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Chapter 1

Introduction

Current software products increase in their size. Together with effort to let com-
puters manage still more complex kinds of information which were previously
computed by humans or even were not processed for their complexity, the soft-
ware expands to very complicated systems.

The current software is often created from scratch where each functionality is
hand coded by developers. It is obvious that a lot of applications use the same
parts of logic or work-flow. For instance, almost every web page providing user
access has a log-in form, but each vendor of the pages uses they own application
logic to control the login process. For that reason, partial solutions have been de-
veloped to avoid a need to repeatedly code the same or very similar functionality.
The developers usually use existing libraries covering common functions, though
the core of the software is still developed by hand. This consequently arises a
need for a “glue” code that must be written to connect the library code with the
application code. The repetition of code evidently leads to an inefficient process
of the development.

The current computers are used for solving tasks from different areas of human
lives. A software developed for a concrete purpose must meet concrete user needs
and for that reason the developer of the system must have a good knowledge of
the users domain. Since the software may cover a wide domain, the developers
must learn a considerable amount of information.

Despite of software complexity, the vendors want to decrease the time-to-market
as well as the price of the product. The only solution for it is to solve (i) an
inefficiency of current development process and (ii) decrease amount of extra-
information developers must learn. The current research aims at developing
means which allow to encapsulate pieces of functionality. These functionalities
are stored in so called components. The components compose the final software
product and the composition is done without any additional glue code. The
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Chapter 1. Introduction

underlying benefit of it is that the components may be prepared by developers
who are experts in a particular domain. The developer of the final systems uses
components only with knowledge about the interfaces of the components. He or
she does not have to learn each detail of the targeted domain. Since no addi-
tional code is written the development time is rapidly decreased. In addition,
the components may be repeatedly used in different projects which consequently
decreases the price. Components seem to solve both mentioned disadvantages of
current software process.

Component-based software engineering (CBSE) is promising technology with an
advantage to solve problems of current development of software. The usage of
components leads to a new concept of a components market (technically imple-
mented as a component repository). The market contains pre-existing compo-
nents covering a wide area of functionalities. A developer of a final system takes
these components form the repository to compose the final system. When a
concrete functionality is not covered by any components, the new component is
developed and published on the market via the repository.

Although the CBSE idea promises considerable improvement of software devel-
opment process, there are still some barriers preventing to reach its advantages.

1.1 Problem Definition

We see the main problem related to components as the trust the developer has
on the component. Once the developer does not write the code and uses the
component instead, he or she needs to verify whether the component is suitable
for the system that is under development. In essence, the developer must know
if the component communicating with other parts of the system (also composed
from components) will be compatible.

Let us state that the developer of component systems needs to check compon-
nent’s:

1. Functional characteristics

2. Extra-functional (also referred as non-functional) characteristics

It is generally assumed that functional characteristics are easier to manage. De-
pending on a component model, the function of a component is expressed through
an interface, a connector or any other explicit definition. The developer may eas-
ily read the definition and assume the functionality.

Extra-functional properties expresses all attributes of component which are not
functional ones. It contains quality attribute such as performance, memory con-
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Chapter 1. Introduction

sumption, response time, etc. or market and maintenance characteristics such as
marketability, price, time to failure, time to repair, etc. They are usually difficult
to manage and, so far, there is no widely used mechanism allowing to easily work
with them.

1.2 Goal of the Work

This work addresses inadequate means of definition of extra-functional properties
attached to software components. The main goal of this report is to provide
a mechanism which allows to enrich components by extra-functional properties.
The mechanism should be easy-to-use to allow its practical usage. The underlying
goal of the work is to analyse the state-of-the-art and show pros and cons of other
approaches. The proposed mechanism aims at avoiding lapses detected in other
approaches.

The proposed mechanism for defining extra-functional properties leads to a cre-
ation of a repository of these properties where the properties are first taken from
the repository and they are then attached to components. This allows to enrich
components of additional meta-information allowing better compatibility checks.
Another goal of the report is to develop a comparator which compares compo-
nents each other and decides whether the components are compatible in terms of
extra-functional properties.

This work aims at expressing extra-functional properties on the interfaces of
components. It provides system developers with the possibility to bind only
compatible components in two situations: (i) the system is composed into an
assembly in a testing environment or (ii) the system is starting in the runtime
framework.

We will explicitly target at context dependency and composition of exta-
functional properties. Firstly, components run in different environments and
for that reason their extra-functional properties must be related to a concrete
context of usage. Secondly, the properties attached to one component may be
influenced by properties of other components. For that reason we aim at devel-
oping a mechanism that composes properties in a chain of connected components
and results in properties that express the whole components assembly.

To support practical usage of the mechanism and verify the correctest of theoret-
ically defined model, it will be implemented as a toolbox including a tool working
with the properties repository, a tool allowing to attach properties to components
and finally a tool comparing two components.

This report is organised as follows: Chapter 2 overvies fundaments of component-
based software engineering, Chapter 3 brings a survey of the state-of-the-art
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Chapter 1. Introduction

related to extra-functional properties, Chapter 4 first describes registry of extra-
functional properties we have developed to manage context dependency of the
properties. It second evaluates pros and cons of the current mechanisms and then
suggests an improvement for our future work.
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Chapter 2

Background: Component
Architectures

2.1 Motivation

There are several motivations which prove advantages of component-based ap-
proach. This section summarizes benefits of component-based programming. A
deeper explanation of terms such as a component, a component model and a
component framework is not given yet, but they will be detailed in next sections.
In [8] few benefits of component-based programming are highlighted:

• Independent extension – Legacy software is difficult to extend. A new
functionality must be inserted directly to the source code and a whole ap-
plication must be rebuild, because legacy software is often developed as
one monolithic system. In opposite, when components are used, a new
functionality may be added by adding a new component or an existing
functionality may be updated by an updated component. In addition, an
extension mechanism is defined by a component model which effectively
decrease a possibility of side effects (e.g miss-used communication protocol
in two stand-alone systems).

• Component markets – Component models themselves define standards
for components. Together with component frameworks, it defines mecha-
nism of componet’s deployment, running and usage. That is, no explicit
definition how to install, run, uninstall etc. repeated for each components
(which is typical for stand-alone programs) is needed. The definition of
these standards lead to unified components that may be distributed via a
common market.

• Reduce time-to-market – A component developed for a specific function-
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Chapter 2. Background: Component Architectures

ality contains only a code for the functionality itself. A component frame-
work provides other runtime means commonly needed by components. For
that reason, each component may simply use them and do not have to e.g
allocate system resources. It increases the development speed.

• Improve predictability – When a problem with a functionality of a com-
ponent appears it certainly means that the component itself contains a
defect. All general design rules and patterns of the whole system are de-
fined by the component model and it is thus enforced to each component.
For that reason, it is unlikely to do a mistake in the design of a whole
system.

2.2 Component

The definitions of components vary and so far there is not only one general
definition of what a component is [13]. The empirical definition says that a
component is a unit of a composition. It is obvious without any deeper prove
that we build components to use them to compose a variety of final applications.

This empirical definition is not however sufficient. There is a lot of variants how
the components may look like, how they are created and how they compose a
final product. The very term “component” is either used for different areas of
software which have a little common characteristics together. On one hand a
bean defined in Enterprise Java Bean (EJB) [16] or a bundle created for OSGi
[33] evidently encapsulates functionality that may be repeatedly used in different
systems. For that reason, it fits to the empirical definition of the components.
On the other hand, vendors of software time-to-time claim that their product
contains a set of components, but finally they sell a monolithic application. The
distinction to components is, in this case, only a logical or a commercial one.

Before working with components, it is good to state a preciser definition of com-
ponents. One definition is in Szyperski’s book [38]. It reads:

A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is subject to
composition by third parties.

Another definition of the components is in [8]. It sums up the definition in three
points:

The component is:
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Chapter 2. Background: Component Architectures

1. an opaque implementation of functionality

2. subject to third-party composition

3. conformant with a component model

It is evident that this definition is partly equivalent with the Szyperski’s defini-
tion.

The rest of this report deals with components in terms of these two definitions.
It essentially means that a component is assumed as a unit, typically prepared by
a third-party, which has a defined interface and is deployed into a system. The
components model will define how the components look like.

2.2.1 Components and Object-Oriented Programming

Szyperski also describes a relation of components with object-oriented program-
ming. Despite of component as a unit of deployment, an object is a unit of
instantiation. Each object has often, after instantiation, assigned a state to-
gether with an identifier. An object is instantiated and later destroyed in any
time of an application run. The state of the object may be observed while an
instance of the object exists.

In opposite, the component is started (or is activated) when the whole application
is started and runs until the application runs. The component should not have
any observable state and for that reason it has no sense to have more copies
(instances) of one component in the application. Another benefit of a stateless
component is its re-entrance. Since there is no state while a component runs,
each call of component’s methods is independent and it is thus re-entrant. On
the contrary of Szyperski’s rules, component frameworks such as EJB, Spring [36]
or OSGi allow to run more copies of one component.

Object-oriented languages such as Java or C# may be used to define a component
as an object or a set of objects. For instance, Spring defines one component as
one Java class while a component in OSGi is a set of classed packed in one JAR
file. On the other hand a component may be defined in non-object languages
such as C.

2.2.2 Black-box and White-box

Black-box is generally a part of a program which provides a functionality and
users know only inputs and outputs. The users call the functions with inputs and
except outputs. The inner implementation of the functionality remains hidden.
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Chapter 2. Background: Component Architectures

If the user of the program may look in the source code, it is called white-box.
White-box is generally more problematic to replace an old program by a new one
[38]. Once a user may study the source code of the program he or she tends to
adjust client programs to use any “hidden” benefits of the code. It means that
the client may e.g change a sequence of calls, modify somehow input and even
output values to exhaust e.g a maximal performance of the program.

It is obvious that white-box representation of a program may pose problems when
the program is replaced by another version. The new version may work perfectly
well, but some clients may rely on the inner representation of the older version.
The new version may e.g change a type of return values or use different algorithms
which change in some performance coefficients.

For that reasons the black-box program better suites for future replacement.
When claimed functionality is not changed, there is a considerable change that
all clients will work with the new version without any problem, unless they rely
on an inner representation of older version.

When we speak about components, the black or white-box nature remains valid.
All components designed as black-boxes are more convenient for future replace-
ment. Since the components primary goal is to be replaceable, it even more
highlights the need for black-box components.

2.2.3 Component Interconnections

As was already mentioned a component is independent unit which is deployed to a
system. Obviously, the component deployed to the system needs to communicate
with other components. It arises a question how to define a communication
mechanism, or in other worlds, how to connect components for the time they run
together in the system.

Different systems use different approaches to connect components. Offten, in-
terfaces, events, shared memory or connectors are used. Sometimes a connector
is used to modify or adjust data flowing from one component to the other one.
Interface is a point accessing component’s functions or services. An interface
usually aggregates a set of methods (often called services) which may be called
independently by other components. A component may provide more than one
interface.

Most component models use the provided and the required role of interfaces. The
meaning is that the provided interface expresses functions the component offers.
The required interface expresses a functionality the component needs.

The other purpose of interfaces is that they basically serve as a contract for
components. In other worlds it informs what the component may guarantee
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Chapter 2. Background: Component Architectures

when the assumptions are fulfilled.

The interfaces consequently hold the contract which must be fulfilled when a
component is to be replaced by another one. Most current component systems
hold only information about component’s functions. Section 2.5 of this work will
show that describing only a function is insufficient to express all guaranties the
caller must full fill.

In a real components market, the components evolve and new versions arise.
These changes has often an influence on interfaces and may even break a back-
ward compatibility. To distinguish on which version a component depends, the
interfaces are often enriched by versions. The versioning is nothing new and it is
widely used in current software processes. Each software vendor usually uses a
versioning system concerning a combination of major, minor and micro number
of the version, however each vendor uses different mechanism assigning a number
for the concrete version. Despite of it, the components system needs a common
system of versions which vendors of components are comply with. The common
versioning system is needed to guarantee comparable versions of components
shipped by different vendors.

Another question raised with interfaces is how many functions should an interface
publish and how many interfaces should a component offers. An ideal compo-
nent is fully re-usable with only a set of useful functions. This empirical rule
is, however, often in contradiction. When a component provide a big amount
of functions it is barely re-usable. On the other side, a widely re-usable compo-
nent may offer only a very limited set of functions or even only a one function.
Szyperski summarises:

Maximizing reuse minimizes use.

Every component should offer the right set of functions with minimal dependen-
cies on other components. So far, it is up to developers to empirically estimate
size of a component.

2.3 Component Model

If we removed the third rule of the components definition form Section 2.2 saying:
“a component is conformant with a component model”, we could claim that any
two stand-alone programs are components. They are opaque implementation
of functionality, independently deployable and often use means to communicate
each other. For that reason the conformance with a component model is the most
important addition to the world of components.

The component model gives a uniformity to components and their composition.
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Chapter 2. Background: Component Architectures

Its use is to define how a component should look like, how components commu-
nicate each other, which resources they use, etc. The component model ensures
the components are compatible in terms of deployment, the communication, etc.
It determines the rules components must hold to be able to cooperate and it
minimalists misunderstood assumptions.

Another use of the component model is to ensure sufficient quality. The com-
ponent model may define typical software requirements e.g. it avoids deadlock,
manages race-conditions, synchronization etc. The component model may also
support requirements such as performance, memory consumption, etc. generally
covered by extra-functional properties.

A success of CBSE depends on the component market. When developers produce
a component it is published by a vendor to the marker where it may be bought
by an architect of a final application. It is generally excepted that the component
works equivalently in an original developer environment as well as in an environ-
ment of a consumer. This rule is practically defined by the component model
which ensures that once a component is conformant with the component model,
it must work the same way in each environment supporting the same component
model. A degree of such assurance depends on a component model. The level
of ussurance will be quite low unless current industrial models widely support
additional advanced features like extra-functional properties.

The work [8] claims that the component model should impose:

• Component types expressed by interfaces the component implements.
When the component implements more interfaces it is of the type of all
implemented interfaces. In other words the component is polymorphic with
respects to all implemented interface.

• Interaction schemes. The component model should specify how com-
ponents are located, which protocol to communicate is used and may also
define which quality of services are achieved.

• Resource binding. Each deployed component is bound to some resources.
A resource is provided by a framework the component is deployed in, or by
other components. The component model describes which components are
available and how and when the components bind to them. Consequently,
the component model drives the life cycle of components and manages re-
sources assignment.
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Chapter 2. Background: Component Architectures

2.4 Component Framework

A component framework is basically an implementation of a component model.
It supports all mechanisms such as deployment, synchronization, life-cycle, com-
munication of components which are defined in the component model.

Component framework works like an operating system. It also manages processes
(components), life-cycle, receive resource requests and decides their assignment.
The framework also allows components to communicate each other which an
operating system also does. Operating systems typically run all the time while
the processes are variously started and stooped. Although a lot of component
frameworks also run all the time components are started and lately stooped, it is
not necessary needed. A component framework may be also an implementation
of functionality which components explicitly invokes. In contrary to the last
sentence, the work [8] says: “The trend in component technologies seems to be
towards framework as independent implementation, making the operating system
analogy quite apt.”. This claim is also supported by practically used frameworks
such as Java EJB, Spring, OSGi, which are consistent with the operating systems
analogy.

2.5 Extra-functional Properties

Section 2.3 shows that a component model ensures the components compatibil-
ity in different environments. Although current component models guarantee a
component will work in a customer environment in terms of correct using of com-
munication channels, resources binding, component’s life-cycle etc., this is still
not sufficient to guarantee the full functionality. Even when a particular func-
tion of a component is reached, the functionality of the component in the target
environment may not be guaranted unless extra-functional properties are taken
into account.

The very term functionality as is assumed from the user point of view we may
essentially denote by two disjunctive parts:

1. a particular function the component has been developed for

2. a set of extra-functional properties the component is comply with

The component reaches the desired functionality if and only if both of these rules
are fulfilled. It is clear a component has been developed to provide a concrete
function. For that reason, the correctly working function is necessary to fulfil
users needs. This requirement is necessary but not sufficient at all. The problem
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Chapter 2. Background: Component Architectures

of current industrial models and frameworks is a lack of the support of extra-
functional properties. A components vendor may not guarantee a functionality
of published components as long as he or she is not able to guarantee extra-
functional characteristics together with the function. It leads to a considerable
weakness which limits component-based development.

It is need to point out that the very term extra-functional properties lacks a
standardized definition. This poses a problem in situations where the border
between functional and extra-functional is fuzzy.

The definitions available, so far, are vague and varied. For example, [1] de-
fines extra-functional properties as “the degree to which [a component] meets
requirements or customer/user needs or expectations“ . The most commonly
used synonym is “quality characteristic, factor and/or attribute” [1, 2, 6] while
for example [3] uses the terms “performance” and “attributes”. Another term,
extra-functional characteristics, is used by Franch, X. in [17].

The work [8] does not define precisely extra-functional properties, but defines
three main groups of extra-functional properties instead. They are:

• Behavior concerns outcome of operations. Each call of a method and
the outcome of the method vary depends on a call of other methods.
For instance, the Eifell language allows to define pre-conditions and post-
condition to capture conditions which must hold to guarantee a result of
the computation. The other example is a usage of assert commands in
languages such as Java. It typically guards whether input parameters of
methods contain valid values. In any case, the behaviour characteristics
concern sequential ordering of methods call.

• Synchronization concerns all aspects connected with multi-threaded com-
putation. Although modern programming languages contain means to deal
with synchronisation – they allow programmers to define semaphores, mon-
itors, lock shared resources, etc. – the formal verification checking whether
a component is thread-safe and synchronised has been barely exploited.

• Quality of service typically concerns attributes limited by hardware or
any other technical means. Quality of service includes attributes such as
maximum response time, delay, average response, memory usage, processor
speed demands, precision. They are mainly relevant in resolving whether
the whole component system will work with available platform properties.

This distribution does not explicitly name non-functional requirements (abbrevi-
ated as NFR). NFR covers all characteristics expected from a user point of view.
It includes both, user requirements and technical means concerning quality.
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Users typically mix functional and extra-functional requirements when they de-
fine their requirements on the system. It first is necessary to sort out which
requirements belongs to each group. The group of extra-functional requirements
must be then divided to other groups covering quality of software, behaviour,
synchronization, etc., because mechanisms working with each group usually dif-
fer.

The current research aims at expressing at least a subset of extra-functional re-
quirements by extra-functional properties (EFPs). We show the distribution of

Figure 2.1: Extra-functional Properties Overview

NFR set (NFRset) into other disjunctive sets in Figure 2.1. When the sets are
defined, an extraction of desired extra-functional properties may be performed.
The definition of EFPs allows a formal expression of non-functional aspects (to-
gether with a function of components). It allows to check whether a component
matches NFR. When component compatibility checks are improved by EFPs, it
leads to more precise decisions whether one component is suitable as a replace-
ment of the other one.

Note that we does not try to precisely target a complete distribution of the
NFRset in Figure 2.1. The dimension of the NFR set has not been deter-
mined yet and for that reason, the distribution of the whole set is unknown.
From our point of view, the following essentialy holds: NFRset ⊃ behaviour +
synchronization+QoS and NFRset−(behavior+synchronization+QoS) 6= {}.
It means that behavior, synchronisation ans QoS do not cover the whole
NFRset. For instance, a user may require an easy-to-use graphical interface
which is evidently a NFR, but it does not fit into any mentioned group.

Figure 2.1 also shows that we may probably map – at least in the current stage
of the research) – only a subset of NFR.

Concerning the multitude of existing terms, we try to propose one general defi-
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nition:

Definition 1 An extra-functional property of a software item (including a com-
ponent) is its characteristic which (1) concerns the item’s clients or even end-
users, and (2) is not an invokable functionality.

In this work we follow the trend expressing components connected through inter-
faces. Whereas interfaces inform others about their functions, it is ideally suitable
to contain informations about EFPs. Provided an required side of a component
expresses a functionality covering a function and extra-function pair. For that
reason, we assume each provided and required method enriched by a set of their
EFPs to complement this pair.
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Chapter 3

Extra-functional Properties
Approaches

Previous chapter described why it is good to think of extra-functional properties
when designing component systems. EFPs are, however, not easy to treat. There
are a lot of problems which have been addressed by current research but non of
them reached its maturity. EFPs are difficult for practical usage. Some typical
challenges related with EFPs are:

1. A transformation of user requirements, expressed in a natural language, to
a formal language [21];

2. A distinction of all NFRs into disjunctive groups;

3. A language or any other formalisation of EFPs allowing their general auto-
matic processing [29, 4];

4. Systematic way computing how EFPs are influenced by other EFPs. [40,
15];

5. A relevance of EFPs to a concrete area of usage [22].

The first two points, though they are important, will not be addressed in this
work. The following sections introduce mainly approaches that aim at formali-
sation of EFPs.

The last two points are very important in component-based programming. Each
component provides a set of functions and it is desired these functions provide
the same results for the same inputs all the time independently of a context of
usages. It is not the case with EFPs. Some qualitative aspects of the systems
often vary for different usage. For that reason some EFPs may be highly relevant
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in one context while they are barely relevant in another one. In addition, some
EFPs may be influenced by other EFPs and for that reason they should not be
treated in isolation. Our work presented in Chapter 4 will explain our current
attempt to solve these two points.

3.1 Extra-functional Languages

This section introduces current research approaches to a formal definition of
extra-functional properties. They are mainly expressed as a formal language.
Different approaches focus on different degree of granularity.

There is a group of works preparing EFPs only for a concrete area of usage. Their
approaches do not have to solve the context dependency and are not targeted for a
general usage. On the other hand, there are other approaches preparing general
formalisations of EFPs. They are typically more suitable for components and
their context independent usage, though they do not mature to practical usage
yet.

3.1.1 Specialised Languages

This section focuses on few approaches which defines EFPs formalisation for
concrete areas of usage and thus are not general. They generally better succeed
in a practical application, but are worse in combination with components for
component general usage purposes.

HQML

A Hierarchical QoS Markup Language (HQML) [29] is designed as a XML-based
language targeted to the World Wide Web. Although the internet used to serve
for exchange textural information only, nowadays it also provides a variety of
services remotely invoked. HQML aims at describing quality of service (QoS)
for the services accessible via the internet. HQML uses a XML language for its
simplicity and popularity.

HQML uses three-layered structure:

• User Level – defines quantitative criteria in a textural representation (e.g.
“high”, “low”, “average”), an attention (“clarity”, “smoothnest”) and a
price from a user point of view. This level is used during runtime when the
best suitable service is matched.
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• Application Level – this layer serve as a specification of all king of appli-
cation QoS (e.g frame rate, resolution, size). It also allows a connection of
a distributed application expressed in an oriented acyclic graph. The main
use of this level is for a middle-ware entities of the system independently
on underlying resources such as hardware, OS, etc.

• System Resource Level – defines different resources requirements. When
a concrete resource is available it allows to associate it.

The XML representation is translated to an in-memory representation where it is
processed by QoS-proxies which provide a generic middle-ware representation of
QoS-services (negotiation, adoption, ...). The transformation of XML data into
memory ensures the HQML Executor that consequently cooperate with QoS-
proxies in QoS negotiation. HQML Executor works in following steps:

1. The HQML Executor interprets users requirements (from User Level) and
contacts QoS-proxies to discover current application resource availabilities.
The request is sent to a server.

2. Web/HQML server search in HQML Profiles (which is Application Level)
to find a profile matching users requirements. It returns information about
suitable services or returns an error if the matching does not exist. The
result is returned back to the user.

3. In a case more than one profile matches the user is asked for a selection.
When the suitable profile is selected, the selected service is invoked together
with allocating demanded resources (described by Resource Level).

Together with the HQML language, they propose a tool QoSTalk covering the
presented solution.

HQML seems to serve as a comprehensive language which targets different level
of an application. Although the paper [29] addresses a mechanism of evaluation
of defined properties mediated by QoS-proxies, it does not explain how the QoS-
proxies work to define a precise evaluation mechanism. It is desirable to know
whether the HQML mechanism directly compares values provided on each level,
or matches the best suitable services. The former one is easy to cope with while
the last one is challenging.

SLang

SLang [24] stands for a Language for Service level agreement (SLA). The lan-
guage is targeted at systems concerning web services providing data among sys-
tems, component-based middle-ware and containers accessing system resources
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and data storages. SLang aims at capturing different scales of extra-functional
properties for different tiers of an application and different scales of the properties
among applications.

Slang first captures inter-organisation EFPs with respects to a storage, network,
middle-ware and an application level. It second captures EFPs between a services
provider and a client.

It defines a horizontal layer which basically copes with a layered structure of
classic applications. It separately defines EFPs for each layer: layer of web ser-
vices, middle-ware components and a container. The rationale behind it is that
each layer may use the same EFPs, but they are far from being the same in each
layer. For instance, a web service may offer a throughput as well as a database
may do, but scales of values for both layers differ. The other, a vertical layer,
concerns EFPs of the same layers for different systems, e.g. the properties of
two web services of two communicating application or two components on the
middle-ware layer. It expresses EFPs a server must meet to satisfy clients.

The main goal of SLang is (i) to express qualitative and quantitative features of
a service with the high degree of accuracy, (ii) make easily comparison of offers.
They define a set of main concepts to reach both goals:

• Parameterisation – each SLA is parametrised by values that quantita-
tively describes a service.

• Compositionality – since services may be cascaded or aggregated, SLAs
of the services must be also composable in order to express an offer of the
composed service.

• Validation – a syntax and validity of SLA must be feasible.

• Monitoring – SLA should be able to provide automated monitors showing
which service levels are met.

• Enforcement – an execution must be enforced when service levels are
agreed.

Although these points are mentioned in [24], it is not stated how SLang reaches
them. The work describes mainly the language itself rather than evaluation
mechanisms.

The two layers (horizontal and vertical one) of SLang contain seven different kind
of SLA – four for the vertical layer and three for the horizontal layer.

The vertical layer uses the SLA of kinds:

• Application – between application or web services and components
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• Hosting – between a container and components

• Persistence – between a container and a storage

• Communication – between a container and network providers

The horizontal layer uses the SLA of kinds

• Service – between components and web services

• Container – between containers

• Networking – between network providers

SLang targets different scales of values in term of (i) values used in different
layers of an application and (ii) values used among applications in which each
domain covers different scales of values. The domain dependency of values is
important to cope with. Although SLang allows to bind properties to a concrete
feature in which properties are valid, the work [24] does not state the mapping
of values each other. Since concrete feature contains its values the matching
would be performed with incompatible values and for that reason they should be
re-mapped or somehow consolidated. Despite of it, this challenge is not deeper
developed in the work.

TADL

An Architecture Description Language for Trustworthy Component-Based Sys-
tems (abbreviated as TADL) [26] is a specialised language describing the whole
architecture of a system. TADL is a language specialised for trustworthy system
and explicitly concerns extra-functional properties as a part of an architecture of
systems. It specifically targets structural, functional and extra-functional prop-
erties to define a system’s architecture.

In addition to structural and functional characteristics of the system, TADL
defines safety and security representing extra-functional properties. The detailed
specification of an architecture is denoted by explicit specification of services,
data parameters, contracts and architectures at the interface level.

The services are provided via interfaces which is typical for other approaches
but it, in addition, explicitly defines data parameters expressing a data coming
through services. The benefit of an explicit definition of data is a possibility of
guarding a validity of values. It is used for increasing the security of the system
and also allows the system to react to specific values.
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Services may include constraints that are invariants defined as first-order pred-
icate logic. Specifically, the safety contract is reached by a different kind of
services:

1. Regulating service: enables real-time schedulability. The response of a com-
ponent is regulated by time constraints. Time constraints guard the time
consumed by the execution of the service and do not allow to exceed a set
value.

2. Restricting service: all data coming through services are restricted by data
constraints, which decide a request that should be sent.

3. Filtering service: a response is filtered according to the security rules. A
request is maintained by a component’s service or a response is provided
by a component’s service only if the user has the right access privileges.

TADL deals with extra-functional properties at a design time of an application.
The considerable drawback is that the set of supported extra-functional properties
is very limited. It defines only two types of EFPs: security and safety. In addi-
tion, it is a question whether security belongs to functional or extra-functional
characteristics.

3.1.2 General Languages

This section provides an overview of approaches that aim at providing a general
mechanisms dealing with extra-functional properties. They are typically lan-
guages expressing EFPs as stand-alone notations that may be used by various
systems.

NoFun

The NoFun [17] language is a representative of structured extra-functional prop-
erty definition approach, stemming from the component field but applicable to
general software systems. The authors of NoFun have identified three concepts
of extra-functionality: Non-functional attribute, Non-functional behaviour and
Non-functional requirement. The meaning is as follows.

Non-functional Attributes These are attributes of any kind which can be
used to describe or measure a software system. Every attribute belongs to a data
type which determines the set of valid operations and values. The available data
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types are standard types such as Boolean, Integer, Real, String, plus structured
types Enumeration and Mapping.

The values stored in an enumerated type can be ordered and some additional
operations are available (<, >. <=, >=, max and min).

Attributes may be basic or derived. Derived attributes are derived from basic
ones. Basic attributes belong to the data type which defines them. Derived
attributes are computed by the equation 3.1:

Ci ⇒ P = Ei (3.1)

The value P is a derived attribute which is equal to an expression Ei if the
boolean condition Ci is true. Ei yields a value in a P ’s domain.

This example shows the computation (matching the equation 3.1) of the derived
attribute reliability depending on two simple attributes: error recovery and fully
portable (The example has been copied from [17]):

not error_recovery and not fully_portable => reliability = none

error_recovery and not fully portable => reliability = low

...

Every attribute may be bound to the whole component or only to an individual
operation. An attribute may be also the derived one in the meaning that this
attribute is composed of basic attributes bound to all operations of the compo-
nent.

Non-functional Behaviour NoFun separates the definition of extra-
functional attributes from their application on a particular component. This is
allowed by the behaviour specification in which particular attributes are bound
to a component.

This way separates the definition of extra-functional attributes from the demand
of the concrete component described by the behaviour specification. In addition,
it allows reusing definitions of non-functional attributes for other components.

This example shows a definition of the behaviour specification (copied from [17]):

behaviour module for IMPL_LIBRARY

behaviour

time(list_all_members) = n_members

time(check_out) = log(n_books)

end

Note that the exact meaning of the lines of the example shown above is not clearly
explained in [17]. List all members and check out are operations and n members
and n books are any measurable units. N members holds the number of members
and n book holds the number of books.
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Non-functional Requirements These are used in the situation in which com-
ponents are assembled. If the component has the behaviour specification and
needs any other component to work together, the component must specify which
behaviour it demands from the behaviour specification of the other component.
These demands are specified by non-functional requirements. In essence, non-
functional requirements say which EFPs are demanded on the required side of a
component.

NoFun provides ideas of which information should an EFP contains. It is a
good base for developing other more sophisticated solutions. Although NoFun
provides a description of assignment of EFPs to components as well as expressing
a demands among other components, it is barely explained in [17]. They uses
operators and functions in the notation that are not briefly defined and hence a
semantic and the complete set of allowed operators and functions remain unclear.

QML

A language called QML [18] is specialised for all systems that comply with an
object-oriented approach. It attaches QoS specifications to interfaces and it is
designed to conform with objects, interface and inheritance features of object-
oriented programming.

QML aims at fulfilling these goals:

• A specification of QoS is separated from the code of an existing system

• It allows to specify provided and required QoS properties

• It provides mechanisms to determine whether the client needs for QoS are
fulfilled

• It supports a refinement of QoS, because object-oriented approach uses
inheritance and inherited objects may need to work with modified QoS.
QML allows to inherit and modify QoS properties of inherited objects.

The main building blocks of QML consist of

Contracts and Contracts Types A contract contains a list of constraints.
Each constraint is associated with a dimension selected from a set of enum,
numeric, set. A constraint is a tuple consisting of a name, an operator and a
value (e.g. memory < 100). A name is typically the name of a dimension.

Aspects Aspects are used to characterise measured values over a time period.
The predefined aspects are: percentile, mean, variance, frequency.
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Definitions of Contracts and Congrats Types It binds a name to the value
of a contract or a contract type.

Profiles A profile holds the QoS properties for services. The profile is specified
for an interface and the interface may assign more profiles for different implemen-
tations. A profile is used for expressing provided and required QoS the properties
of the interface.

Definitions of Profiles It is used for assigning a profile to a service and gives
the profile a name.

Conformance QML defines conformance for profiles, congrats and constraints.
A general rule is that a stronger rule conforms to a weaker rule. A target is to
find a service witch suites a client rather than exact match. To achieve this goal
QML uses an ordering of set, increasing or decreasing ordering of numbers etc.

QML binds profiles to interfaces statically. In addition QML allows to define
QoS-aware object which may use statically defined QoS, but may also define QoS
dynamical. The dynamic creation of QoS is achieved by QRR (QML-based QoS
Fabric) which creates QoS properties at runtime while QML does it the same
way statically.

QML is a comprehensive language covering creation of EFPs and attaching them
to objects that are typically components. They provide a run-time mechanism
of constructing EFPs. Although they target different run-time environment by
defining different profiles for each environment, the profiles must be manually
re-attached. The QRR seems to be able to dynamically attach EFPs for an
individual environment, but they do no describe a mechanism configuring objects
automatically for different environment.

Ontology

In the field of Service Oriented Architectures where quality of service (QoS) and
Service Level Agreement (SLA) are an important issue the community aims at
providing different kinds of ontologies that captures EFPs. Ontologies allow to
express EFPs with respects to theirs semantics and relations each other.

For instance, [39] extends the Web Service Modeling Ontology (WSMO)1 to bet-
ter support EFPs and propose a service comparison method using quality char-
acteristics.

1http://www.wsmo.org/
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Another work, [19] developed a reasoning framework in which a user query is
evaluated by a selected engine. The user first inputs a query concerning QoS
and a scheduler selects the most suitable engine. The engine then evaluates the
query into a result. The result may possible be an empty set, the best offer, or
an ordered list of offers by an optimality criterion. The scheduler works with a
knowledge base which caches results to improve performance of the reasoner.

The constraint programming in combination with logic programming is used in
[20]. They use WSMO to express QoS. The WSM language (WSML) axioms are
used for defining EFPs. Each EFPs has attached a number expressing its impor-
tance – a weight of the property. A user may express EFPs in both terms: logical
programming rules and constraint programming. Both of them are separately
evaluated. The results are sorted and the most ranked service is selected.

Our work follows similar goals using more traditional means.

CQML

An approach proposed by Aagedal is the CQML [4] language. He has described
a complete syntax of an EFPs language and introduced a UML profile for quality
attributes. The CQML approach is a language usable for general description of
EFPs. The language defines basic data types: Number, Enum or Set. There is
no complex type (record) provided. CQML also provides derived properties, but
they are meant only to extend an existing simple property or to compose a derived
property from other ones without any further definition how this composition is
treated.

CQML defines few basic constructs concerning EFPs:

QoS Characteristics is a basic building block. One QoS characteristics rep-
resents one EFP. It contains a unique name and a data type of the property.
Depending on the data type, it may contain additional information such as a re-
strictive interval for values, ordering of enums, measuring unit, etc. Additionally,
it may define invariants for values of the property. Values are passed through as
input parameters. However, it is not stated how one can define an input parame-
ter of a property when the property is defined independently of a targeted system.
Consequently, an input value may not exist in the time the QoS characteristic is
being developed.

QoS Statement assigns constraints to QoS characteristics. A constraint is
expressed using logical rules. There may be also added other modifiers e.g. best-
effort, compulsory, threshold to complement the constraint. Each statement is
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enhanced by the name and encapsulates a set of constraints for a set of QoS. A
set of QoS with their constraints is then refereed by this name.

QoS Profile is used for aggregating a set of QoS statements into one record
with a unique name. A component links a profile to attach the QoS that the
component works with. QoS profile defines with QoS statements are used or
provided by the component. The benefit of this solution is that the profile may
be re-used by other components and the underlying definitions of EFPs may not
be repeated. On the other hand a need for the same EFPs and their constraints
by more components seems to be rare, and a separate profile must be defined for
each components even if one EFP or its constraint differs.

CQML assigns a profile to a component. The profile contains a set of qualities
with a set of QoS properties. The quality allows to encapsulate context dependent
values, but assuming we have c contexts and n QoS properties it may produce up
to 2n quality records and 22n different profiles. In addition, each profile must be
created for c contexts. This may lead to a hardly manageable number of records.

CQML+

Components are designed to use or serve to other components. For that reason,
the typical relation in a component world is the relation to other components.
However resources available in different environments indeed influence compo-
nents running in and thus the relation to the environment may not be avoided.

The CQML mentioned before has been extended by other authors. An extending
language proposed by Röttger and Zschaler is called CQML+ [34]. They aim
at an explicit definition of resources needed by components. They consider not
only demands between components but also demands between a component and
a system (framework or hardware) called as resources. Their work allows an
explicit expression of relations to the deployment environment.

As an addition to CQML, they propose a meta-model including an abstract Re-
source class. The class may be instantiated by concrete resources such as memory,
cpu, network etc. This allows a user to define an infinite set of different resources,
but CQML+ lacks of describing a mechanism of evaluation these resources. This
is evidently a drawback, because different resources must be treated differently
and one generalised mechanism would be interesting.

Another extension to CQML, they introduced, is a definition of a tuple that
allows to associate more resources in a one. The semantics is that all resources
in the tuple must be available concurrently.

To conclude, CQML+ extends syntax of original CQML rather than providing
a more generalised mechanism of expressing the resources between components
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and environment.

Deployment Contracts

Deployment Contracts [23] presented by V. Ukis are focused on detecting possible
conflicts among components or a component and its execution environment. It
targets the same issue as CQML+ does.

Deployment Contracts (DCs) defines a comprehensive set of meta-data describ-
ing (i) environmental dependencies of components and (ii) components threading
models. The description of (i) consists of specification which resources a com-
ponent requires and how it accesses them (e.g. read-write exclusive access or
read-only shared access to a file). The description of (ii) includes various aspects
of a component regarding threading issues and concurrency (e.g. whether a com-
ponent spawns a thread, or whether a component assumes to be executed in a
single thread). These meta-data have the form of parametrised attributes that
can be attached to a component, a components method, a methods parameter
or a return value. In the prototype of DC, meta-data are implemented as .NET
annotations.

Components’ DC is checked against the specification of the execution environ-
ment in component deployment phase in order to prevent possible run-time con-
flicts.

DCs is defined only in terms of annotations for .NET but no formal definition of
DCs is specified. They also provides an implementation of about 100 different
deployment contracts specified in [25] with an algorithm of evaluating them in
[25]. The algorithm, however, branches to evaluate every case of implemented DC
rather than generalising in a simple sequence of steps. The algorithm itself focuses
on the conflict prevention rather than selecting the most suitable component
candidate as in our case. DC might be considered as EFPs of a certain kind
and for that reason we aim at using DC attributes in our work, but we create a
general formalism for them which is consistent with EFPs.

3.2 Frameworks Support for Extra-functional

Properties

Although the previous section introduced a lot of approaches expressing EFPs,
the main weakness of the introduced languages is theirs lack of relevance to the
components. The expressiveness of the languages provides the comprehensive
ability to define EFPs separately of the (component) system, however, it does
not addresses how component systems should treat these EFPs
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This section shows component models that works with extra-functional properties
in a certain degree. So far none of the frameworks acquire any presented EFP
language and instead define EFPs using their own means.

3.2.1 Palladio

Palladio [10] targets whole development process in component-based develop-
ment. It includes roles of a component developer, a system architect, a system
deplorer and a domain expert. A system in Palladio is modelled by a set of
models where each model covers the different role.

The different role is distributed in terms of EFPs: (i) a component developer
implements a component and attaches a parametric properties of behaviour, (ii)
a software architect estimates components EFPs from a component specification,
(iii) a system developer models the resource environment to allocate different
resources for components in different environment, (iv) a domain expert provides
a usage model describing critical as well as typical parameters of the system.

The detailed scenario of the development process looks like: A component devel-
oper annotate each provided service of a component (a method of one of provided
interfaces) with an additional specification called Resource Demanding Service
Effect Specification (RDSES). RDSES is in practise a modified UML activity di-
agram. Its use is to describe a simplified control flow of the service, it can express
the service’s dependencies on input arguments and resource demands on abstract
resource types stored in the global resource repository. RDSES describes the flow
only for parts called by or calling other components. This concept Palladio names
as gray-box. Simple components may be composed into hierarchical components
by a software architect.

In further phases of system development the resource types in RDSES are
parametrised by a resource model (the role of an system deployer), which binds
the abstract resource types to concrete service’s resource demands in a target
resource container.

A domain expert role is to define system usage, a workload or a behaviour of
the system. A usage model is used for describing service’s usage scenarios and
anticipated workload. In the end, all models composed together can be used for
component’s and system performance prediction.

Palladio focuses only on performance-related EFPs for whose specification it pro-
vides a rich palette of models. Specifically, EFPs’ values defined as random vari-
ables and taking usage profiles into account are strong concepts. On the other
hand, the necessity to create a number of detailed models imposes a significant
burden on system and component developers. Moreover, resource platform spec-
ification in the form of a resource model has to be created for each system from
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scratch since the resource repository contains only resource types, not particular
instances with performance characteristics.

3.2.2 Robocop

The ROBOCOP model [28, 11] uses multi-layered components which contain
specifications, models, and executable code within the component distribution
package. The approach allows performance analysis by combining static analysis
and simulation on the executable system model provided by the development
framework and the execution framework.

Development framework defines aspects of the development trading and down-
loading of components. The developed components are generic in the sense they
must be tailored to fit in a concrete environment. Execution framework defines
the middle-ware layer of single devices.

A component in Robocop consists of a set of models including a resource model,
a simulation model, an executable model. Extra-functional properties are con-
tained in the Resource model. ROBOCOP components can specify only processor
or memory utilization on operations, with best, mean and worst cases distin-
guished. This is a limited extent typical for the domain, however, combined
with the performance model of hardware blocks it allows the above mentioned
analyses.

To sum up, the ROBOCOP component model provides a comprehensive support
in the field of specialised embedded devices demanding mostly system resources.

3.2.3 ProCom

An approach to integrate EFPs in component models using structured attributes
is presented in [35] and implemented in the ProCom component model. Pro-
Com’s attributes comprise multiple values, each of which is further composed of
data, meta-data and validity conditions parts. The data part contains the actual
value of a measured EFP of the type specified in the attribute definition in the
Attribute Type Registry. The meta-data part is used for distinguishing a partic-
ular attribute value and for its description (e.g. the source of a value, a degree
of importance). Validity conditions specify in which contexts an attribute value
is valid in terms of platform, usage profile or inter-attribute dependencies. The
attributes are stored in a general repository that aims at avoiding duplicity of
attributes and providing a unified storage.

The proposed structure of attributes can lead to complex EFP descriptions that
are hard to manage without extensive tool support. The authors try to address
these problems by introducing a language for defining which values are valid
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based on the current configuration (so-called configuration filters). However, this
makes the whole system even more complicated.

Furthermore, while ProCom attributes are meant to be used during the whole
system life cycle, which motivated introducing multi-valued attributes, we are
interested in describing EFPs of the final black-box components. The most inter-
esting idea in ProCom is the usage of registries storing EFPs. The main reason
for introducing registries is to gather attribute types.

3.2.4 Enterprise Java Bean

This part discusses the type of support for extra-functional specifications that
can be expected from an enterprise component framework. It is intuitively clear
that the needs in this area are different from those in embedded and real-time
domains. The emphasis in this class of systems is on “horizontal” aspects such
as security and (transparent) distribution.

In particular, the Enterprise JavaBeans [37] component model is one of the
strongest industrial frameworks, used in the application and data layers of en-
terprise applications. Despite its focus on the functionality of these applications,
the model works with several properties that can be classified as extra-functional:

• Locality – a global property of a component is whether its operations can
be accessed remotely or only by clients local in the same container.

• State – a session bean (which clients use to invoke functionality in a syn-
chronous manner) can be either stateless or stateful, with consequences for
the client’s view of the operations behaviour and for bean pooling in the
container.

• Transaction demarcation – for a bean’s operation, it defines the level of
transaction support expected, ranging from never to required and manda-
tory in which the client must provide a transaction context for the opera-
tion. This holds for a container-managed demarcation, the other option is
that the bean handles transaction contexts internally.

• Security – involves the definition of client roles and their access to bean’s
operation; plus a bean can be designated to run under a different identity
than that of the original request.

The technology uses a combination of XML-based specification of the EFPs
(in the bean’s deployment descriptor) and annotation-based specification in the
bean’s source code. There is no formal model that would underpin the property
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specifications, and the values can be seen as being of boolean or enum types
(when abstracted of the form in which they are specified).

Enforcement of the properties is done partly by design of the EJB application,
partly on the part of the container (both as implementation artefacts it generates
and run-time checks it uses).

3.3 Summary of EFPs Languages and Frame-

works

Figure 3.1 summarises our survey of the state-of-the-art. A desired approach
should (i) allow general definition of EFPs, (ii) deal with context and domain
dependency of components (iii) be easy to use, and (iv) allow to express a de-
pendency both on other components and on the environment. The table shows
how current works fulfil our needs and which requirements are missing.

Framework General Context Independent Easy-to-Use DC
NoFun

√ √

CQML
√ √

CQML+
√ √ √

Ukis’s DC
√ √

TADL
√

HQML
√

SLang
√

Palladio
√

?
√

Robocop ?
√

ProCom
√ √

EJB
√

Figure 3.1: Important attributes of existing approaches

3.4 Modeling of Extra-functional Properties

An important aspect of the development is a support of modeling. Current
applications are often modelled before they are developed. It allows a better
understanding of the system, its parts and their connections. Inspired by the
classical modeling means, a lot of work aims at modeling of EFPs.

Whereas UML [32] has been acquired as a widely used modeling notation, other
works introduced the modeling based on UML. UML provides the rich palette of
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UML diagrams, but a class diagram is most often used. It leads others to prepare
diagrams based on UML’s class diagram. the UML concept of stereotypes allows
to extend the basic elements of UML to support EFPs.

3.4.1 UML Profile for CQML

Aagedal introduced [4], together with CQML, a UML profile covering the ex-
pressiveness of CQML. He defines a set of stereotypes that correspond to CQML
keywords (including QoSStatement, QoSCharacteristics, QoSProfile, QoSQual-
ity). The introduction of these stereotypes allows to model EFPs the same way
as they are written in the CQML’s language. Hence, the CQML’s profile is
coupled with CQML.

3.4.2 UML Profile for NoFun

Another work has been presented by Guadalupe Salazar-Zárate and Pere Botella
[12]. They introduced UML profile coupled with NoFun. The stereotypes they
defined cover NoFun concepts.

They first defines a stereotype NF-attribute for non-functionality. In other words,
a NF-attribute is an EFP. NF-attributes model simple properties as well as derived
properties. When a derived property is modelled, the stereotype import is used
for importing an aggregation of other properties to this derived one. Another
stereotype, OCL-expression, defines rules deriving the derived properly. They
second define stereotypes NF-Requirements and NF-behavior with an obvious
meaning in terms of NoFun concepts. Furthermore a set of EFPs expressed in a
NF-behavior is attached to a class labelled by the stereotype ImplementationClass
and the connection is labelled by the stereotype has behavior.

3.4.3 Marte UML Profile

UML Profile for MARTE (The Modeling and Analysis of Real-Time and Em-
bedded systems) [31] has been introduced by the QMG group and has already
became a standard. It has been develop to replace an older profile – the UML
profile for Schedulability, Performance and Time – also issued by the OMG group.

The profile serves for model-based development of real-time and embedded sys-
tems. It consists of a lot of extensions of UML covering real-time and embedded
(RTE) applications. A considerable amount of the extensions are targeted at
non-functional aspects of RTE. Non-functional aspects are classified to qualita-
tive and quantitative ones. The aspects may be available at different levels of
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abstraction. Finally, these aspects provide modeling or analysis support or they
may provide both.

Hence, MARTE is organised as a hierarchy of profiles and subprofiles. The fun-
damental profiles comprise :

• Non-functional properties – it provides constructs for declaring, qualify-
ing, and applying non-functional aspects. Each EFP is modelled as a UML
data type. For the definition of EFP values, the Value Specific Language
(VSL) has been proposed. VSL also defines potential functional relations
of EFPs.

• Time – it allows the definition of time and it also deals with a time repre-
sentation in applications.

• Resources – it deals with resources the applications demand from the
system.

• Allocation Modeling – it is used for allocating of functionality to respon-
sible entities

These fundamental profiles are then used for model-based design and model-based
analysis.

Model-based design proceeds mostly in a declarative way. It means that the
users of MARTE annotate their models with RTE properties. They use the High-
level Application Modeling sub-profile. Note that component-based systems are
explicitly supported by the Generic Component Model profile.

Model-based analysis is allowed mainly by Quantitative Analysis Modeling or by
its two refinements (SAM or PAM ) used for schedulability and performance anal-
ysis respectively. The annotation mechanism uses the UML stereotypes where
the UML elements modeling an application correspond to the analysing domain.

In contrary to previously mentioned UML profiles, the MARTE profile is more
general. The previous UML profiles express the notation of underlying languages
while MARTE is not coupled with a concrete language. Still, MARTE is not
general and it is targeted particularly to the domain of real-time systems.

3.4.4 OMG’s Quality of Service Profile

Another work, proposed also by the OMG group, aims at providing a general
model for QoS. UML Profile for Modeling Quality of Service and Fault Tolerance
[30] provides the ability to model EFPs by the means of UML. This profile in-
troduces new stereotypes that covers elements of extra-functionality and theirs
relations.
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The profile consists of several main building blocks.

QoSCharacteristics represents quantifiable characteristic of a service. It is ba-
sically an extra-functional property. The QosCharacteristics may first have a
set of parameters (QoSParameter). Each characteristic second has a dimension
(QoSDimension) that stores: a data type, ordering of the values, measuring unit
and so called statistical qualifier. The statistical qualifiers are: min, max, range,
mean, variance, standard deviation, percentile, frequency, moment, and distribu-
tion. A characteristic may furthermore be assigned to a category (QoSCategory).
The categories are used for dividing properties to groups. Each QoS characteris-
tic is inherited from a context (QoSContext) informing in which context the QoS
characteristic is valid.

Each QoSDimension has assigned a value (QoSValue) through a dimension slot
(QoSDimensionSlot). In addition, each value has assigned a constraint that
evaluate its validity.

QoSConstraint defines constraints of the QoSCharacteristics. It limits values
allowed for application requirements. There are other classes inherited from
QoSConstraint : QoSRequired, QoSOffered and QoSConcrat. Theirs usage is re-
spectively for what application services require, what they offer and finally the
agreement between all constraints.

QoSLevel is used in situations where an application provides a variety of extra-
functional properties. For instance, an application may provide different algo-
rithms or configuration that lead to different properties. For that reason a set of
QoSConstraint is bound to a set of QoSLevel allowing to switch from one level to
another one. This mechanism is furthermore supported by QoSTransition that
holds transitions between layers.

3.4.5 Component Quality Model

In a case we would be able to describe EFPs using any presented language or
model EFPs using any presented profile, the question remaining open is which
properties to define. Since the general consensus still does not exist, the works
[6, 7] categorise component quality characteristics which can be used as EFPs.

The authors follow the standard terminology defined by ISO/IEC 9126 [2], but
they made a few modifications to better fit component-based development. The
resulting Component Quality Model (CQM) is composed of:

1. Functionality: the ability to provide the required service

2. Reliability: the ability to maintain the specific level of performance
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3. Usability: the ability to be understood, learned, used, configured and exe-
cuted

4. Efficiency: the ability to provide appropriate performance, relative to
amount of resources

5. Maintainability: the ability to be modified

6. Portability: the ability to be transformed across environment

7. Marketability: the marketing characteristics

The characteristics mentioned above are then split into more detailed sub-
characteristics. Additionally, the characteristics are distinguished as either run-
time or life-cycle ones.

According to [2], an attribute is a measurable (physical or abstract) property
and as such every attribute needs to define a metric. The metric defines both the
measurement method and the scale. The CQM uses following metrics:

1. Presence to indicate whether an attribute is present, if so, the string value
contains information how the attribute is implemented.

2. IValues to indicate exact values. It is described by an integer variable and
a string indicating the unit.

3. Ratio shows percentages measured from 0 to 100 by an integer variable.

In addition to CQM characteristics, the authors have defined additional informa-
tion linked to a particular component. These additional information are: Techni-
cal information (Component version, Programming language, Patterns, Lines of
code and Technical support) and Organisation information (CMMI level and Or-
ganisation’s reputation). Technical information is important for developers while
organisation information is important for customers. The authors suppose those
information to be provided by the component vendor, usually as string values.

3.5 Evaluation of Extra-functional Properties

Although previous sections have presented a rich support of the definition and
modeling of EFPs, it still lacks evaluation of EFPs. The previous works mostly
treat EFPs as standalone definitions. The purpose of this section is to overview
other works that take evaluation of EFPs into account.
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3.5.1 QoS Negotiation

Generally, a process when an appropriate component or service is selected at
run-time based on its QoS (EFPs), is called QoS (EFPs) negotiation.

Mesfin Mulugeta and Alexander Schill introduce in their work [27] a QoS ne-
gotiation framework that defines EFPs using CQML+. The main architectural
block of the framework is Negotiator. In order to select a service, the Negotiator
needs a reference to: (i) QoS specifications of all cooperating components, (ii)
users QoS requirements and preferences, (iii) available resources, (iv) network
and container properties, and (v) policy constraints.

To achieve these needs, the framework contains other architectural blocks. QoS
for all components are stored in profiles implemented as CQML+’s QoSProfile.
Network channels expressing a communication between components are explicitly
modelled by Connectors. It provides Negotiator with information about QoS of
communication links that may also have an impact to the services selection.
Furthermore, the framework allows to model Resources where any change in a
resource may trigger re-negotiation. User requirements are expressed in user
profile. The user profile is constructed by the run-time system after obtaining
the user’s requests for the service.

When QoSProfiles and a user profile are established, Negotiator may find an
appropriate service. The task is to find an appropriate service and select the
best one in case there is more suitable services. Negotiator relies on Constraint
Satisfaction Optimization Problem (CSOP). A CSOP comprise a variables, con-
straints and objective functions. The task in CSOP is to assign a value to each
variable to satisfy all constraints. All suitable results are first mapped to the
ordered set of numbers expressing the weight of the result. The most suitable
service is then selected among the mapped number.

When a selection of an appropriate service is finished, Contract is established.
Concract holds mainly information about the selected client profile, the server-
side profile and the user profile.

The presented framework introduced a complete mechanism of QoS negotiation.
Unfortunately, the mechanism suits only service-oriented architecture. Although
authors speak about components in their work, they probably thought only
about server-side components. The profiles assigned to services contains con-
crete (context-dependent) values that may work only when a provider of the
services has a full control of the run-time environment. When the components
are hidden on the server, the context-dependent values may be guaranteed. The
most common case, independently deployable components, does not allow such
guaranties.
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3.5.2 QoS Dependency

The work [40] introduced a preliminary approach to model EFPs by functions
that are evaluated at run-time. The mechanism allows to compute concrete values
of EFPs from input parameters. For instance, they proposed an example based
on the CQML language in which the input parametr determines resulting value:

profile response_times for ImageStreamEncoder {

qos_dependency

response_time (encodedImages.getNextImage) =

response_time (unencodedImages.getNextImage) + 5;

}

In addition, they noticed a weakness of this solution that is the concrete value
“5”. As a solution they suggested an improvement that uses intervals instead of
concrete numbers. The improved example looks like:

profile response_times for ImageStreamEncoder {

qos_dependency

response_time (encodedImages.getNextImage) =

response_time (unencodedImages.getNextImage) + [5,10];

}

The second example shows an important aspect. When we define EFPs, we often
prefer approximated values rather than concrete numbers. For instance, when a
system requires a service with a response time equal to 5ms, it would probably
accept also a response time equal to 6ms. This rationale leads to an idea of
defining intervals, or – in other worlds – limiting values.

Another work presented in [15] introduced functions covering dependency of
EFPs. The functions express the influence of the provided properties by the
properties on the required side. Together with these functions they provided
a meta-model called QoSCL that allows to specify: the intrinsic qualities of a
service, the required or provided quality levels of a service, the extra-functional
dependency of a provided services quality on a set of qualities defined on required
services.

The QoSCL allows to express three kinds of relations: numerical constrains,
mathematical functions, or empirical rules. From our point of view, we see
the main benefit in mathematical functions. These functions determine the
resulting provided property depending on required properties, for instance:
memory consumptionprov =

∑N
i=Omemory consumptionreqi + 10. A consider-

able weakness of such solution is that each function has to be defined for each
component. We would like to add template or generic predefined functions that
would users take and fill in the body relevant to each component.
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3.5.3 Treatment of EFPs from Design to Run-time

The work [5] overviews EFPs from the earliest phase when components are being
developed to run-time when EFPs of the components are evaluated. At design-
time they first proposed to use CQML+ to define EFPs. When the defined
EFPs will be evaluated at run-time, they then introduced the transformation of
CQML+ notation into the XML notation. Furthermore the XML notation is
used by a container to evaluate EFPs. The work [5], however, does not detail
this evaluation and provides only an example with response time instead. Un-
fortunately the provided example does not show how it could be generalised to a
general evaluation mechanism.
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Concept of the Thesis

The overall goal of this work is to propose an improvement of component-based
programming. It targets extra-functional properties and the goal is to contribute
to current research in the field of improved definitions and evaluations of extra-
functional properties especially for components.

The survey of the state-of-the-art has shown that a lot of approaches defined
how an extra-functional property should look like. A structure of an EFP has
been typically presented by means of specialised languages such as QML, CQML,
HQML. Other approaches instead addressed the relevance and the evaluation of
EFPs in terms of the whole component application. We may name component
models such as Palladio, Robocop, ProCom, etc. that take EFPs into account as
part of the model.

In our work, the rationale behind taking EFPs into account is to improve compat-
ibly checks of components. On one hand the component system behaviour may
be evaluated upon comprehensive models that is the case in Palladio. On the
other hand component verifications may rely only on a type-based conformance
[9, 14]. The type-based conformance covers conformance of interfaces.

Main obstacle of the evaluation of the behaviour based on models is the compu-
tational complexity – the state space explosion problem. In addition, we see the
need of creation of a lot of parametrised models too difficult for common users.
In opposite, the type-based evaluation has relatively low resource needs [9]. We
also think that it is more user friendly to work only with information provided by
component interfaces. In addition, the mechanism of providing and evaluating
only interfaces supports black-box nature of components that we want to follow.

On the other hand a problem of languages we have studied is that they often treat
EFPs independently of each other. Despite of it, EFPs are typically influenced
by EFPs connected through other components.

The mentioned reasons lead us to follow the type-based approach. The type-
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based approach matches two components as compatible ones if interfaces are of
the same types or sub-types. In our view, the compatibility of interfaces includes
(i) the compatibility of method signatures: service names, input and output
parameters and (ii) the compatibility of extra-functional properties attached to
the interfaces. The compatibility of interfaces in terms of method signatures
has been addressed in [9] or [14]. The goal of this work is to supply methods
for the EFPs on interfaces which has so far be neglected. In addition, we aim
at providing a mechanism of composing EFPs in chains of components. The
mechanism should be capable of expressing the influence of EFPs each other at a
sufficient level and consume lower resources in a comparison to behaviour based
models.

The approach leads to a proposed algorithm comparing a compatibility of com-
ponent interfaces is useful in two situations. Firstly, it helps to test component
assemblies when the system developer composes components in a test environ-
ment.. Secondly, it may guard a component assembly when the system runs –
typically when the system is started or components are changed at runtime.

4.1 Extra-functional Properties

We aim at enriching interfaces by extra-functional properties and for that reason
we have analysed existing extra-functional languages. The research of existing
languages has shown a rich base of notations allowing to attach EFPs to inter-
faces. It has consequently shown that there is no reason to prepare yet another
language. As a result we have created a structure of our EFPs combining existing
languages.

We have first identified that an extra-functional property should consist of: a
name and a data type. We have second added a comparing function and a block
of additional meta-information. The name and the date types of EFPs have been
inspired by existing languages (mainly CQML). We furthermore distinguish be-
tween simple and derived properties used also in NoFun. We have finally defined
a special king of EFPs – called deployment contract. They express properties
that a component has upon the environment the component run in.

More formally, we define:

esimple
def = (n, γ, t,META) (4.1)

ederiveddef = (n,E, γ, t,META) (4.2)

edeployment contract ≡ esimple ∨ edeployment contract ≡ ederived (4.3)

where the meaning of the formula is:
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n is the name of a property

t ∈ T = Tc ∪ Ts is the type of a property

Ts is a set of simple types. Ts =
{real, integer, boolean, enum, set, ratio, string}

Tc = {(t1, · · · , tN)|N > 1, t ∈ T} is a set of complex types containing a non
primitive value. It aggregates other (simple or complex) types. The
essence is similar to struct in the C language or record in Pascal

γ : x × y → z; z ∈ {−1, 0, 1, “n/d”} is a function which compares two instances
x, y of the property type t, stating which of the two values is better. We
work with several predefined gamma functions such as Increasing (more is
better), Decreasing (less is better), and assume the possibility to define new
ones. The meaning of the return values is:

Value Meaning
-1 x is worse than y
0 x is equal to y

+1 x is better than y
“n/d” not-defined.

The function may not be explicitly defined and then the following implicit
rules hold: (i) real, integer, ratio use mappings -1: x < y, 0: x = y, +1:
x > y, (ii) string uses mappings 0: x literally equal to y else “n/d”, (iii)
boolean uses mappings 0: x = y else “n/d”, (iv) set, enum and complex
use previous rules for each element and the result is “n/d” unless each
evaluation holds the same value. When an explicit rule does not exist and
comparison can not be determined by the implicit rule, the value “n/d” is
resulted.

E = {e1, · · · , eN} are properties composing a derived property

META is a record containing any additional information refered by the domain.
Its elements are described by an extensible model which currently contains
the items unit, names, where

unit : String – is a measuring unit of the property

names is an ordered enumeration containing every name for the values of
this property allowed to be used in local registries

Note that all META values are optional and to be used only when they are
needed and meaningful in the domain.
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4.2 Context of Usage

The approaches we have studied, so far, rarely address context dependency of
EFPs. It is obvious that components are deployed in different contexts of usage.
Although the function of components must stay unchanged in all contexts, EFPs
often vary in different contexts. The nature of components disallow to attach
properties with exact numbers to the interfaces. Whereas a component will run
in different environments, direct numbers mostly have no sense. For instance,
memory consumption of 20MB would be considered small on a desktop com-
puter while it would be considered high on a portable electronic device. Other
properties such as performance will probably change in different environments1.
For that reason we propose to introduce abstract names that encapsulate real
numbers valid in contexts.

Furthermore, users often do not rely on exact values of EFPs. For instance, one
does not have to know how much memory the component needs, he only needs to
know an interval in which the memory consumption is limited. For instance, it is
difficult to state that a component will always need 20MB of memory. Moreover
such information is often needlessly exact. Users may want to know that the
memory consumption will not exceed the interval from 10MB to 20MB. For that
reason, we suggest to divide continuous intervals of values into disjunctive sets
expressing typical scales of values.

Finally, when the mechanism comparing EFPs is desired, all vendors of the com-
ponents must use unified properties. The overall idea is that different vendors
provide components enriched by EFPs. Once a developer obtain a set of compo-
nents he or she needs to compare and bind them together with respects to their
EFPs compatibility. The properties may be comparable only when they have
the same meaning and the vendors use the same properties to express the same
aspects of extra-functionality. For that reason we suggest a common repository
of EFPs from which the vendors take unified EFPs.

4.3 Registry

The mentioned reasons lead us to propose common repositories of EFPs that:

1. store unified properties – the vendors then use comparable properties;

2. encapsulate context-dependent values for each context;

3. divide continuous values of intervals into disjunctive sets.

1There are, however, some exceptions concerning values that do not change among contexts.
It includes e.g. physical values such the gravity constant
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The common repository we name Registry and its core idea is shown in Figure 4.1.
The picture demonstrates two dimensions: one concerns context dependencies

Figure 4.1: A relation of registries and components in contexts and a domain

and the other one concerns a domain of usage. By a context we mean a different
computational environment (e.g. context of mobile phones, desktop machines,
servers) and a domain is an area which a final system is developed for (e.g.
systems for libraries, hospitals, schools, automotive industry).

All registries, components and computational environment are bordered by a
domain (an area of usage). Each context is also bound to the domain.

Global registry (GR) is a store with definitions of EFP from Section 4.1. GR only
defines the properties themselves but does not contain their values. The validity
of GR is for all contexts specified by the domain. It contains the definition of all
EFPs meaningful for a domain. The main reason for having GR is to provide all
vendors with the same meaning of the properties.

Local registry (LR) is concerned with a contextual meaning of EFPs. Each context
has one local registry which stores values valid for the context. The values are
linked to the definitions provided by the GR. Another usage of LR is that it
splits continuous values of properties to several disjunctive sets that are easier to
manage.

The mechanism used by LR creates symbolic names for values resulting in named
intervals. The EFPs themselves are usable in other contexts with different values,
because the value names can remain the same while the underlying values are
changed.

Note: The deployment contract shows a dependency of components on execution
environment or framework (e.g. a resource as a file in operating system, access
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to hardware, an execution of other processes/binaries). The system of registries
does not distinguish between extra-functional and deployment contract proper-
ties. They are defined equivalently and they are distinguished when they are used
on components.

4.3.1 Formalisation

In this section the formal model of regitries is presented.

Global registry is a simple list of definitions of properties.

GR = (loc, {ei}) (4.4)

where:

loc is the registry’s URI location which associates it with the domain

{ei} is a set of (simple or derived) extra-functional properties

The loc value is defined implicitly by the registry deployment location and does
not have to be provided explicitly.

Assume there exists a global registry GR. Then local registry for a context
contains records defining values valid in the context. In effect, this assigns a
semantics to the properties.

LR = (loc, locparent, locgr, S,D) (4.5)

where:

loc is the URI of registry associating it with the context

locparent is the URI of parent local registry. It allows to create a tree hierarchy
of local registries. The meaning is that registry inherits values from par-
ents. Similarly to object-oriented approach, the inherited values may be
overridden and modified or new items may be added.

locgr is a link to the global registry

S = {si} is a set defining context dependent values for simple properties

si = (name, value name, range) is a tuple of a property name, a value
name and the value’s range

name : String is a name of a property from GR
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value name : String is an assigned name of the value which must be se-
lected from the list of available names given in the META :: names
part of the definition of the property in GR

range is an interval, a set or a value ∈ T which defines a restriction on
available values

D = {di : {ri1, · · · , riK}} is a set of derived property definitions, where each
derived property di is governed by rij rules

di = (name); a derived property name from GR

rij : F ⇒ x;x = value name or x = value ∈ T enum is a resulting name or
an enum value which is valid when the logical expression F is evaluated
to true

The local registry contains both the assignment of values to the names (the set
S) and the rules expressing the derivation of derived properties (the set D).

The elements of the set S simply associate values to simple properties through
names. The elements of the set D associate also names but do so using logical
rules which express the definition of a derived property.

4.4 Property Comparison

When two components are compared whether they are compatible – whether one
may replace the other one – the EFPs attached to interfaces are compared.

Two components C1 and C2 can be marked as compatible when (i) extra-
functional properties on the provided side guarantee at least the same level of
quality, (ii) extra-functional or deployment contract properties on the required
side declare the need for the same or a lower level of quality, (iii) properties with
the same names match. An algorithm for comparing components (usually two
versions of the same component or a component in different environments) works
in two steps. Firstly, it binds provided and required properties comparing their
names and then it checks whether no property is missing on the provided side
and no property has been added on the required side.

Secondly, a matching function is applied on all equivalent properties. Using a
sequence EC(C1, C2) = ((xi, yi)k), xi ∈ efp(C1), yi ∈ efp(C2) of equally named
properties from the two components, the function m : C × C → (zk), zk ∈
{−1, 0, 1, n/d} matches the components by evaluating the function γ(x, y) which
is defined by formulas 4.1 and 4.2 above.

The mechanism of the comparison function is:

m(C1, C2) : zk = γk(EC(C1, C2)k) (4.6)
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The algorithm is identical for both provided and required (deployment contract
or extra-functional) properties. The two components are compatible only if each
zprovk ∈ {0, 1} for provided properties and each zreqk ∈ {−1, 0} for required ones.

The same function m(C1, C2) also matches a provided side of one component to
a required side of another component and vice versa when interoperating com-
ponents are to be bound.

The DCs comparison requires the runtime environment to be enriched by prop-
erties on which the comparison is performed. Attaching of properties to envi-
ronment works essentially the same way as attaching to components. The envi-
ronment provides some properties which are compared on components required
deployment contracts.

This mechanism may be repeatedly evaluated on all interfaces of all components
and it evaluates whether a chain of components contains only components with
compatible interfaces (in terms of extra-functional properties).

4.5 Case Study

This section first shows how the presented mechanism may be used in practise.
This section then evaluates the mechanism and discuses current drawbacks that
will be addressed in the future.

4.5.1 Example

At this point, we would like to demonstrate the usage of the approach on an
example. Let us assume we have a component system from Figure 4.2. The com-

Figure 4.2: A triangle component in an assembly

ponent we will be investigating has a symbol with a triangle – the component is
under development and is called the triangle component. The component is used
for computing some operations with triangles. Let us assume that the interface
labelled as Hyp provides a computation for the well-known triangular formula:
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c =
√
a2 + b2. A developer may want to attach extra-functional properties to the

component.

The developer uses properties defined in registry. For instance, there is the defi-
nition of the property response time in global registry:

(GR)

response_time : decreasing integer {unit:‘‘ms’’, names: {low, average, high}}

The example shows a pseudo-code corresponding to the presented formalisation:
the extra-functional property is defined by the name, the data type, the compar-
ing function (decreasing) and the measuring unit in milliseconds. The continuous
interval of values is divided into disjunctive sets low, average, high.

The distribution of the (low, average, high) intervals, which is valid for a concrete
context of usage, is expressed in local registry (also a pseudo-code):

(LR)

# link to GR

URI: http://services.kiv.zcu.cz/triangle/extrafunc/v1/

response_time : high = (500; +INFINITY)

response_time : average = (100; 500]

response_time : low = (0; 100]

Obviously, the component computing the formula c =
√
a2 + b2 must call other

interfaces. The interface Sqr must be called twice to evaluate “x2”and the in-
terface Sqrt once to evaluate “

√
x”. Let us assume that the operation “+” is

performed inside the triangle component. The developer of the component may
evaluate that the response time on the interface Hyp will be:

response timeHyp = 2 · response timeSqr + response timeSqrt (4.7)

Response time on the interface Hyp may be also slowed by an inner computation
of the triangle component and the equation may look:

response timeHyp = 1.1 · (2 · response timeSqr + response timeSqrt) (4.8)

Where the constant 1.1 expresses the delay of the inner computation.

In any case, the developer of the component uses internally equations 4.7 or 4.8 to
estimate extra-functional demands and offers of the component. The developer
may e.g. compute the equation 4.7 resulting to: 2 · low+ low ≤ average (average
is for worse-case). It then results in the decision: if the component assumes “low”
response time on both required interfaces Sqr and Sqrt it may then guarantee
“average” (worse-case) response time on the provided interface Hyp.

The result estimated by the components developer may be then attached to the
component descriptor:
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# link to registry

ExtraFunc-Catalog: URI: http://services.kiv.zcu.cz/triangle/extrafunc/v1/

Provided-Services : cz.zcu.kiv.services.Hyp;

extrafunc=(response_time = average)

Required-Services : cz.zcu.kiv.services.Sqr; extrafunc=(response_time = low)

Required-Services : cz.zcu.kiv.services.Sqrt; extrafunc=(response_time = low)

This descriptor is distributed together with the component. Once the component
is to be used in a system, the comparing mechanism from Section 4.4 evaluates
whether the component may be used.

In this example, the distribution of intervals is low, average, high with decreas-
ing ordering. It means that low is better then average and average is better
then high. For that reason a matching mechanism would accept to bind the
triangle component only with different Sqr or Sqrt interfaces that provide also
low response time. Other intervals are worse and could not be accepted.

A different configuration that guarantee high output response time for average
input response time could look like:

Provided-Services : cz.zcu.kiv.services.Hyp;

extrafunc=(response_time = high)

Required-Services : cz.zcu.kiv.services.Sqr; extrafunc=(response_time = avarage)

Required-Services : cz.zcu.kiv.services.Sqrt; extrafunc=(response_time = avarage)

For this configuration, the matching algorithm would allow the triangle com-
ponent to be bound with Sqr and Sqrt interfaces providing low or average re-
sponse time.

4.5.2 Evaluation

Section 4.5.1 has shown a practical usage of the mechanism we have developed,
though the mechanism may be inflexible in some situations. The main draw-
back is that the mechanism treats components in isolation. It means that the
developer of the component may state the extra-functional condition in which
the component will guarantee extra-functional properties on the result. However
a developer of a final system often needs to know extra-functional properties of
the whole system rather than relying on each component. For instance, the com-
paring mechanism could reject a component because of an insufficient level of
EFPs, however, the component would work in the system and the EFPs level of
the whole system would be reached.

Let us assume a modified example from the previous section shown in Figure
4.3. The system contains a new mathematical component called Math. The
component has an interface Triang that contains mathematical operations for
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Figure 4.3: A math component in an assembly

triangles. The Triang interface is the only point where the user accesses the
system. A user of the system first calls the interface giving the edges a and b of
a right triangle in a time t1. The user then receives a perimeter of the triangle
in a time t2. Obviously, the missing edge c of the right triangle is evaluated from
the connected triangle component.

Evidently, the response time of the system is:

response timetriang = t2 − t1 (4.9)

While the Math component is connected with the triangle component, the re-
sponse time of the system is:

response timetriang ≈ response timeHyp. (4.10)

Let us assume we have registries and component descriptors from Section 4.5.1.
Let us also assume we have only components implementing interfaces Sqr and
Sqrt with response time equal to high:

Provided-Services : cz.zcu.kiv.services.Sqr; extrafunc=(response_time = high)

Provided-Services : cz.zcu.kiv.services.Sqrt; extrafunc=(response_time = high)

Whereas the computation of the Math component is not time-critical, the devel-
oper of the final system may decide that the response time may be high.

If we used only a mechanism from Section 4.5.1, it would be impossible to compose
the system. The triangle component could not be bound to available Sqr and
Sqrt interfaces, because they provide the high response time while the triangle
component require the low or average response time.

We may use the equation 4.7 from Section 4.5.1 and put the high interval as a
parameter:

response timeHyp = 2 · high+ high ≤ high (4.11)

The result of the equation informs that the usage of Sqr and Sqrt interfaces with
high response time results in the high response time on the Hyp interface. This
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result may be put to the equation 4.10 and the results is:

response timetriang ≈ response timeHyp ≤ high

⇒ response timetriang ≤ high (4.12)

The last equation 4.12 proves that the whole system will work and reach the user
expectations while the preliminary approach from Section 4.5.1 would reject to
compose the system.

The example leads us to following conclusions:

(i) the components in a component assembly may be divided into three group

1. Source components – have only provided interfaces. They provide EFPs
that do not depend on other EFPs.

2. Interconnected components – have both required and provided interfaces.
They use other components to process a computation and returns a result.
EFPs of these components should be propagated from the required to the
provided side of the components.

3. Sink components – have provided interfaces that are accessed by terminal
clients. EFPs should be also propagated from the required to the provided
side. The results on the provided side inform about the EFPs level of the
whole assembly.

(ii) the evaluation mechanism should take into account the following:

1. Source component EFPs may have directly attached values or intervals from
registries

2. Sink components have EFPs on provided side that express users expecta-
tions. Their result values are important for the developer of the assemblies
in evaluating the level of EFPs of the whole system.

3. Interconnected components should compute EFPs by mathematical formu-
las instead of relying on direct values or intervals.

4.6 Future Work

According to finished work mentioned in Section 4 and the evaluation in Section
4.5.2 our future work aims at preparing a mechanism that:
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1. Uses named intervals to attach approximated values to the source compo-
nents.

2. Allows to define mathematical formulas to compute the transformation of
EFPs from the required side of components to the provided side of compo-
nents.

3. Allows users to check the level of EFPs of the system on the sink components

The mathematical formulas are inspired in works [15] and [40]. However devel-
opers of components may be in difficulty when considering how such functions
should look like and which EFPs impact other EFPs. For that reason, we would
like to extend registry to store templates or pre-defined headers for these func-
tions. The developers would first obtain these templates or headers from the
repository. They would then fill the body of the function to correspond to a
concrete implementation of the component.

The usage of the intervals and the mathematical formulas will lead to approxi-
mated results of EFPs values. Behaviour based models such as Palladio allows
probably more accurate results, though our solution aims at less resource consum-
ing mechanism that is also easy-to-use by common developers. Still, the values
that are behind approximated intervals serve as useful hints to the developers to
assemble trustworthy component systems.

The completed mechanism will be verified by an implementation. We would like
to prepare a toolbox consisting of three tools shown in Figure 4.4 These tools
cover three phases of component development: (i) First is the Registry Provider
tool implementing registry. The registry is filled by a domain expert and allows
other tools to access EFPs. (ii) Second is the EFP Attachment tool that loads
data from registry and allows to attach EFPs and the mathematical functions to
components. This tool is used by the developer of components that attach EFPs
from registry to components. (iii) Third is the EFP Evaluator tool that is used
by the system developer that composes components into an assembly and let the
tool to evaluate resulting EFPs.

We are currently working on the first tool – the repository implementation. Sec-
ond two tools will use the registry provider tool to read EFPs from registry.
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Figure 4.4: The toolbox
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Conclusion

This report has overviewed fundamentals of component based software engineer-
ing. It has consequently highlighted extra-functional properties as an important
aspect to deal with. The main part of this work has been analyses of the state
of the art related to extra-functional properties and components.

We have explained our current work that explicitly targets context dependency
of extra-functional properties on components. We have developed a system of
registries that serves as a common repository of extra-functional properties.

The introduced case study evaluates our mechanism and shows our future work.
The improvements suggested will deal with a composition of extra-functional
properties when components are connected in chains in which the properties are
influenced by each other. In addition, we would like to implement the approach
as a toolbox.
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