D. thesis, Charles University in Prague (2003).

[6] Brada, P. and L. Valenta, Practical verification of component substitutabi-
lity using subtype relation, in: Proceedings of the 32nd Euromicro SEAA
conference (2006), pp. 38–45.

[7] Bruneton, E., T. Coupaye, M. Leclercq, V. Quéma and J.-B. Stefani, The
fractal component model and its support in java: Experiences with auto-
adaptive and reconfigurable systems, Software Practice and Experience 36
(2006), pp. 1257–1284.

[8] Cardelli, L., Type systems, in: Handbook of Computer Science and Enginee-
ring, CRC Press, 1997 .

[9] Chaki, S., E. Clarke, N. Sharygina and N. Sinha, Verification of evolving
software via component substitutability analysis, Formal Methods in System
Design 32 (2008).

[10] Cook, W. R., W. Hill and P. S. Canning, Inheritance is not subtyping, in:
POPL ’90: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (1990), pp. 125–135.

[11] Desnos, N., M. Huchard, C. Urtado, S. Vauttier and G. Tremblay, Auto-
mated and unanticipated flexible component substitution, in: Proceedings of
10th International Symposium on Component-Based Software Engineering,
Lecture Notes in Computer Science 4608/2007 (2007).

17

[12] Georgas, J., A. van der Hoek and R. Taylor, Using architectural models
to manage and visualize runtime adaptation, IEEE Computer 42 (2009),
pp. 52–60.

[13] Gosling, J., B. Joy, G. Steele and G. Bracha, “The Java Language Specifi-
cation, Third Edition,” Prentice Hall, 2005.

[14] Jeek, K. and P. Brada, Compatibility verification of components in terms
of functional and extra-functional properties - tool support, in: Proceedings
of the 12th International Conference on Enterprise Information Systems -
Information Systems Analysis and Specification (2010), pp. 510–514.

[15] Leavens, G., K. Leino and P. Mller, Specification and verification challenges
for sequential object-oriented programs, Formal Aspects of Computing 19
(2007), pp. 159–189.

[16] Mach, M., F. Plášil and J. Kofron, Behavior protocol verification: Fighting
state explosion, International Journal of Computer and Information Science
6 (2005), pp. 22–30.

[17] McCamant, S. and M. D. Ernst, Formalizing lightweight verification of soft-
ware component composition, in: Proceedings of SAVCBS 2004: Specification
and Verification of Component-Based Systems, Newport Beach, CA, USA),
2004, pp. 47–54.

[18] The OSGi Alliance, “OSGi Service Platform Core Specification,” (2009),
release 4, Version 4.2.

[19] Plášil, F. and S. Vǐsnovský, Behavior protocols for software components,
IEEE Transactions on Software Engineering 28 (2002).

[20] Polakovic, J., S. Mazare, J.-B. Stefani and P.-C. David, Experience with safe
dynamic reconfigurations in component-based embedded systems, in: Proceed-
ings of 10th International Symposium on Component-Based Software Engi-
neering, Lecture Notes in Computer Science 4608/2007 (2007).

[21] Stuckenholz, A., Component updates as a boolean optimization problem, Elec-
tronic Notes on Theoretical Computer Science 182 (2007), pp. 187–200, pro-
ceedings of the Third International Workshop on Formal Aspects of Com-
ponent Software (FACS’06).

[22] Szyperski, C., Component technology - what, where, and how?, in: Proceed-
ings of the 25th International Conference on Software Engineering (ICSE
2003), Portland, Oregon, 2003.

18

[23] Taylor, R. N., N. Medvidovic and P. Oreizy, Architectural styles for runtime
software adaptation, in: Proceedings of Joint Working IEEE/IFIP Confer-
ence on Software Architecture 2009 & European Conference on Software Ar-
chitecture 2009, 2009.

[24] Vallecillo, A., J. Hernández and J. M. Troya, Component interoperability,
Technical Report ITI-2000-37, Universidad de Málaga, Spain (2000).

[25] Wegner, P. and S. B. Zdonik, Inheritance as an incremental modification
mechanism or what like is and isn’t like, , 322 (1988), pp. 55–77.

19

