
University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

OSGi Component Substitutability Using
Enhanced ENT Metamodel Implementa-
tion
technical report

Lukas Valenta, Premysl Brada

Technical Report No. DCSE/TR-2006-05
June, 2006

Distribution: public

Technical Report No. DCSE/TR-2006-05
June 2006

OSGi Component Substitutability Using
Enhanced ENT Metamodel Implementa-
tion

Lukas Valenta, Premysl Brada

Abstract

Software components can be found in both enterprise-wide and mobile/embedded
solutions. Components are mutually linked and dependent, but encapsulated as
black boxes and developed independently. They can be replaced without affecting
the rest of the application. This advantage requires careful and complex com-
patibility checks between both component versions though, otherwise the whole
application can be broken down. In this paper we present and describe the im-
plementation of the ENT metamodel and the ENT based component comparison
algorithm. This algorithm is used in the practical case: OSGi Release 4 compo-
nents are being compared. On the basis of the change, version identifiers of the
newer component are assigned.

.

Copies of this report are available on
http://www.kiv.zcu.cz/publications/
or by surface mail on request sent to the following address:

University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

Copyright c©2006 University of West Bohemia in Pilsen, Czech Republic

Contents

1 Introduction 3

1.1 Goal and Structure of the Paper 3

2 The OSGi Service Platform Release 4 4

2.1 Common Properties of OSGi . 5

2.2 Bundles . 5

2.3 OSGi Versioning Schema . 6

2.4 Default OSGi Services . 7

2.5 Example of OSGi Application: Eclipse Platform 7

2.6 Enterprise Component Framework 8

3 Principles of Component Substitutability Checking 9

3.1 Component Type Differences . 9

3.2 Component Substitutability Defined by Differences 11

4 ENT Metamodel Implementation Enhancements 12

4.1 Definition Part of ENT Metamodel 12

4.2 ENT Based Comparison . 12

4.2.1 Subtyping rules . 17

4.3 ENT Representation of the Component 18

5 Substitutability for OSGi Release 4 19

5.1 ENT Implementation for OSGi Component Model 20

5.2 Differences and Versioning Related 21

5.3 Practical Use Case . 22

5.4 Algorithm of Comparison . 22

5.5 Example of the OSGi Component Comparison 24

5.5.1 Subtyping Rules for OSGi Specific Metatypes 25

5.6 Implementation of OSGi Comparison 26

6 Related Work 26

1

7 Conclusion 27

A OSGi Platform Release 4: the ENT metamodel 28

A.1 Grammars used . 28

A.2 Tag definitions . 29

A.3 Trait definitions . 29

A.4 Notes on the OSGi Service Platform Release 4 33

A.5 How to discover import and export types 34

B XML Representation 36

B.1 ENT Differences . 36

2

1 Introduction

Component-based architectures have a lot of advantages. One of the finest one
is a possibility to upgrade or repair only the affected components, not the whole
application. However, this convenience has its issue - the replacement for an
incompatible component may break the dependencies between components as
well as the consistency of entire application. Accordingly, it is necessary to insert
the step of careful component substitutability check before the replacement itself.

If we understand the components such as the encapsulated black-boxes, we have
to consider their interface only. In general, we would like to model component
interface independently of the component model and/or the language it was im-
plemented. Thus we should use some component metamodel such as UML or
ENT [3]. If the metamodel is capable to capture all relevant and important
information about the component interface, we can define the subtyping rules
on the metamodel level and perform the substitutability check on the level of
metamodel representation of the component interface.

The subtyping rules form the general algorithm of component comparison. In
this paper we present the implementation of the ENT metamodel including the
component comparison algorithm.

To show the practice use of the method and algorithm, the case study using the
OSGi architecture follows.

The OSGi architecture [10] allows to define many conditions and constraints for
the component relationships. The framework follows these constraints during
the installation or upgrade of a component. One of the important condition
is the compatibility of the version numbers of requested component interface(s).
Because the semantics of the version identifiers is well defined and able to capture
an incompatible change, the version constraint is a strong mechanism to prevent
wiring an incompatible components.

Indeed, the correctness of those version identifiers is the important presumption.
Developers must evaluate changes in component’s interface and alter the ver-
sions correctly for every published release of a component. We present a method
of an automated generation of OSGi component version identifiers. They are
determined on the basis of changes in component’s interfaces.

1.1 Goal and Structure of the Paper

The goal of this paper can be sumarised in two points: (1) description of the
ENT metamodel implementation and its novelties and (2) the case study of the
OSGi component comparison.

3

The first chapter focuses on the OSGi Service Platform, it contains a short intro-
duction to the OSGi common properties, component model, versioning schema
and is concluded by the description of two projects using OSGi. Second chapter
deals with the principles of component substitutability checking. Next chapter is
the core of this paper, it descibes the ENT metamodel [3] prototype implemen-
tation and its enhancements since the previous version.

Next chapter contains the case study on the OSGi component model. It presents
the method of comparing OSGi bundles and the relation with the versioning
schema. The paper is concluded with the review of the related work.

2 The OSGi Service Platform Release 4

The OSGi Service Platform is open, common architecture for service providers,
developers, software vendors, gateway operators and equipment vendors to de-
velop, deploy and manage services in a coordinated fashion. It enables an entirely
new category of smart devices due to its flexible and managed deployment of ser-
vices. OSGi specifications target settop boxes, service gateways, cable modems,
consumer electronics, PCs, industrial computers, cars, mobile phones, and more.
Devices that implement the OSGi specifications will enable service providers to
to deliver differentiated and valuable services over their networks[10].

In this paper we deal with the fourth release of the OSGi specification, it is
backward compatible with all older versions and presents many new features.

The core of the OSGi Service Platform is formed by the Framework (in other
component models is usually called container). It provides a general-purpose,
secure, and managed Java framework that supports the deployment of extensible
and downloadable applications known as bundles.

OSGi-compliant devices can download and install OSGi bundles, and remove
them when they are no longer required. The Framework manages the installation
and update of bundles in an OSGi environment in a dynamic and scalable fashion.
To achieve this, it manages the dependencies between bundles and services in
detail.

It provides the bundle developer with the resources necessary to take advantage
of Javas platform independence and dynamic code-loading capability in order to
easily develop services for small-memory devices that can be deployed on a large
scale.

4

2.1 Common Properties of OSGi

• OSGi Platform is intended for mobile/embedded devices → runs in the Java
Micro Edition (J2ME) [14].

• It defines simple component model. Every component (called bundle) is an
application which can cooperate with another components. The framework
runs in the single Java Virtual Machine.

• Bundles can export and import services to/from other bundles.

• OSGi Platform does not support transparent component distribution over
many JVM like more complex component models such as EJB or CCM
[13, 15]. But it is possible to implement this feature manually by for example
http and servlet services.

• OSGi Framework offers the well defined set of common services: logging,
xml parser, http, servlets. . . .

• The latest release 4 supports versioning of the whole bundles and their
individual interfaces too. Bundle dependencies are resolved with respect to
these versions.

2.2 Bundles

The Framework defines a unit of modularization, called a bundle. A bundle
is comprised of Java classes and other resources, which together can provide
functions to end users. Bundles can share Java packages among an exporter
bundle and an importer bundle in a well-defined way.

Bundle is deployed as a Java archive (JAR) file. This file contains

• the resources necessary to provide some functionality. These resources may
be class files for the Java programming language, as well as other data such
as HTML files, help files, icons, and so on.

• a manifest file describing the contents of the JAR file and providing infor-
mation about the bundle. This file uses headers to specify information that
the Framework needs to install correctly and activate a bundle.

Once a bundle is started, its functionality is provided and services are exposed
to other bundles installed in the OSGi Service Platform.

5

2.3 OSGi Versioning Schema

As an evolution of the platform from the previous release [9], OSGi Release
4 specifies versioning schema. The version identifier is assigned to particular
exported packages as well as to the entire bundle. It has the generic structure
major.minor.micro with following compatibility policy: an incompatible change
is signalled by incrementing the major number, while a compatible one increments
only the minor number. If there was not any change in the component’s interface,
the micro is increased (e.g. bugfix).

Components can specify versioned dependencies. The example of package export
follows:

Bundle-Name: B
Export-Package: cz.zcu.logging;version=1.3.0

This means that bundle exports all public classes and interfaces from Java package
cz.zcu.logging. The single export can contain attributes such as version, which
specifies the version of exported package.

Version constraint is a mechanism whereby an import definition can declare a
precise version or a version range for matching an export definition. There can
be many different versions of the same package in the framework. Upon the
requirements of the importer, the most sufficient version of exported package
must be chosen. The typical import statement looks like this:

Bundle-Name: A
Import-Package:
cz.zcu.logging;version="[1.2.5, 2)"

The OSGi framework resolves all dependencies and constraints during bundle
deployment and links importers to the right exporters. This verification (in the
case of valid bundles) detects problems early, avoiding runtime errors. It is of
course very important to provide correct version identifiers of the bundles and
their exported packages.

If a bundle B exports a new version of the cz.zcu.logging package with an
incorrect version number (e.g. 1.3.0 despite an incompatible change in one of its
interfaces), bundle A would be sucessfully resolved and wired to this exporter
(B) upon deployment. The incompatibility would surface only at runtime when
an attempt is made to access the mentioned interface. The problem is obviously
caused by the manual assignment of version numbers.

This hand-made activity can produce human mistakes and it can be automated.
In this paper we present the method for automated generation of bundle interface
version identifiers. The mechanism is based on an analysis of changes in bundle’s
interfaces which ensures safety of OSGi component upgrades.

6

2.4 Default OSGi Services

OSGI Platform Specification defines a set of default services which must be
present in every OSGi Platform implementation. As all applications and ser-
vices in OSGi, default services are implemented as bundles exporting related
packages. The most important services are

Log Service The Log Service provides a general purpose message logger for the
OSGi Service Platform.

Http Service An OSGi Service Platform normally provides users with access
to services on the Internet and other networks. This access allows users
to remotely retrieve information from, and send control to, services in an
OSGi Service Platform using a standard web browser.

Preferences Service Many bundles need to save some data persistently – in
other words, the data is required to survive the stopping and restarting of
the bundle, Framework and OSGi Service Platform.

XML Parser Service The Extensible Markup Language (XML) has become a
popular method of describing data. As more bundles use XML to describe
their data, a common XML Parser becomes necessary in an embedded
environment in order to reduce the need for space.

Device Access A Service Platform is a meeting point for services and devices
from many different vendors: a meeting point where users add and cancel
service subscriptions, newly installed services find their corresponding input
and output devices, and device drivers connect to their hardware.

Beyond the mentioned ones the specification defines many additional standard
and optional services. Every OSGi implementation must contain them.

2.5 Example of OSGi Application: Eclipse Platform

Example of OSGi application is the Eclipse Platform [11]. It is a platform that
allows integration of tools for development of various application types, it provides
them the common user interface. It is based on plug-in system, it supports many
operating systems and provides an os-independent layer for plug-ins. At the
core of Eclipse is an architecture for dynamic discovery, loading, and running of
plug-ins.

Tools that developer develops can plug into the workbench using well defined
hooks called extension points. The platform itself is built in layers of plug-ins,

7

each one defining extensions to the extension points of lower-level plug-ins, and
in turn defining their own extension points for further customization. The base
plug-in is ”Platform runtime”:

• it defines and manages plug-in and extension points model

• it dynamically discovers plug-ins and maintains information about the plug-
ins and their extension points in a platform registry

• plug-ins are started up when required according to user operation of the
platform.

• the runtime is implemented using the OSGi framework (plug-in = OSGi
bundle)

Actual version of the Eclipse Platform 3.1 uses OSGi Release 4 or more precisely
its ”enhanced version” - Equinox [12]. In comparison with the standart OSGi
specification it contains for example some extra headers in the manifest file.

2.6 Enterprise Component Framework

Enterprise Component Framework (ECP) [5] is the appearing extension of the
OSGi framework.

The outstanding flexibility of the Eclipse Platform is provided by its comprehen-
sive component model. The Eclipse Platform component model targets tools de-
velopment, tools integration and rich client applications and offers users a strong
GUI orientation. Unfortunately, there is nothing similar to the Eclipse Platform
available for enterprise application developers. Existing components models do
not provide the flexibility for enterprise applications that the Eclipse Platform
does for GUI-oriented applications

A majority of the flexibility the Eclipse Platform inherited from the OSGi Service
Platform. Similarly, the Enterprise Component Framework should also be based
on and extend the OSGi Service Platform. The Equinox along with Eclipse Core
will serve as a container for the enterprise components.

Thsi project is only at the beginning but it offers some interesting features. One
of them is the specification of dynamic behaviour of the components. The com-
ponents should adapt to the dynamic availability (the arrival or departure) of
the services or other components they are using. This feature makes this project
important from our point of view and thus we will monitor the project progress.

8

3 Principles of Component Substitutability

Checking

As it was mentioned in the introduction, the component substitutability check
is a necessary step in the component replacement (be it an upgrade or a more
general substitution). The fundamental principle of substitutability is defined
in this way: a substitute component should be usable whenever the current one
was expected, without the client noticing it [19]. Type systems and the subtype
relation in particular are used to ensure safe substitutability in (object-oriented)
programming languages: instances of type T ′ can be bound to variables declared
to be of type T if T ′ <: T (subtype) because the subtype provides a superset of
features [6, 2].

3.1 Component Type Differences

Component interfaces are defined in the terms of programming language con-
structs (interface types, methods, etc.), therefore subtyping can similarly be used
for component compatibility evaluation. Our approach says that component B

can replace component A if B′s type is a subtype of A’s type.

To determine the subtyping relation between two types A and B, one needs to
compare the content of the types. The rules for type constructs are used recur-
sively until primitive types are reached, rules for them are defined by enumeration
(e.g. short <: long).

The result of comparing two types a and b can be described by the character of
changes between them. Let us define the function diff(a, b) : Type × Type →
Differences which computes the difference between types a and b. The returned
value is one of:

none if a = b
insertion if a is not defined but b is
specialization if b <: a
deletion if b is not defined but a is
generalization if a <: b
mutation if b contains both ins/spec

and del/gen differences
unknown if b cannot be compared to a

(e.g. due to recursive cycles)

For example, we have a Java interface called cz.zcu.logging.Logger (see Table
1) and want to determine the differences between the methods of its two versions.
We obtain the following values. The write() method is not changed in version 2,

9

its difference is therefore none. There is no flush() method in the first version,
thus there is insertion difference. Since int <: long, the last method exhibits a
generalization difference.

interface Logger { // version 1

void write(String msg)

int getItemCount()

interface Logger { // version 2

void write(String msg)

void flush()

long getItemCount()

Table 1: Example interface types

In our approach, the comparison of structured types (e.g. a whole Java interface)
is done by combining the differences of their constituent parts (the operations of
the interface). Thus, for level n of the type structure, we compute its difference
value as follows: first obtain the difference values for all constitutent parts at the
n − 1 level, then combine the values into a single one.

Clearly, the effect of differences on the type’s substitutability varies. We ex-
press this effect by weight measures assigned to the values, as follows: 1. none,
2. insertion, deletion, 3. specialization, generalization, 4. mutation, 5.
unknown. This says that, for example, a mutation has a bigger impact on the
type than a deletion change.

The difference value for level n of the type structure is then obtained as follows:

1. Obtain the difference values for all constitutent parts at the n − 1 level.

2. When combining values for type parts playing contravariant roles within the
level n (e.g. the provided and required interfaces of a component), invert
the difference values of the parts with the “required” role: ins = del, spec =
gen, other values stay the same.

3. Combine the values into a single one, using the following algorithm:

(a) Sort the differences at the n − 1 level by their weights.

(b) If the highest weight is from the set {1, 4, 5}, use the corresponding
difference for the level n value.

(c) Else, if there are differences with weights both 2 and 3 in the set, use
Table 2 to determine the resulting difference.

(d) Else (no combination of weights 2 and 3), use the difference corre-
sponding to the highest weight for the level n value.

10

ins del spec gen
ins ins mut spec mut
del del mut gen
spec spec mut
gen gen

Table 2: Combination of contravariant difference values

3.2 Component Substitutability Defined by Differences

When we want to ensure that component B can safely replace component A, we
need to determine that B <: A. In this case, we work at the level of the whole
component where the provided and required roles of its interface parts (e.g. the
types in Export-Package vs. Import-Package declarations of an OSGi bundle or
the business interface vs. ejb-ref business references of an Enterprise JavaBean
[13]) have to be considered.

The formalism that captures the effect of these roles in type theory is contravari-
ance [6]: B is a subtype of A only if the provided part of B is a superset and
the required part is a subset of corresponding A′s parts. This can be re-phrased
as the (obvious) requirement that B provides at least the same functionality and
requires at most as much as A did.

Using the difference values we therefore say that B is a (strict) substitute for A

if and only if

− diff(Aprov, Bprov) ∈ {none, insertion, specialization}, and

− diff(Areq, Breq) ∈ {none, deletion, generalization}

In simple words, functionality must not change or can only be added at the client-
side of components interface. On the other hand, reduction is the only allowed
change at the side of components dependencies.

In the practice one must consider the nature of used programming language.
There is the difference between statically and dynamically linked languages. The
full description of this problem can be found at [4].

11

4 ENT Metamodel Implementation Enhance-

ments

At this place we continue with the work on ENT metamodel [3] prototype imple-
mentation. It started in the master thesis [16], where we dealed with Enterprise
JavaBeans [13] component modelling. The goal of that thesis is to design and
implement the program creating the ENT representation of existing EJB com-
ponents. The ENT representation is complex data structure, its exact format is
defined individually for particular component model1.

The core of the program is the implementation of common ENT metamodel. It
can be divided to two parts: The definition part specifies the particular com-
ponent model, it defines traits and tags (their names, relationships, possible
values. . .) of the component interfaces. Second part represents the interface
of particular component, so it consists of elements and tags. This core forms
the abstract API which can be used to model any component of any component
model.

There stand the model-specific routines above the program core - definitions
of concrete component model and tools used for reading component interface
information.

The documentation for the first version of the implementation is available in
the mentioned master thesis [16]. At this place we describe the changes and
innovations.

Note: Every Java class and package names does not include the common prefix
cz.zcu.kiv.ent.

4.1 Definition Part of ENT Metamodel

The theoretic definition of ENT metamodel structure has changed a little since
the first version of implementation. The only enhancement appeared in the tag
definition - the metatype of the tag was added. The most important (and only
implementation) change is the use of new Java 5.0 language features (generics,
enumeration types and new constructs).

4.2 ENT Based Comparison

The most important novelty is the implementantion of ENT based component
comparison. The generic rules for strict component comparison are defined in [2],

1It is based on the study of that model, its features and properties

12

Chapter 4 and 5. The idea of the method was already described in Section 3.1
on the Page 10. All the classes representing some level of ENT component repre-
sentation (element, tag, trait, . . .) now implement the interface ENTComparable.
They thus have the ability to be compared with the appropriate counterpart.

At this place the work integrate the Java class comparing code designed and
implemented by Pavel Stuna [17].

• class Diff

This class represents the difference between two objects (classes, interfaces,
functions, tags, traits, components, . . .). As described in section 3.1, it can
be one value or combination of the following values:

Diff ∈ {None, Insertion, Specialization, Deletion,

Generalization, Mutation, Unknown}

• interface ENTComparable

This interface represents any object which can be compared with the an-
other one according to ENT comparison rules. It has one significant method

public interface ENTComparable {

public DiffResultPart compareENT(ENTComparable object);

}

This method compares this and referenced object and returns result of this
comparison - instance of DiffResultPart interface (it will be described
later).

• interface ENTComparableByName

Interface represents named objects. This objects must have the same name
in order to be possible to compare them. If their names are not equal,
comparison should return Mutation.

public interface ENTComparableByName extends ENTComparable {

public boolean hasSameName(ENTComparableByName object);

}

Comparable by name are for example instances of classes Component. Two
components must take the same name in order to be comparable.

13

The ENT metamodel represents the component interface as the set of traits and
the tags. When one want to compare two component ENT representations, it is
needed to start at the bottommost level of the tree structure and propagate the
results to the higher levels. After it, the difference of the whole component is
stored at the highest level of the structure (see the diagram at Figure 1).

In this case, one will get simple result - the difference of the whole component (e.g.
specialization). Relevant information would be lost. In practice it is important to
know which changes happened in the component interface and at which part of it.
Because this information is known and used during the comparison process, the
only task is to store them to some data structure. This structure is represented
by the Java interface DiffResultPart.

This interface represents result of component specification part comparison. It
consists of the difference value, references to objects being compared, additional
information and the results of the subordinate parts - so the result parts construct
nested tree structure. Because this is designed as universal structure, every level
has its name (f.e. component, exports, tags, . . .). There is no restriction for par-
ticular component-comparison algorithms to smooth the level of detail anymore.
In the case of comparing for example Java classes, additional levels like class,
method or attribute can be added to the result hierarchy.

This interface therefore specifies access to following attributes:

• ENTComparable object1, object2; Objects (specification parts) being
compared. For example two instances of interface elements.

• Diff diff; Difference between compared objects

• DiffInfo info; Additional textual information

The DiffResultPart interface extends the Java standart interface Collection,
it is therefore collection of DiffResultParts at lower level.

The general comparison rule at any level of ENT representation is as follows:

1. Compare the actual part to its appropriate counterpart (in the second ENT
structure) and store the result to the new instance of the DiffResultPart

interface.

2. Gather the difference results of all subordinate parts2. This is done by
calling the compareENT() method of all underlaying parts. Attach these
results to the mentioned new instance of DiffResultPart (= build the
tree structure).

2parts on the underlaying level

14

3. Combine these differences to the single ”difference of the actual part” using
the combination rules defined at Section 3.1 on the Page 10. One must
take in account the meaning of each difference - for example, differences of
required traits have to be reversed before they are merged with provided
ones and with the tags – the formalism that captures the effect of these
roles in type theory is contravariance [6].

4. Return the resulting difference.

The result of the component comparison is therefore a DiffResultPart structure,
which contains information about the differences at every ”level of detail” of the
component representation. This structure can be stored as a XML file, its format
is specified at Appendix B.1 of this paper.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE entdiff SYSTEM "entdiff.dtd">

<entdiff>
<component ctype="OSGi_R4" model="OSGi_R4">
<name>Log Service</name>
<part name="" level="component">

<diff>Mutation</diff>
<part name="Exports" level="category">
<diff>Mutation</diff>
<part name="export_types" level="trait">
<diff>Mutation</diff>
<part name="cz.zcu.Logger" level="class">
<diff>Mutation</diff>
<part name="flush()" level="method">
<diff>Insertion</diff>

</part>
<part name="getItemCount()" level="method">
<diff>Generalization</diff>

</part>
</part>

</part>
<part name="Needs" level="category">
<diff>None</diff>

</part>
</part>
<part name="" level="tags">
<diff>None</diff>

</part>
</part>

</component>
</entdiff>

This ”complex” result allows identifying the elements of component interface,
that are responsible for the incompatibility of two component versions, for ex-
ample. As you can see in the XML file above, the information is much detailed -
differences at the Java method level are detected and presented. Information may
be valuable when one wants to adapt the new incompatible component so that

15

Figure 1: Schema of ENT comparison process

16

it can replace the original one. This method is used to ensure strict component
substitutability but because of the complex output it can help to check whether
the new component is replaceable in the particular context at least3.

4.2.1 Subtyping rules

This general implementation of ENT comparison provides functions for subtype
relation checking. It is needed to define and implement the check for various
metatypes:

String Comparison of generic type String (any character string) is simple. Two
strings can be either exactly the same, than there is none difference or else
the difference is mutation.

Enumeration In this case the value of some interface part (tag, feature, . . .)
can gather just one value from the well-defined value set. The subtyping
relation between values of that set must be specified. As an example we
use the OSGi tag resolution ∈ {mandatory, optional}, where mandatory <:
optional4.

If the value does not change, difference is none indeed. If the value changes
from A to B, consequent difference depends on the subtyping relation be-
tween these values (as defined in Section 3.1): A <: B → generalization,
B <: A → specialization.

List We want to compare two lists of comparable items, e.g. list of exported Java
interfaces or a list of supported operation systems. The complete algorithm
of list comparison is quite extensive [17], we will introduce it simply at this
place. Firstly we have to compare appropriate list items and combine gained
differences. Than combine resulting difference with insertion if some new
item was added to the list. On the contrary, if any of items was deleted,
combine the difference with deletion.

It is important to understand the purpose of the concrete list. The items
can be bound with each other in two diverse logical ways. Imagine the
example list of imported Java interfaces: ”Component requires Java inter-
faces interface1 AND interface2 AND interface3”. Now imagine list

3e.g. when we know that the getItemCount() method is not used in the context of our
application, we can proclaim that the new component can replace the old one in our application
context

4This subtyping relation is bright at first sight. When import resolution changes from
mandatory to optional, it means generalization of this interface element. In contrary case the
difference is specialization

17

of required execution environments. By accordance with the OSGi specifi-
cation, we must interpret the list this way: ”Component requires execution
environment java.micro OR j2se OR PersonalJava”.

As shown in the examples, items can be bound with logical conjunction
(AND) or disjunction (OR). The comparison algorithm must take this into
account and behave different for logical disjunction.

Map As a map we understand a key-value pairs. In contrast to list, we always
connect the items with conjunction. When the key is added/removed from
the map, resulting difference is insertion/deletion. In the case of changed
value, the mutation goes out.

Java class Java classes are being loaded from binary .class files and compared
using introspection via Java Reflection API. The complete and complex
comparison algorithm of Java classes and all its portions (methods, at-
tributes, exceptions, . . .) is described at [17].

4.3 ENT Representation of the Component

The package metamodel contains classes representing the component. The
changes include the support for ENT-based component comparison described
at the previous section. Classes thus implement the ENTComparable or
ENTComparableByName interface and contain the generic comparison logic5.

• Component implements ENTComparableByName

Method compareENT() gets the differences of component level tags (from
TagSet) and the traits (from TraitsByENT), combines them and returns
the difference result of the whole component.

• Element implements ENTComparableByName

The generic implementation gets the difference of element’s tags (from
TagSet) and returns it as a result of element’s difference. This method
must be overridden for a concrete element of a concrete component model.

• Tag implements ENTComparableByName

The generic implementation is empty and it is also needed to override it in
a concrete component model implementation.

• ElementSet, TagSet implements ENTComparable

Both classes are sets of ENTComparable items, thus they are compared as
the metatype List (see the Page 4.2.1).

5the concrete comparison algorithms must be derived for every component model separately

18

• Trait implements ENTComparable

This is the new class. In the first version of implementation this class was
not necessary. It represents trait of component interface, so it is a set of
elements belonging to one trait definition. As it is explained in [16], this
step between the component and its elements was omitted. For the purpose
of ENT component comparison, we need to sort elements to their traits.

• TraitSet implements ENTComparable

Collection of the traits, its behaviour is similar to ElementSet and TagSet.

• TraitsByENT implements ENTComparable

Represents component traits sorted to the three categories according to
their role in the component interaction - exports, needs and ties. This is
important because comparison of traits depends on their role.

5 Substitutability for OSGi Release 4

One of the appealing application areas of component substitutability checks are
components (called bundles) running in OSGi framework, since OSGi becomes
more important and widely used in industry. OSGi bundles can be (remotely)
deployed to range of devices from embedded/mobile to enterprise servers. In this
section we describe how the substitutability checking and new version identifier
assigning is done for component model OSGi Release 4 [10].

The first section describes implementation of the ENT metamodel for the OSGi
component model. It is also an example of how to implement any component
model’s ENT representation and the related component comparison. There is
also described the way of gathering information about existing OSGi component
- generating ENT representation from its distribution form.

Second section focuses on the relationship between the differences of the compo-
nent (or just only its part) and the versioning schema.

Next sections bound these two areas together - the method of the OSGi com-
ponent comparison is described. As was already mentioned in the Section 2.3,
the OSGi framework guarantee the safe component upgrades in the case of valid
bundles. If the bundle’s version identifier was assigned a wrong number, the up-
grade/deployment process would finish sucessfully and the potential incompati-
blity would cause the runtime error. Our method analyses the changes between
given components and determines the subtyping relation between them. On the
basis of this, the new version identifiers of the ”new” component (and all its
versioned interfaces) are correctly assigned.

19

5.1 ENT Implementation for OSGi Component Model

In the mentioned master thesis [16] was implemented generation of Enterprise
JavaBeans components ENT representation. Similarly, same functionality for
component model OSGi Release 4 is presented now. Definition of this model in
the terms of ENT can be found at Appendix A.

ENT metamodel definition for OSGi Release 4 is located in osgi4 package, tools
for retrieving information from JAR file and its OSGi manifest can be found in
osgi4.jar package.

As mentioned in Section 4.3, subroutines for particular elements and tags
comparison must be implemented for every component model separately.
Classes which represents individual OSGi elements and tags are stored
in packages osgi4.elements and osgi4.tags. They inherit from classes
metamodel.Element and metamodel.Tag and introduce the specific imple-
mentation of compareENT() method. Its behaviour depends directly on the
metatype of the element/tag. For example, compareENT() method of the
osgi4.tags.TagResolution class have to compare enumeration metatype, which
is defined by the subtype relation mandatory <: optional.

This part of OSGi module ensures the correct functionality of ENT based com-
parison of two OSGi bundles6. As a result of it we get the complete comparison
result as the instance of interface DiffResultPart. It can be saved to XML
file or be used as a source for additional operations. The simple example of the
program usage follows:

/* generate the ENT representation of both components */
OSGiComponent component1 = getComponentRepresentation(jarFile1);
OSGiComponent component2 = getComponentRepresentation(jarFile2);

/* compare components */
DiffResultPart diffResult;
diffResult = component1.compareENT(component2);

/* save result to XML file */
diffResult.saveToXML(outputXMLFile);

The second functionality of this module is loading the ENT representation from
the distribution form of the OSGi bundle. The ENT component representation
- elements and tags - is obtained from two sources: (1) the JAR file manifest,
and (2) the component implementation in .class files, using Java introspection
mechanism.

The input of this part is thus a JAR file which contains an OSGi bundle. It loads
all information that is needed (and available) to build the ENT representation of

6their ENT representations

20

Figure 2: Comparison of the ENT representations

the bundle. The ENT definition of the OSGi component model (see Appendix A)
is used, it contains (among others) the concrete hints for locating the required
information in the JAR file. When the ENT representation is successfully created,
it can be saved to XML file7, displayed in the visualization tool or compared to
the ENT representation of another OSGi bundle (see the Figure 2).

5.2 Differences and Versioning Related

The OSGi uses a well-known and widely used versioning schema ma-
jor.minor.micro (see Section 2.3). The knowledge of difference between two sub-
sequent versions of an interface part is sufficient to determine the new version
identifier of that part. Let d = Diff(Ri−1, Ri) be the difference between two con-
secutive revisions, Vold = majold.minold.micold. Than the new version identifier
Vnew = majnew.minnew.micnew is defined by the rules in Table 3.

Diff(Ri−1, Ri) majnew minnew micnew

none majold minold micold + 1
specialization,

insertion

majold minold + 1 0

deletion, gener-

alization, muta-

tion

majold + 1 0 0

unknown unknown

Table 3: Derivation of the new version identifier

For example, assume that we have the package cz.zcu.logging and that ver-
sion 1 of the package has version identifier 1.2.1. If the content of package changes

7the ”.emr” format specified in [3]

21

to its version 2 for a new release, the mutation difference between both ver-
sions signals an incompatible change. Therefore, the new release of package
cz.zcu.logging will have 2.0.0 as its version number according to line 3 of the
table. If however there was only a specialization change in the package content,
that release would be numbered 1.3.0 (line 2 of the table).

Java package is the unit of export/import in OSGi, it contains classes and inter-
faces in general. To compute the difference of a particular exported package, one
must compare every public class and interface contained in the package with its
older version. The combination of gained differences results in the difference of
the whole Java package and thus to its new version identifier.

5.3 Practical Use Case

Previous chapters described the implementation of ENT component comparison.
The result of that process can be used in many ways - one of it will be presented
now. As it was already mentioned, OSGi bundles use the versioned dependencies
- the version identifier is assigned to the whole bundle as well as to its exported
interfaces. After the new component version development, it is necesary to set
the new version identifiers of all these versioned objects. This process can be
easily automated because new version identifier is a function of the old one and
the difference between component versions (see Section 5.2 on the Page 21).

The input of the whole process are two subsequent releases of OSGi bundle -
two JAR files. The implementation of the ENT comparison (Section 4.2) and
the implementation of the OSGi component model (Section 5.1) will be used to
load and compare those two components. The result is stored in the instance
of DiffResultPart class. This object contains the differences of all elements,
traits, categories and the component itself. On the basis of these differences and
the old version identifiers we have to determine the new version identifiers.

5.4 Algorithm of Comparison

In this section we present the algorithm for assigning the new version identifiers
of an OSGi bundle. Two subsequent versions of component A1 and A2 are used
as input. The goal is to determine version identifiers of A2 – versions of exported
packages and of the whole bundle. The algorithm is as follows (see Figure 3 for
schema):

1. Load the bundles and create their ENT representations.

2. Compare those representations using the program described in Section 4.2
and save the difference result (DiffResultPart instance).

22

Figure 3: Schema of the comparison algorithm

23

3. Generate the new version identifier of the whole component A2 according
to Table 3. The difference of the whole component take from the root level
of the DiffResultPart structure.

4. Traverse the DiffResultPart structure and find the differences of export
types trait and combine those referring to the same Java packages. As a
result of this you gain the difference of every package exported by compo-
nent.

5. Generate the new version identifiers of each of those packages according to
Table 3.

5.5 Example of the OSGi Component Comparison

Imagine two versions of LogService bundle. Fragments of the manifest files
follow:

• Old version:

Bundle-Name: LogService
Bundle-Version: 2.3.2
Export-Package:
cz.zcu.logging;version="1.3.0"

Import-Package:
org.osgi.framework;version="[1.3, 2)"

• New version:

Bundle-Name: LogService
Bundle-Version: ?.?.? <to be determined>
Export-Package:
cz.zcu.logging;version="?.?.?" <to be determined>

Import-Package:
org.osgi.framework;version="[1.3, 2)"

Require-Bundle: new_bundle_dependency

We have to determine the version identifiers denoted by the note
<to be determined>. Suppose the changes in the cz.zcu.logging presented
at Figure 4. The difference of this package is Specialization and its new verson
identifier is 1.4.0.

Tables 4 and 5 show the traits and tags. Every trait has either provided (P) or
required (R) role. Tables remind all the features and non-functional tags that
have to be taken in account.

Additional tags are attached to the component itself as well as to its particular
features. Tags have to be compared using metatypes defined in the table 5.

Detailed specification of OSGi interface traits and tags is located at Appendix A.
There is only one change in the example - new dependency to an OSGi bundle

24

Figure 4: Example of package cz.zcu.logging comparison

Feature Role Metatype compared

export types P Java class, tags
import types R Java class, tags
native code R List, tags
require bundles R String (bundle name),

tags
required exec env R List

Table 4: Summary of the OSGi traits

(Require Bundle manifest header). Because of it, the difference of the whole
component is mutation and its the new version is 3.0.0.

5.5.1 Subtyping Rules for OSGi Specific Metatypes

The Type compared column describes what is compared - Java type, String, Map
or List of Strings or other aspect of component interface. The subtyping rules
for common metatypes were defined at Section 4.2.1, at this place we present the
rules for the OSGi-specific metatypes:

Version interval The same intervals generates the none difference indeed. If
the version interval in the second component includes the first component’s
interval (in other words it has been extended), difference is generalization.
In the contrary situation (inteval has been narrowed), it is specialization.
In any other case, resulting difference is mutation.

Import types In contrast to export types we do not have access to type imple-
mentation. The only information available is the type name and (option-
ally) required version interval. We therefore compare import types as a list
of strings with regard to versions, if present.

25

Tag Belongs to trait Metatype compared

bundle symbolic name import type String
bundle version import type, require bundle Version interval
language native code List
os name native code List
os version native code List
parameters export type, import type Map
processor native code List
resolution import type, require bundle Enumeration
symbolic name bundle String
version range import type Version interval
kind import type Enumeration

Table 5: Summary of the OSGi tags

5.6 Implementation of OSGi Comparison

The substitutability rules and algorithms described above can be implemented
by automated checking tools. We have designed and implemented a prototype
tool which allows the comparison of two versions of an OSGi component. It
operates on two JAR files which each contains one version of OSGi component -
the old one and the newly developed one. It reads the data of these components,
performs the comparison and generates a copy of second JAR file with altered
versions. They thus reflect the severity of the changes performed within bundle
development.

Further, a XML file with detailed comparison result is created. It covers all
examined levels – from the top level (whole component) to the detailed parts of
its interface (e.g. methods of Java classes).

6 Related Work

The area of component substitutability checking is well researched.

Zenger [20] describes a method that ensures safe component upgrades on the
basis of a well-defined evolution mechanism supported by appropriate calculus.
This would achieve the desired safe upgrades but the mechanism does not apply
to current industrial frameworks. It is more likely a guide how to construct the
specification of a new component model.

A closely related approach was presented by McCamant [7]. It also leads to
component substitutability checking and ensuring safe upgrades, but from a quite

26

diverse point of view. We operate on component types and behaviour gained from
declared interface and on grounds of this information we determine the subtyping
relation between two surveyed components. On the contrary, the mentioned
approach takes in account an observed behaviour of component.

That method is partly similar to contextual substitutability as presented in [2].
It also takes in account only the concrete component context, but the way how it
is determined differs. McCamant’s method is sensitive to quality of a test suite
used to capture observed behaviour.

Versioning as an approach to ensure safe software evolution is presented for Java
classes and packages as a part of Java language specification [18]. It defines
versioning schema and a suggested evolution policies for Java. Although Java
packages are being dynamically located and loaded all the time (and thus it
is needed to ensure compatibility of them), this specification is rarely used in
practice.

Very similar approach using version identifiers in the form major.minor is defined
by Distributed Computing Environment (DCE) 1.1: Remote Procedure Call [8].
Version schema and rules are applied to interfaces on the server side and are used
when a RPC client tries to call server’s procedure. The DCE specification defines
exact rules for selecting the compatible version of services provided by server and
for assigning version numbers to a newly developed interfaces.

7 Conclusion

The implementation of ENT metamodel and ENT based comparison allows the
substitutability checking of component at the metamodel level. One can define
traits and tags for any other component model and implement particular subtype
checking methods - and the new component model would be supported.

The presented method (and its implementation) ensures that correct version num-
bers are assigned to an OSGi bundle. Because the framework uses these version
numbers, no error caused by an incompatible component during upgrade should
happen.

We investigate components in the form they are distributed – encapsulated black-
boxes with no access to implementation details or source codes. We gather as
much information from this form as possible and construct the representation of
component’s interface. On the basis of comparison of those two representations
we generate the new version identifiers. We therefore cannot capture the potential
changes of internal behaviour or interface semantics because it is not a part of
OSGi component interface specification.

27

A OSGi Platform Release 4: the ENT meta-

model

This chapter contains the specification of the OSGi Service Platform Release 4
[10] in the terms of the ENT meta-model. It consists of the definition of their
trait set and of tags on the component level.

A single component in the OSGi Service Platform is denoted by the word bun-
dle. Bundles are distributed in the form of JAR file with defined structure. All
information about the bundle are stored in the default JAR file manifest.

OSGi Specification Release 4 published in August 2006 presents many innovations
and enhancements, but it is still backward compatible with all older versions.
Emphasis has been put especially on bundle versioning, security (support for
signed bundles, new permissions), localization and new bundle types (fragment
and extension bundles).

In our point of view the most important novelty is the detailed specification of
versioning. Not only the whole bundle has its version identifier, but bundle’s
particular exported packages can also have it. System of framework classload-
ers allows use of more versions of one Java package when different versions are
required by bundles. Bundle can specify many constraints for exported and im-
ported packages - required package and/or bundle version, package dependencies,
mandatory and optional imports and so on. These things help the framework to
select the best connections between bundles at runtime and are also useful as the
definition of bundle’s interface.

Specification defines one component type called Bundle (for now we didn’t take
into account two new auxiliary bundle types - fragment and extension bundles.
They will be studied later).

A.1 Grammars used

Version and version range specifications are used in several places of the following
text. We will define the grammar of those tokens:

version. Version token has the following grammar (as defined in [10] on page
30):

version ::= major(’.’ minor (’.’ micro (’.’ qualifier)?)?)?
major ::= number
minor ::= number
micro ::= number
qualifier ::= (alphanum | _ | ’-’)+

28

Default value is "0.0.0".

version-range. A version range describes a range of versions using a mathemat-
ical interval notation. (as defined in [10] on page 30):

version-range::= interval | atleast
interval::= (’[’ | ’(’) floor ’,’ ceiling (’]’ | ’)’)
atleast::= version
floor::= version
ceiling::= version

Default value is "[0.0.0, inf)".

A.2 Tag definitions

In contrast to previous version of OSGi specification, we can find some important
information about the whole bundle now:

symbolic name metatype = string

Symbolic name specifies unique, non-localizable name for this bundle. This
name should be based on the reverse domain name convention, see [10]
on page 37. There is no default value for this tag because this information
about bundle is mandatory (correct bundle must specify its symbolic name).

version. metatype = versionidentifier

Version of the bundle. Source: Bundle-Version manifest header.

A.3 Trait definitions

Trait definitions are ordered alphabetically by the trait name.

export types – trait specifies Java types (classes or interfaces) to be exposed
to other bundles.

metatype = class

classifier = ({syntax}, {operational}, {provided}, {structure}, {type},
{permanent}, {multiple}, Lifecycle)
tags: version = version, parameters = string

Notes:

1. Source: Manifest header Export-Package (see the specification page 39)
and read notes bellow.

29

Tags:

• version: The version of the type with syntax as defined on page 28.
The default value is 0.0.0.

metatype = versionidentifier

• parameters: contains mandatory parameters of the package export as
a map using format (attribute=value ’,’)*. This means those
specified as mandatory by the attribute mandatory (see specification
at page 47)

metatype = map

import types – importing allows a bundle to request access to types that have
been exported by other bundles.

metatype = class

classifier = ({syntax}, {operational}, {required}, {structure}, {type},
{permanent}, {single}, Lifecycle)
tags: bundle symbolic name = string, bundle version = versionrange,
kind ∈ {static, dynamic}, parameters = string, resolution
∈ {mandatory, optional} (default value = mandatory), version range
= versionrange

Notes:

1. Source: Manifest header Import-Package (see the specification
page 38) or DynamicImport-Package (page 53) and read notes bellow.

2. Tag parameters contains parameters of the package import as a map
using format (attribute=value ’,’)*.

Tags:

• bundle symbolic name: symbolic name of required exporter.

metatype = string

• bundle version: version range of required exporter.

metatype = versioninterval

• kind: OSGi allows two types of imports - static and dynamic. This
tag differentiate between them.

metatype = enumeration

• parameters: contains parameters of the package import as a map using
format (attribute=value ’,’)*.

metatype = map

• resolution: import statement can be mandatory or optional. So this
tag reflects the resolution directive of Import-Package manifest header.

metatype = enumeration

30

• version range: a version-range to select the exporter’s package version.
The syntax must follow Version Ranges on page 29. For more infor-
mation on version selection, see Version Matching on page 42 of the
OSGi specification. Source of this tag is the version import directive
of Import-Package manifest header.

metatype = versioninterval

native code – elements of this trait describe references to native code libraries
which are requested by the bundle.

metatype = string

classifier = ({syntax}, {operational}, {required}, {item}, {instance},
{permanent}, {single}, {development, assembly, deployment, runtime})
tags: language = string, processor = string, osname = string, osversion
= string, selection filter = string

Notes:

1. Source: Manifest header Bundle-NativeCode, see the specification
page 59.

2. All the additional information provided by the bundle developer are
stored as tags. Type of the element is name of the referenced native
code library (as specified in the manifest header).

Tags:

• language, processor, osname, osversion: all these tags specify the re-
quired native code library - its required localization language, proces-
sor family and operation system. Tag value is the comma separated
list of possible values (connected by disjunction). For example: os-
name=”win95,win98,winxp”, which means that required library is in-
tended to work at one of specified operation systems. Empty string or
unspecified tag value signals that the particular condition is not used.

metatype = list

• selection filter: more complex selection filter of the native code library.
See the specification on the page 60.

metatype = string

require bundles – bundle should require all types exported by another bundle.

metatype = string

classifier = ({syntax}, {operational}, {required}, {structure}, {instance},
{permanent}, {single}, Lifecycle)
tags: resolution ∈ {mandatory, optional} (default value = mandatory),
bundle version = versionrange

Notes:

31

1. Source: Manifest header Require-Bundle, see the specification page 66.

2. See notes below

Tags:

• bundle version: version range of required bundle.

metatype = versioninterval

• resolution: Require bundle statement can be mandatory or optional.
So this tag reflects the resolution directive of Require-Bundle manifest
header.

metatype = enumeration

required execution environments – bundles can be restricted to one of spec-
ified execution environments.

metatype = set

classifier = ({syntax}, {operational}, {required}, {item}, {type},
{permanent}, {single}, {development, assembly, deployment, runtime})
tags = ∅

Notes:

1. Source: Manifest header Bundle-RequiredExecutionEnvironment, see
the specification page 33.

2. The plaform assumes that if the information about the required execu-
tion environment is not present in the bundle manifest, the bundle can
be deployed to any environment which conforms to the standard OSGi
release 4 platform specification. If multiple values are specified, the
deployment environment name must match at least one of the values
(i.e. logical OR is performed, not an AND operation).

use packages – this trait captures package dependencies between bundles.

metatype = map

classifier = ({syntax}, {operational}, {provided, required}, {item}, {instance},
{permanent}, {single}, Lifecycle)
tags = ∅

Notes:

1. Source: Manifest header Export-Package, attribute uses, see the spec-
ification page 39.

2. Element types of this trait are in the form of map packageA:packageB
which means packageA requires packageB.

32

A.4 Notes on the OSGi Service Platform Release 4

The meta-types used in the specification have the following meaning. The class
correspond to the Java classes or interfaces, the string denotes any string (e.g.
name of the referenced library). Finally, map is to be interpreted as ”set of
name-value pairs”.

In comparison for example with Enterprise JavaBeans component model [13],
OSGi Platform is much simpler. Because of this, its ENT meta-model is not
complicated, it contains only six traits.

There is one feature of OSGi that requires several additional notes - dynamic
package importing. Bundles must use the static import (import package trait)
when the names of referenced packages are known before bundle has started. If
this information is known only at run-time, bundles should define set of possible
dynamic imports in the DynamicImport-Package manifest header. In contrast to
static import, references to required packages can use asterisk notation. Bundle
can therefore define, that it wants to dynamic import package com.httpserver.*
(this means ”every package name beginning with prefix com.httpserver.”),
com.* or even *. Meaning of this definition is simple but useless - bundle can im-
port every package at run-time. Despite this we decided to model this feature in
the ENT meta-model view, although it does not carry any valuable information.
Even this is the part of component interface and thus it is modelled.

One of the most important innovations in OSGi Release 4, which is also closely
connected with ENT modelling, is the require bundle trait. Beyond the ”classic”
and recommended way of importing Java packages (import types trait) this al-
lows bundle developer to import all types (Java classes and interfaces) exported
by selected bundle. Although specification does not recommend it and shows
many issues with requiring bundles (see specification chapter 3.13.2), it must be
considered when creating the ENT model of OSGi Release 4.

The required bundle is determined by its symbolic name and by a few parameters
(not important from our point of view). Because the binding between exporter
and importer bundle is created at the resolve phase of deployment, we cannot
know concrete types which are imported and used by client bundle before it
is deployed and started in the framework environment. Symbolic name of the
bundle doesn’t have any relation to the types being exported in general. As a
conclusion we have to say that from the symbolic name of required bundle we
are not able to gain information about the concrete types – classes and interfaces
which will be imported from the referenced bundle and used at runtime. We
must therefore model only the symbolic name of required bundle as the type of
interface element of the trait require bundle.

33

A.5 How to discover import and export types

In the manifest file of each bundle there are three relevant headers: Import-
Package, DynamicImport-Package and Export-Package. They specify set of pack-
age names to be imported and exported. We decided that this information is not
so useful because package name does not represent any real type, but a collection
of ”some” classes and interfaces.

When analyzing a bundle in order to build its ENT representation, it is necessary
to discover concrete classes and interfaces ”hidden” behind these package names
(which are too general).

A tool or human trying to find all classes and interfaces for export must follow
this process:

1. For every package name specified in bundle’s Export-Package manifest
header:

(a) Browse bundle’s JAR file and find the directory of this java package.
For example, package org.osgi.test is in the directory
JAR://org/osgi/test/ by default. But another manifest header must
be also taken in account: Bundle-ClassPath. It specifies custom search
paths in bundle’s JAR file.

(b) Find and save as a new export types element every public class or
interface found in that directory.

Identifying classes and interfaces for static and dynamic import is rather com-
plicated and not so reliable, but in most cases it works fine. The idea of this
algorithm is simple: We must discover all classes and interfaces which are used
by this bundle and filter the ones from packages specified in Import-Package
or DynamicImport-Package manifest header. The begin of the search is bun-
dle’s ”main” class called activator - its name is specified by the Bundle-Activator
manifest header.

1. Let List be a set of class names, which have not yet been parsed.
Let Parsed be a set of class names already parsed.

2. List = {Bundle-Activator Class}, Parsed = ∅

3. Class = one class name from List, move this item from List to Parsed

(a) If class Class belongs to this bundle, parse it. Find all references to
another classes or interfaces and add them to List (only if they are
not already in Parsed list).

34

(b) If class Class belongs to one of packages specified by Import-Package,
save it as a new import types element with tag kind = static and
continue.

(c) If class Class belongs to one of packages specified by DynamicImport-
Package, save it as a new import types element with tag kind =
dynamic and continue.

(d) Ignore class Class otherwise and continue.

4. Finish process if List is empty, jump to step 3 otherwise.

To implement this procedure it is necessary to parse java byte-code files (those
with .class extension). For this purpose, one of many open source projects can
be used. In our prototype implementation we used The Byte Code Engineering
Library [1].

35

B XML Representation

This section contains document type definitions (DTDs) for the XML represen-
tation of ENT structures.

B.1 ENT Differences

<?xml version="1.0" encoding="utf-8" ?>
<!-- root element, which represents differences between two components -->
<!ELEMENT entdiff (component)*>
<!-- this element represents the compared component -->
<!ELEMENT component (provider, namespace, name, description?, part+)>
<!-- component model and component type -->
<!ATTLIST component

model CDATA #REQUIRED
ctype CDATA #REQUIRED>

<!-- provider of the component -->
<!ELEMENT provider (#PCDATA)>
<!-- namespace of the component -->
<!ELEMENT namespace (#PCDATA)>
<!-- name of the component -->
<!ELEMENT name (#PCDATA)>
<!-- description of the component -->
<!ELEMENT description (#PCDATA)>
<!--

This element is used at many levels:
"component" - level of the whole component
"categories" - here are stored the differences between
all categories sets (Exports, Needs and Ties)
of the compared components
"tags" - difference between all tags of components

-->
<!ELEMENT part (diff,info?,part*)>
<!-- name of part -->
<!ATTLIST part

name CDATA #REQUIRED
level CDATA #REQUIRED>

<!-- Optional textual information -->
<!ELEMENT info (#PCDATA)>
<!--
Difference between two objects (tags, traits, categories, components, ...)
must be one of this:

"None"
"Insertion"
"Specialization"
"Deletion"
"Generalization"
"Mutation"
"Unknown"

-->
<!ELEMENT diff (#PCDATA)>

36

References

[1] The Byte Code Engineering Library,
http://jakarta.apache.org/bcel/.

[2] Premysl Brada. Specification-Based Component Substitutability and Revision
Identification, PhD thesis, Department of Computer Science, University of
Western Bohemia, Pilsen, Czech Republic, August 2003
Available at http://www.kiv.zcu.cz/˜brada/research/thesis/.

[3] P. Brada. The ENT model: A general model for software interface structur-
ing. Technical Report DCSE/TR-2002-10, Department of Computer Science
and Engineering, University of West Bohemia, Pilsen, Czech Republic, 2002.

[4] Premysl Brada. Issues in Static Verification of Component Substitutability.
In Proceedings of Objekty 2005, Ostrava, Czech Republic, November 2005.

[5] Enterprise Component Framework, Available at
http://www.eclipse.org/proposals/ecp/.

[6] L. Cardelli. Type Systems, Handbook of Computer Science and Engineering,
Chapter 103. CRC Press, 1997.

[7] S. McCamant, M. D. Ernst. Formalizing lightweight verification of software
component composition. In Proceedings of SAVCBS 2004: Specification and
Verification of Component-Based Systems, pages 47-54, USA, 2004.

[8] The Open Group, Distributed Computing Environment (DCE) 1.1: Remote
Procedure Call, Available at http://www.opengroup.org/dce/.

[9] The OSGi Alliance. OSGi Service Platform Core Specification, Release 3.
March 2003,
Available at http://www.osgi.org/.

[10] The OSGi Alliance. OSGi Service Platform Core Specification, Release 4.
August 2005,
Available at http://www.osgi.org/.

[11] Eclipse Platform,
Available at http://www.eclipse.org/platform/.

[12] Equinox project. Eclipse Platform,
Available at http://www.eclipse.org/equinox/.

[13] Sun Microsystems. Enterprise JavaBeansTM Specification, Version 2.1,
listopad 2003
Available at http://java.sun.com/products/ejb/.

37

[14] Sun Microsystems. Java Platform, Micro Edition
Available at http://java.sun.com/j2me/.

[15] Object Management Group, CORBA Component Model, V3.0,
Available at http://www.omg.org/technology/documents/formal/components.htm.

[16] Lukas Valenta, Modeling of EJB Components, Master thesis, Department of
Computer Science, University of Western Bohemia, Pilsen, Czech Republic,
July 2005.

[17] Pavel Stuna, Verification of EJB components substitutability, Master thesis,
Department of Computer Science, University of Western Bohemia, Pilsen,
Czech Republic, July 2005.

[18] Sun Microsystems, Package Version Identification, available at
http://java.sun.com/.

[19] Peter Wegner and Stanley B. Zdonik. Inheritance as an incremental modi-
fication mechanism or what like is and isn’t like. In Proceedings of the Eu-
ropean Conference on Object-Oriented Programming (ECOOP), pages 5577.
Springer-Verlag, 1988.

[20] M. Zenger. Type-safe prototype-based component evolution. In Proceed-
ings of the European Conference on Object-Oriented Programming, Malaga,
Spain, June 2002.

38

