
University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitńı 8
30614 Pilsen
Czech Republic

Model-Based Development of Java
Embedded Applications

Jaroslav Kačer, Stanislav Racek

Technical Report No. DCSE/TR-2004-03
September, 2004
Version: 1

Distribution: Public

Technical Report No. DCSE/TR-2004-03
September 2004

Model-Based Development of Java
Embedded Applications

Jaroslav Kačer, Stanislav Racek

Abstract
This paper presents a model based method of testing and verification of Java
concurrent control programs aimed for embedded devices. Threads of the
control program are mapped onto simulation processes that can be executed
using discrete model-time concept. The computer surrounding environment,
including the controlled device itself, is represented by a simulation model
as well. Both the control program model and the device model are written
as well as executed using the J-Sim simulation tool. The method allows
development of the control program even before the HW platform is devel-
oped, including tests of its behavior that can be difficult to perform using a
real controlled device.

The research was in part supported by a grant of the Grant Agency of the
Czech Republic – Research of methods and tools for verification of embedded
computer systems, No. 102/03/0672.

Copies of this report are available on
http://www.kiv.zcu.cz/publications/
or by surface mail on request sent to the following address:

University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitńı 8
30614 Pilsen
Czech Republic

Copyright c©2004 University of West Bohemia in Pilsen, Czech Republic

Contents

1 Introduction 4

2 Problem Description 5

2.1 Issues with Java Concurrent Programs 5

2.2 Related Work . 6

2.3 The Proposed Development Process 7

3 Model Architecture Overview 10

3.1 Model Structure . 10

3.2 J-Sim . 11

3.3 The JiJ Package . 12

3.4 Conversion . 12

3.5 Model of Control Interface . 14

3.6 Model of the Environment . 16

3.7 Model of Control Program Activity 16

4 JiJ – Java in Java Simulation 22

4.1 Requirements . 22

4.2 New Classes . 23

4.3 JavaThread – Simulation of java.lang.Thread Functionality 25

4.3.1 New Process States . 25

4.3.2 Methods Leading to a Consistent State 26

4.4 JavaLock – Simulation of Synchronization 28

4.5 Thread-Lock Relationships 30

4.6 JiJCalendar and Scheduling Principles 30

4.7 JiJSimulation . 34

5 Control Program Verification Procedure 36

1

6 Case Study 38

6.1 Abstract Control Interface . 39

6.2 Model of Control Program . 40

6.3 Model of Control Program Environment 42

6.4 Overall Model Activity . 43

7 Conclusion and Future Work 46

2

List of Figures

1 The Proposed Process of Developing a Concurrent Java Ap-
plication for Embedded Devices 8

2 Modules Present During Normal Operation and During Testing 10

3 The Differences between the Simulation-Version and
Production-Version Control Interfaces 15

4 Classes of the JiJ Package . 24

5 JavaThread States and Transitions Between Them 27

6 Joint Execution of Classic and JiJ Parts of Simulation 32

7 Case Study – Overview of the Controlled Water System . . . 38

8 Case Study – Modular Structure of the Water System Simu-
lation Source Code . 40

3

1 Introduction

In recent years, the number of Java embedded applications has been grow-
ing constantly. Mass usage of smart mobile phones, PDAs, and consumer
electronic devices has already become reality. Indeed, Java was intended
to be the language of embedded systems from the very beginning. It is
expected that the importance of embedded Java market will grow and so
will grow the need for tested-off and correct applications, mostly employing
Java concurrency as an efficient way of decomposition of the overall task
complexity.

An unresolved question of a Java concurrent program is usually the proof
of its correct behavior. Since there is not just one possible execution path
as in the case of a sequential program, proving correctness of such program
is a painful, or even impossible, task. Especially for embedded software, it
is also quite problematic to test or debug it on its respective device which
usually has only a limited communication interface.

The method of development described in this paper is not able to guarantee
100% correctness of the application. It is a best-effort experimental method
that may (and very likely will) detect correctness violations in your program.
The probability of discovering such a violation grows with the time spent
on testing.

4

2 Problem Description

2.1 Issues with Java Concurrent Programs

Java threads are believed to run in parallel although they usually run in a
pseudo-parallel manner because of a limited amount of processor resources.
The virtual machine is allowed to switch threads at arbitrary places of their
code which causes an unpredictable sequence of program operations during
every run.

To protect shared resources and to allow for monitor methods guarding,
Java introduces methods wait(), notify(), and notifyAll(), able to ma-
nipulate thread execution state. Using these methods is quite often a source
of incorrect program behavior which can lead to unacceptable states such
as deadlocks, livelocks, performing a currently forbidden operation, etc.

It is sometimes quite hard to detect the cause of a program failure since
the program does not report any error and runs just ‘fine’. Also, the cor-
rectness violations do not necessarily appear every time a piece of code is
executed but usually in some program configuration only, when conditions
are favorable for the fault to occur.

Our aim is to detect and report all such violations or user-defined conditions
and to analyze the concurrent program at that point, which involves analysis
of all possible relitionships between threads, locks, objects, their classes, and
corresponding source code.

Controlling a working piece of hardware often requires real-time properties
of the application. A hard real-time application cannot be achieved without
using special means, such as Real-Time Java Platform [12]. However, we
suppose usage of a classic JVM where the required properties are guaranteed
by hardware performance and low system load.

Since it is difficult to test the control program in its destination environ-
ment, we intend to create a model of the surrounding environment that will
cooperate with the tested control program as if it was a real hardware. In
the area of our interest, it is of great importance to model the environment
properly and to include all relevant details of the real world.

5

2.2 Related Work

There have been many attempts, to test concurrent programs or to prove
certain properties of a concurrent program or its design. Some of them are
theory-based methods of formal verification, some are experimental meth-
ods, like this one.

Petri nets and the π-calculus are examples of theory-based methods. In [5]
and [6], there could be found attempts to formalize Java using the π-calculus
and subsequently verify Java programs formally, however it is not possible
to find any mention in the above papers how it could be really used.

The LTS Analyzer [7], using the FSP process algebra, is a helpful tool, able
to diagnose a system before it is implemented. However, it is just another
theoretical method. Alike the model checker SPIN [9] which uses Promela to
describe the verified system. SPIN can be extended with Java PathFinder
1 which can create the desired Promela model from a real Java source code.
However, the Java language is only partially supported and the state-space
of the tested program must be finite.

The model checker VeriSoft [8] deals with real source code. It’s main disad-
vantage is that it is limited to the C language and to the UNIX operating
system.

Finally, the ExitBlock algorithm [10] deals with Java bytecode. It is in-
tended for finding errors in concurrent Java programs resulting from unin-
tended timing dependencies. The algorithm is able to execute and test all
possible execution paths of the tested program thanks to the Rivet Virtual
Machine (VM) that supports checkpointing and rollbacks. Main disadvan-
tage is the key assumption about thread termination after a limited time of
computation.

Java PathFinder 2 [11] is another detection tool based on a special VM and
working directly with bytecode. It can check for deadlocks and for invariants
defined by the user.

This work is also based on experience gained during the FIT project [15],
where a similar experimental method was used to verify properties of a
break-by-wire embedded application based on the Time Triggered Protocol
(TTP). The application was written in ANSI C and it was in fact just
a model of real software running on TTP chips and the model of Time
Triggered Protocol itself. The work is described in [13], [14], and other
publications.

6

2.3 The Proposed Development Process

The main differences between a normal program development and our
method are the following:

• A model of the device and the environment has to be created. It is
supposed that the model is built up on top of J-Sim [4], a discrete-
time simulation library. This is unique in the area of program testing
– none of the tools from section 2.2 uses joint testing of the application
and a model of the environment.

• The control program source code has to be modified slightly. All
threading-specific constructs have to be replaced by their J-Sim
counterparts, e.g. a subclass of Thread will become a subclass of
JSimProcess1, etc. The conversion can be made either manually or
(better) automatically.

• The two source code parts must be merged together into one J-Sim
simulation application what means that they have common planning of
simulation processes (i.e. one common event list). Some “diagnostic”
parts of the code can be added moreover (e.g. see the “observer”
process below).

• The simulation application can be executed and results are obtained.
Just note that both the device model and the control program run in
model time. The results can be e.g. collected by a special “observer”
simulation process that performs all user-defined tests with a certain
period. Both model and control program data are relevant to be used
within the tests. It is important that all the performed tests can be
made non-intrusive, i.e. they don’t influence neither the control pro-
gram function nor the dynamic behavior (model time is used instead
of real time). The simulation model behavior can be visualized, what
is convenient for the testing purpose. Any revealed bug within the
control program can be easily removed and the tests can be repeated.

• At the end of the process, the (debugged) control program source code
can be separated from the model and straightforwardly converted to
the production form. Only the control interface object (see below in

1More precisely, it will become a subclass of cz.zcu.fav.kiv.jsim.jij.JavaThread,
which in turn is subclassed from JSimProcess.

7

3.5) should be implemented other way in order to use real HW registers
instead of the model data items.

The process and its key steps and components are depicted in figure 1. Just
note that both the model and the application run in model time.

Figure 1: The Proposed Process of Developing a Concurrent Java Applica-
tion for Embedded Devices

Out of scope of this paper is a detailed organization of the tests. It is obvious
that a single run of the simulation is not enough to test a complex concurrent
neverending program with virtually unlimited number of possible behaviors.
Some general recommendations are given below in the part 5.

In general, the probability of discovering an error within the control program
functionality is directly proportional to the time spent on testing and to the
number of different parameter settings of the model (timing, distributions
of random numbers, etc.). Unlike theoretical methods, this experimental
method is not capable of 100% correctness proof (but the incorrectness can

8

be clearly proven with certainity).

The idea presented here depends on and extends previous work described
in [1], [2], and [4]. While [1] and [2] describe an approach to runtime anal-
ysis of a ‘classic’ desktop concurrent programs, [4] and other J-Sim related
papers focus on creating a model from scratch. If the two software modules
(the tested control program and the model of its environment) are merged
together with J-Sim, one can more or less easily verify a concurrent program
using a standard PC before the program is actually loaded into a device.

9

3 Model Architecture Overview

3.1 Model Structure

This section presents the overall structure of the simulation model, its main
modules and mapping between modules used during normal operation mode
and testing mode on a PC. An overview can be seen in figure 2.

Figure 2: Modules Present During Normal Operation and During Testing

The main diffencies between the considered modes are as follows:

• The embedded computer device is replaced with a PC or any other
personal computer.

• The OSes used differ, however their function stays the same (in fact
the JVM masks the lower layers of SW and HW creating a kind of
universal machine interface).

10

• In embedded computer devices, the SE Java Virtual Machine is not
usually used due to its resource requirements. Instead, there is a ME
equivalent called KVM or CVM. Some JVM functionality is missing
and some is added. This applies mainly to Java libraries.

• The original control program is replaced with its modified version,
running on top of J-Sim. The model of the environment must be added
to the system in order to simulate the device and the environment.
Since the original application communicates with the environment, all
this communication must be replaced with calls to some parts of the
model responsible for this.

Concerning the communication of the control program with lower layers,
there should be a well defined interface(s) that all communication will go
through. This (abstract) interface is the same for both modes. In the testing
mode, the interface is implemented by a class of the environment model and
changes/returns its state. In the normal operation mode, the interface is
implemented by a part of the application that does the real communication
with hardware, e.g. using the JNI.

The aim is to keep the application source code as little changed as possible
in order not to divert from its original behavior. The changes involve only
threading-specific commands (thread methods, synchronization, . . .) and
the communication functions. Java is extremely convenient for performing
the former set of changes because the threading interface is standardized in
the language. So this task can be done more or less automatically.

3.2 J-Sim

The J-Sim simulation library [16] is required by both the model and the
tested control program. Actually, it is a ‘glue’ that links the two parts
together by means of a simulation object that contains processes from both
parts. The model part, created from scratch, is designed as a set of J-Sim
processes from the beginning. The application part has to be converted to
the desired form either manually or automatically.

The library brings the idea of discrete-time process-oriented simulation,
known from Simula, to Java. A simulation is expressed as a set of processes,
sharing the same simulation (model) time. Activity of a process always takes
zero simulation time and the process can suspend itself between two consecu-
tive activities which creates a ‘gap’ in the simulation time and advances it as

11

well. A process activity can finish calling either passivate() or hold(gap)
Simula-like operations. In the second case, the next activity of the calling
process is planned (using an event list data structure) at the simulation time
current time + gap. The simulation time cannot go backwards, process
execution is therefore ordered according to the simulation time of their next
activity. This way the simulation processes are interleaved, i.e. other pro-
cesses can be scheduled within the simulation time gap between successive
activities of every process.

More about writing simulation models can be found for example in [4] and
on the J-Sim home page [16].

3.3 The JiJ Package

The J-Sim tool was found to be a convenient starting point for dicrete-
time simulation of Java multithreading according to the rules and principles
described later in section 3.7. However, it was originally designed to support
a lightly different type of simulation. It was also necessary to provide 1:1
mapping between the original Java code and the converted simulation code,
which was clearly impossible to be achieved with single class JSimProcess.

It was therefore decided to derive new classes from JSimProcess and
JSimSimulation, focused strictly on Java multithreading simulation. The
new classes (plus several other classes) form a new package called JiJ 2 – JiJ
here means Java in Java because simulation of Java programs is executed
inside Java.

The JiJ package is discussed in detail in section 4.

3.4 Conversion

Currently, conversion of contol program source code to the simulation ver-
sion and back is performed manually but a conversion tool [19] has already
been constructed.

The tool is based on JavaCC [18], a Java parser generator. A parser gener-
ator is a tool that reads a grammar specification and converts it to a Java
program that can recognize matches to the grammar. Since JavaCC comes
with a complete grammar of the Java language used in J2SE 1.4 (and even

2More precisely, cz.zcu.fav.kiv.jsim.jij

12

newer J2SE 1.5 aka Tiger), all that must be done is just to program an
adequate action when a certain token is read.

The conversion tool is parametrized by an XML file where transforma-
tion rules are stored. A rule can apply to a class, an attribute, a
method/constructor header, a method/constructor call or import com-
mands. When a searched token is found in the source code, an operation
can be performed on it, for example it can be deleted completely, replaced
by another name, etc. Method calls can also be added to the modified code.

The conversion utility supports macros and their expansions. There is one
pre-programmed macro coming with the tool, LOCK. It is able to find the
respective lock object to a wait() method call. The lock object need not be
always specified. In case of a synchronized method, this is used as the lock,
or ClassName.class for static methods. In case of synchronized blocks with
explicit lock, the (same) lock must be prepended before the wait() method
invocation – myLock.wait().

So if any call to wait() is replaced with sim.getLock($LOCK$).wait JiJ(),
the resulting source code after macro expan-
sion can look like sim.getLock(this).wait JiJ(),
or sim.getLock(ThisClass.class).wait JiJ(), or
sim.getLock(explicitLock).wait JiJ(), depending on the context.

The same macro can be used for replacing notify() and notifyAll().

The conversion of a class involves the following changes (not all of them are
listed):

• In case of a thread class, the superclass is changed to JavaThread or
its subclass. This ensures that the thread will be executed by J-Sim in
a deterministic way. The constructor has to be changed too and the
run() method has to be converted to run JiJ() appropriately.

• Checking synchronized blocks (locking and unlocking) is necessary. All
locks used for synchronization must be registered and their wait sets3

and delayed sets4 must be maintained.

• All thread-state-manipulation methods, such as wait(), notify(),
3A wait set of a lock contains all threads that have invoked its wait() method and

have not been notified yet.
4A delayed set of a lock containes those threads that are trying (still without success)

to enter a synchronized block guarded by the lock.

13

etc. have to be replaced with their model version. This includes also
sleep(), yield(), setPriority(), . . .

3.5 Model of Control Interface

Control interfaces of embedded applications can be roughly distinguished as
follows:

Passive Interface. Data items of the interface are written or read period-
ically by the activity of control program. It corresponds to embedded
control systems that are denoted as time-triggered [17].

Active Interface. A part of the interface serves as an interrupt controller
interface. When an interrupt occurs (i.e. when an event occurs within
the controlled object), its service routine (part of the control program)
is activated to manage the event. It corresponds to embedded control
systems that are denoted as event-triggered.

The method described here can use both the models of passive or active
interface. We use two kinds of control interface models that differs in the
level of abstraction and in the corresponding Java language description:

Java Interface. This model contains only function (method) types, no im-
plementation. It means that it is not necessary to change the model
when passing from the model version to a production-version of the
developed (tested) control program.

Java Class. A model of this level should to implement the corresponding
abstract interface. It means that within the process of an embedded
application development we need to make two implementations - the
first aimed to be used as a part of simulation model and the second
aimed to be used with the real control program.

The relationship between the simulation-version and production-version con-
trol interfaces is depicted in figure 3. Note that while the declaration part
(a Java interface) remains the same, its implementation (a Java class)
changes. However, the two different implementations are completely hidden
for the control program since it communicates via an object typed as an

14

Figure 3: The Differences between the Simulation-Version and Production-
Version Control Interfaces

interface. The only required change is the actual creation of the commu-
nication object where a different class (or constructor name) is used after
the new keyword.

The method described here can be straightforwardly extended for a dis-
tributed embedded application as well. Then we have to use two kinds of
computer-environment interface – control interface (i.e between a computer
node and its part of controlled device) as well as network interface (e.g. a
serial bus interface). Clearly, then the model complexity will arise rapidly,
because the model should include all the nodes of distributed system and a
(sub)model of communication protocol as well [15].

15

3.6 Model of the Environment

The proposed method assumes that the model is constructed atop of J-
Sim using conventional methods of discrete-time process-oriented simula-
tion. Basically, the model will be a set of objects, some of them are discrete-
time simulation processes periodically updating certain data. A process can
periodically read a value (statement-like value) from a data structure that
serves as the model of computer-environment interface, to recompute state
of the model using the read value and (optionally) to write a result of com-
putation into the object-model of the control interface. In reality the data
items of computer-environment interface are usually located in HW registers
and accessed via Java Native Interface methods of the control program that
manipulate the data using low-level (e.g. assembler) commands. The tested
application must replace these methods with methods interacting with the
model before the testing experiments are started.

So the data implementing the model of control interface are in discrete-time
points read/modified by:

• Simulation processes of the model of controlled environment. These
processes usually implements both functional and dynamic properties
of the environment.

• Simulation processes modeling the functionality and dynamics of
threads of the control program.

3.7 Model of Control Program Activity

As mentioned before, not the original application program, but its model is
tested by the presented method. The following list defines terms necessary
to understand the process of the control program model creation:

Control Program – The original program. The static view CPS of the
control program is a constant set of classes, either threads or monitors
(i.e. ‘passive’ objects with synchronized methods).

Process of Control Program Execution. It is the dynamic view CPD
of the control program, i.e. a set of instances of threads (subprocesses)
that are interacting using a set of monitors (shared objects). The

16

dimension of both sets can change but let’s consider it constant for
simplicity.5

Process of a Thread Execution. It is an independent subprocess
CPDTi of the CPD execution. It is described by the run() method
that belongs to every thread class. The process of Java thread execu-
tion can be (roughly) in a state from the following set:

• Running – The thread is running or it is able to run immediately.
When runnable, it can be either within a part of local computation
(i.e. it operates with its own data only) or within a part of a
monitor method call6. Both cases of computation are considered
to be atomic in the sense that when started it has to be finished
and no other thread can influence correctness of the result and
consistency of the used data items. Monitor method call can
change the calling thread state from running to delayed.
• Delayed – The thread is delayed when it tries to enter a syn-

chronized block of code that is currently inaccessible due to its
respective lock’s state. The lock is owned by another thread and
the thread in question must be prevented from continuing. How-
ever, this state is different from the state non-runnable because
waiting on locks implemented in Java is active (in contrast to
some other synchronization mechanisms using semaphores).

• Non-runnable – The thread waits for an event or for the end
of a time interval, or both. We will recognize several rea-
sons for a thread to become non-runnable: waiting within a
monitor method on wait() or wait(howLong), waiting caused
by Java sleep(howLong) method call, or waiting caused by
join()/join(howLong).
The Java thread is put to running or delayed state after the
respective condition is fulfilled or the specified time elapses,
whichever occurs first.

Java threading mechanism does not distinguish between the two first
states. They are both merged into one state, called runnable.

5This assumption ‘cuts off’ the inherent indeterminism of dynamic behavior caused by
the garbage collector in Java. When e.g. RT Java is used, the principles of the method
still hold for a changeable set of run-time objects.

6It means that local part finishes when a synchronized method is called. Synchronized
method call is used whenever the thread needs to interact with its environment – typically
local parts of computation and monitors method calls are regularly altered.

17

I/O Behavior. I/O behavior of the control program can be defined as a
sequence (possibly infinite) of events on the control interface caused
either by the control program activity or by the (controlled) environ-
ment. One event in the sequence is a change of the interface data item
including a ‘time stamp’ of the change.

To proceed from the real control program behavior to a model of its behavior,
let us assume several restrictions as for the program control flow:

1. The control program is executed at a one-processor computer.

2. Every thread’s local part of computation is executed at once.7

3. The same as in point 2 applies for a monitor procedure call.8

Note 1: The assumptions given above mean a limitation of a ‘real concur-
rency’ of CPD. Instead of it, a kind of ‘interleaved concurrency’ is assumed.

Note 2: At the first glance, the assumptions given above seem to be far
from reality. In fact, for embedded (real-time) applications, the computer
should not be loaded too much and no part of a thread computation should
not last too much as well, so for a wide variety of embedded applications
the assumptions fit quite well.

Note 3: In fact these assumptions are not substantial for the presented
method practical utilization. Within an application of the described method
they could be “bypassed” a way. Here they are used to have more clearly
defined concepts used within this explanation.

Using the given assumptions, we can introduce some additional concepts
concerning the CPD:

Consistent State of CPD. It can be reached when all the runnable
threads are stopped after the (current) local part of their computa-
tion has been performed (i.e. at the entry point of a monitor proce-
dure call).9 Then the data of all objects (either threads or monitors)

7It corresponds to the case when all the threads have the same priority and no context
switching among threads with the same priority occurs.

8Monitor procedure execution can be interrupted using the wait() function. Then we
assume that all the parts of the procedure computation between successive wait() calls
are executed at once.

9When the assumptions apply, the consistent state is reached when (one) running
thread finishes its current local part of computation.

18

should be consistent and a consistent state of CPD can be constructed
as a set of consistent states of all objects that the process of control
program computation is composed from.

State Space Behavior. It can be defined as a sequence (possibly infi-
nite) of consistent states that the CPD is passing through. Both in-
put/output and state space behavior can be taken as possible kinds of
CPD description.

Now we can start to construct a model CP ∗D of the control program activity
CPD. At the first – we need to pass from the (continuous) real time of ‘phys-
ical’ computation to the (discrete) model time of simulated computation. At
the second – the data and functionality of every atomic part of computation
(i.e. a thread local part or a part of monitor procedure call) should be the
same in both cases CPD and CP ∗D. At the third – an atomic part of real-
time computation should be performed at one point of the discrete model
time and the computational delay of the atomic part of computation should
be taken into account by the J-Sim scheduler.

Then the CP ∗D computation can be performed as a sequence of atomic parts
of all threads computations, where the order of atomic parts is randomly
chosen10 and the simulation time is advanced after every atomic part ex-
ecution by the real time spent by the atomic part execution or by a value
derived from it. Using common simulation time, the CP ∗D activity can be
properly interleaved with the EP ∗D activity, i.e. with discrete time model of
the control program environment activity. Moreover both activities (simula-
tion worlds “control program” and “environment model”) can influence each
other using the (common) model of the control interface.

To create the control program model, it is necessary to modify the original
source code, therefore the static view of the model CP ∗S differs from that
of the original program code CPS . However, their cardinalities are equal
and the mapping from CPS to CP ∗S is an isomorphism, what is important,
because we need to use the inverse mapping as well when passing from the
(tested off) model code back to the original real-world code. The necessary
changes between CPS and CP ∗S should be as few as possible.

CP ∗S code is then merged in the conventional way with the EP ∗S (i.e with
the source code of the model of the controlled environment). The reqired

10But still, all rules of Java scheduling must be respected.

19

run-time behavior of the model (i.e. discrete-time sequence of atomic parts
of computation) is then reached thanks to J-Sim run-time kernel that in-
terleaves both parts of the overall model activity using the common event
list.

When we assume that the EP ∗D (i.e. the modeled environment behavior)
can be made (by a proper EP ∗S construction) arbitrarily close to the real
controlled environment behavior, then the overall model behavior (i.e. CP ∗D+
EP ∗D, measured by both the input/output and state space behavior) can be
made (by a proper CP ∗S and EP ∗S construction) arbitrarily close to the real
system (i.e. computer + CPS + environment) behavior.

Notes:

1. The assertion stated above can hardly be proven using a mathematical
way. It would need all the concepts used above to be formally defined,
including a formal description of the Java language semantics. More-
over all the possible controlled environments should be considered (and
formally described), what is clearly impossible. Fortunately, the use-
fulness of the (experimental) method can be evaluated experimentally
– using it within a variety of case studies including the model vali-
dation, i.e. a comparison of model based tests with their real-world
counterparts.

2. It has no great sense to try to have the model behavior exactly the
same as the real-world system behavior. The environment behavior is
frequently a random process (mostly infinite), so the control program
execution path within its state space fluctuates as well (it could be
e.g. mathematically described as a stationary random process). Prac-
tically it means that we need not to know precise values of delays of
single atomic parts of computation, instead of it we should use ran-
dom delays. It should lead to a better coverage of the model based
tests of the control program functionality, e.g. possible troubles of
concurrent computation (deadlocks, race conditions, etc.), should be
revealed more easily.

3. The wait() and sleep() replacements have to declare the
InterruptedException to be possibly thrown out, as their originals
do. Then, the surrounding code (try and catch blocks) need not
be modified. The exception will be actually thrown out when the
interrupt() method of the suspended thread is invoked so exception

20

handlers will also be tested. This is important, because every em-
bedded system should be at least fail-safe, i.e. the control program
(whatever way it finishes) should be able to pass the controlled device
into a safe state.

21

4 JiJ – Java in Java Simulation

The JiJ package is an extension of the J-Sim library for simulation
of Java multithreaded programs. It provides a replacement class for
java.lang.Thread and replacement methods for wait(), notify(), and
notifyAll() methods of class Object while keeping the main properties of
classic J-Sim simulation: step-by-step execution on user request and discrete
values of simulation time, one value valid for a whole simulation step.

In the same time, it allows execution of ‘new’ processes – Java threads
together with ‘classic’ J-Sim processes used to describe the environment
model, as described in sections 3.6 and 6.3.

4.1 Requirements

Let’s form some requirements that the JiJ package should meet in order to
be usable for mixed-mode simulation described in chapter 3.

1. It must provide a replacement for the Thread class, including its
most important methods, like run(), start(), sleep(), join(),
interrupt(), interrupted(), etc.

2. It must be able to simulate synchronization used in monitor meth-
ods, including Object’s methods for controlling thread execution state:
wait(), notify(), and notifyAll(). The simulation must be able to
handle nested synchronization (nested synchronized blocks or calling
synchronized methods from other synchronized methods).

3. Thread execution state must be maintained by both thread methods
and lock methods. The state must be taken into account during thread
scheduling as in the original Java scheduling strategy.

4. During one simulation step, either a classic J-Sim process or a JiJ
JavaThread-process can be given control. In the former case, the
simulation step finishes when a passivate() or hold() method is
called. In the latter case, the simulation step finishes when a consistent
state of the program is reached, which happens at the following places:

• at the beginning/end of every synchronized region of code;

• at the place where wait() is invoked;

22

• at the beginning/end of every thread’s run() method when a
thread ‘is born’ or ‘dies’;

• at the place where sleep(), join(), yield(), or setPriority()
is called.

5. The simulation time must be shared by both the control program simu-
lation (the JiJ part) and the outer world model (the ‘classic’ part). All
actions in the classic part are executed in zero-long simulation time in-
terval and the simulation time is advanced by hold() and activate()
method calls, as it is usual in Simula-like systems. All actions in the
JiJ part are executed in non-zero-long simulation time interval and the
simulation time is advanced “automatically” by the time spent by the
computation11 when a consistent state is reached. The simulation time
can be also advanced by calls to sleep(howLong), join(howLong), or
wait(howLong) if there is currently no runnable thread in the JiJ part
of the simulation.

6. When selecting the next thread to run, all rules of Java scheduling must
be respected. The rules include the state of every tread (runnable/non-
runnable), its priority, and lock requirements and ownership12. Usu-
ally the simulation time value or the total time spent by a thread or
any other quantity should not be taken into account.

4.2 New Classes

The most important classes of the JiJ package are shown in figure 4.

They will be explained below in detail below, here is just a basic summary:

• JavaThread replaces Thread and all its methods important for our
goals.

• JavaLock replaces functionality of Object’s methods wait(),
notify(), and notifyAll(). Since any object can be used for syn-
chronization in Java, JavaLock instances cannot be created in the
source code of the simulation version of the tested program. Instead,
they are managed by a lock repository.

11or any value derived from it or even a reasonable random number
12A thread that does not own a lock synchronizing a block of code cannot enter the

block and therefore it cannot get control now. Let’s call it a delayed thread according to
terminology from section 3.7.

23

Figure 4: Classes of the JiJ Package

• A LockRepository instance manages relationships between origi-
nal locks (instances of any class) and simulation-version locks – in-
stances of JavaLock. A lock repository is able to return always the
same JavaLock instance for the same synchronization object. If no
JavaLock exists yet for the supplied object, a new one is created and
returned.

• Various relations between threads and locks are expressed by
classes JavaAcquiredLocks, JavaWaitSet, and JavaDelayedSet.
JavaAcquiredLocks manages relations leading from a JavaThread to
(possibly) multiple JavaLocks. It stores all locks currently owned by
a thread. To ‘own a lock’ means to be permitted to enter code syn-
chronized with the lock. Classes JavaWaitSet and JavaDelayedSet
manage relations in the opposite direction. For a given lock, they
store threads that are waiting on wait() inside a block of code syn-
chronized with the lock (JavaWaitSet) or threads willing to enter –

24

still unsuccessfully – such a block (JavaDelayedSet).

• A JiJCalendar manages the simulation time and selects the next
thread to run. It also manages so-called wake-up events. A wake-
up events is created whenever a thread performs an operation that
switches it to a non-runnable state for a given time period, e.g.
sleep(howLong). An event carries information about the respective
JavaThread and the time when it should be re-activated.

• A JiJSimulation is a ‘container’ for all threads, locks, and other
elements. It provides the step() method that performs exactly one
simulation step.

4.3 JavaThread – Simulation of java.lang.Thread Functional-
ity

The JavaThread class adds new functionality to JSimProcess from which
it is extended. New constants, attributes, and methods have been added.
A JavaThread’s behavior is not determined only by calls to its own meth-
ods but also by calls to methods of JavaLock instances during a thread
execution. Since JavaLock method headers do not include a reference
to the currently running thread13, the necessary reference is obtained via
JSimSimulation.getRunningProcess() inside these methods.

4.3.1 New Process States

In addition to JSimThread’s original states, new states are introduced in
JavaThread:

• STATE RUNNABLEINCONSISTENTSTATE – A JavaThread gets to this
state when it reaches a consistent state and still remains in runnable
state. Such a thread can be selected to run in the next simulation
step.

• STATE BLOCKEDONJAVASYNCHRONIZATION – A JavaThread gets to this
state when it reaches a consistent state formed by a beginning of a syn-

13Specifying the running thread would not correspond to the principles used in Java.
Also, it would be insecure due to possible fake reference. Moreover, it would be impossible
to determine the reference in methods of classes other than thread classes, e.g. monitor
classes.

25

chronized block (a JavaLock’s lock() method) and cannot continue
because the lock is already owned by another thread. The thread can
get to STATE RUNNABLEINCONSISTENTSTATE later when the lock is re-
leased in unlock() and this thread is selected to enter the synchronized
block.

• STATE SLEEPING – A JavaThread gets to this state after invoking
sleep JiJ(howLong). After the specified (simulation) time elapses,
the thread is switched to STATE RUNNABLEINCONSISTENTSTATE during
a simulation step.

• STATE SUSPENDEDONJAVAJOIN – A JavaThread gets to this state
after invoking join JiJ() on another JavaThread if the target
thread has not terminated yet. The thread is switched back to
STATE RUNNABLEINCONSISTENTSTATE when the target thread finishes.

• STATE SUSPENDEDONJAVAWAIT – A JavaThread gets to this state
after invoking wait JiJ() on a JavaLock. It can get back to
STATE BLOCKEDONJAVASYNCHRONIZATION when it receives a notifica-
tion signal via the lock’s notify() or notifyAll() from another
thread.

When a JavaThread is just running during a simulation step execution, it is
in the STATE ACTIVE state inherited from JSimProcess. Other inherited
states (STATE SCHEDULED, STATE PASSIVE, STATE BLOCKEDONSEMAPHORE,
STATE BLOCKEDONMESSAGESEND, STATE BLOCKEDONMESSAGERECEIVE) are not
used.

State switching is performed by the setProcessState()
method that overrides JSimProcess.setProcessState(). A
JiJInvalidJavaThreadStateException exception is thrown out if
the specified state cannot follow the thread’s current state. All JavaThread
states and transitions between them are shown in figure 5.

4.3.2 Methods Leading to a Consistent State

The methods that lead a JavaThread to a consistent state can be roughly
sorted into two main groups:

1. Methods of the class JavaThread itself.

26

Figure 5: JavaThread States and Transitions Between Them

2. Methods of the JavaLock class. In order for a consistent state to be
reached, the running thread must be determined first and then its
reference must be used to invoke a JavaThread method corresponding
to the JavaLock method.

The first group of methods includes: join JiJ(), sleep JiJ(), and
yield JiJ().

The second group includes: blockOnJavaLock(),
passOverJavaLockBegin(), passOverJavaLockEnd(), and
suspendOnJavaWait():

• blockOnJavaLock() is called from JavaLock.lock() if the
lock is currently unavailable. It transfers the thread to
state STATE BLOCKEDONJAVASYNCHRONIZATION and then calls
consistentStateReached(). There is a complementary method

27

unblockFromJavaLock() that is called from JavaLock.unlock()
when another thread frees the lock and this selected as the
only thread allowed to get the lock and enter the correspond-
ing synchronized code. The thread is then transferred to state
STATE RUNNABLEINCONSISTENTSTATE and it is ready to be run during
a next simulation step.

• passOverJavaLockBegin() is called from JavaLock.lock() if the
lock is free and the runing thread can get over it. It transfers the
thread to state STATE RUNNABLEINCONSISTENTSTATE and then calls
consistentStateReached().

• passOverJavaLockEnd() is called from JavaLock.unlock(). It trans-
fers the thread to state STATE RUNNABLEINCONSISTENTSTATE and then
calls consistentStateReached().

• suspendOnJavaWait() is called from JavaLock.wait JiJ(). It
transfers the thread to state STATE SUSPENDEDONJAVAWAIT and ex-
cludes the lock from the set of locks owned by this thread. Then
it calles consistentStateReached(). There is a complementary
method resumeFromJavaWait() that switches the thread back to state
STATE BLOCKEDONJAVASYNCHRONIZATION. The reason for not using di-
rectly STATE RUNNABLEINCONSISTENTSTATE is that the thread must
compete with other threads to get the lock as if it were entering a
synchronized block of code from its beginning.

The consistentStateReached() method first informs the simulation that
the thread is about to reach a consistent state. This allows the simulation
to compute the time spent by the thread and update the value of simulation
time and the JiJ calendar. Then the mainSwitchingRoutine() method,
inherited from JSimProcess, is called which assures the necessary switching
back to the main simulation thread from which step() was invoked. The
step() method can finally be completed and the simulation step is finished.

4.4 JavaLock – Simulation of Synchronization

The JavaLock replaces threading-specific functionality encoded in the class
Object. There are five principal methods offered by JavaLock:

• lock() – Replacement of ‘invisible’ action taking place at the begin-
ning of every synchronized block. It either allows or disallows a thread

28

to enter a synchronized block. In case of a thread that is allowed to
continue, its passOverJavaLock() method is called. In the other case,
blockOnJavaLock() is called. A consistent state is reached in any
case.

• unlock() – Replacement of ‘invisible’ action taking place at the end
of every synchronized block. The running thread never gets blocked
here but a delayed thread (if a delayed thread exists) may get per-
mission to enter a synchronized block via its unblockFromJavaLock()
method. The running thread’s passOverJavaLockEnd() method is
always called which leads to a consistent state.

• wait JiJ() – Replacement of Object.wait(). Releases the lock,
calls the running thread’s suspendOnJavaWait() which in turn calls
consistentStateReached(). If the running thread is not the lock’s
owner, an IllegalMonitorStateException is thrown out.

• notify JiJ() – Replacement of Object.notify(). Does not re-
lease the lock. If the lock’s wait set in not empty, a thread
from the set is randomly selected and its resumeFromJavaWait()
method is called, which transfers the selected thread to state
STATE BLOCKEDONJAVASYNCHRONIZATION. The thread must compete
with other threads to become the lock’s owner when the lock is re-
leased by its current owner with unlock().

• notifyAll JiJ() – Replacement of Object.notifyAll(). Its behav-
ior is identical to notify()’s behavior with one exception: All threads
from the wait set are resumed so the wait set is always empty after
notifyAll JiJ().

JavaLocks cannot be created in the standard way in the tested program
because their originals are not created explicitely for the purpose of syn-
chronization. Instead, they are normal objects, as all others. One object
can be used as lock at many different places which would cause difficul-
ties if we had to create a unique JavaLock for every synchronization object
explicitly.

Therefore, a different approach is taken in the JiJ package. There is a
repository of all JavaLocks that have ever been created. Together with
them are stored the original locks. When a JavaLock is needed for an object
and it does not exist yet, a new one is created and returned. Otherwise the
stored JavaLock is returned. This assures that the same JavaLock is always

29

used instead of the same original lock and that synchronization will behave
in exactly the same way as in the original program.

The lock repository is an instance of JiJLockRepository and there is one
repository per a JiJ simulation. It is accessed via the getLockForObject()
method of the JiJ simulation14. The reference is not stored to any variable
but immediately used for method invocation:

simulation.getLockForObject(this).wait_JiJ();

4.5 Thread-Lock Relationships

The relationships between threads and locks are maintained by 3 classes:

• The JavaAcquiredLocks stores all locks that are currently owned by
a thread. Every JavaThread contains a JavaAcquiredThreads in-
stance. Together with the locks are stored their levels of nesting. If,
for example, a thread passes twice over the lock() method of the same
lock, its level of nesting is equal to 2. If then the thread passes over
unlock(), the lock is still owned by the thread. The level of nesting
must reach zero in order for the lock to be marked as free.

• The JavaWaitSet and JavaDelayedSet classes work in exactly
the opposite way: for a given lock, they remember all threads
that are suspended inside wait() of the lock or threads that
try – still unsuccessfully – to pass over the lock() method of
the lock. Both of them have a method that inserts a thread
to the set – insertThread(). JavaDelayedSet also provides
selectThreadToEnter() that selects a thread that will be allowed to
get over lock(). JavaWaitSet has selectThreadForNotify() and
selectThreadsForNotifyAll() that select one thread/all threads
that will be notified by notify()/notifyAll().

4.6 JiJCalendar and Scheduling Principles

As stated in section 3.7, two parts execute together during JiJ simulation:
the model of the control program and the model of the outer environment.

14A reference to the simulation should always be added to attributes of every class of
the tested control program.

30

Since the model of the control program runs on top of J-Sim JiJ package and
the the model of the environment runs on top of ‘classic’ J-Sim, different
scheduling principles hold in each part.

The ‘classic’ J-Sim part uses scheduling princliples known from the Simula
language:

• All processes of the simulation run ‘in parallel’. It means that every
process has its own axis of simulation time.

• Every action execution is zero time units long (measured in simulation
time), i.e. it is just a point on the time axis of a process.

• There are time gaps between successive actions of the same process.
The simulation time changes directly from the last action’s time to the
new action’s time. There is nothing in between.

• During simulation, all events of all processes are put together and
sorted by their simulation time. Then they are executed in this order
so between two actions of the same process there may be a number of
actions of other processes. This principle is known as event interleav-
ing.

On contrary to the above, the following principles hold in the JiJ part:

• Threads do not run in parallel because there is just one processor
shared by all of them. If thread T1 runs at simulation time t1, thread
T2 cannot run at the same time and its execution must be postponed
to the future.

• Every action execution is non-zero time units long, i.e. it is a non-zero
time interval on the common time axis.

• If there are runnable threads, there are no gaps between activities of
different threads or between activities of one thread. By activity, we
mean a transition from a consistent state to another consistent state,
i.e. execution of a part of a thread’s code. If there are currently
no runnable threads, there may be a gap where no thread can be
scheduled. This situation can happen if all threads are sleeping using
sleep().

31

• Although simulation time is advanced during execution of
JavaThreads, it has no direct impact on scheduling, i.e. selection
of the next thread. The thread to run in the next simulation step is
selected using Java scheduling rules (thread state, priorities, . . .) and
also random selection.

Let’s consider a joint simulation of two JavaThreads T1 and T2 and two
JSimProcesses P1 and P2. A possible scenario of its execution is shown in
figure 6.

Figure 6: Joint Execution of Classic and JiJ Parts of Simulation

Let’s describe what happens during the execution:

1. Thread T1 gets control and runs until its next consistent state. When
the consistent state is reached, the simulation time is updated.

2. Process P1 is given control because it has an event in the classic J-Sim
calendar with simulation time less than the current simulation time

32

– E1. The simulation time is teporarily shifted to the past because
classic J-Sim processes must run exactly the same points of simulation
time they were scheduled for.

3. Thread T2 gets control and runs until its next consistent state. When
the consistent state is reached, the simulation time is updated. Be-
cause the thread calls sleep(), a new wake-up event W1 is inserted
to the JiJ calendar and the thread becomes non-runnable.

4. Process P2 is given control because it has an event in the classic J-Sim
calendar with simulation time less than the current simulation time –
E2. Again, the simulation time is teporarily shifted to the past.

5. Thread T1 gets control and runs until its next consistent state. When
the consistent state is reached, the simulation time is updated. Be-
cause the thread calls sleep(), a new wake-up event W2 is inserted
to the JiJ calendar and the thread becomes non-runnable.

6. There is no runnable thread in the JiJ part of the simulation. The
event with least simulation time is E3. The simulation time is shifted
forward and process P1 gets control.

7. There is still no runnable thread. The event with least simulation
time is W1 which is a wake-up event that has to reactivate thread
T2.The simulation time is shifted forward, the event is interpreted and
T2 becomes runnable.

8. Thread T2 gets control and runs until its next consistent state. When
the consistent state is reached, the simulation time is updated.

9. Process P2 is given control because it has an event in the classic J-Sim
calendar with simulation time less than the current simulation time –
E4 and E4’s time is less than W2’s time. Again, the simulation time
is teporarily shifted to the past.

10. Wake-up event W2 is interpreted and thread T1 becomes runnable.
Because the current simulation time is greater than W2’s time, we
know that W2 was interpreted too late, i.e. T1 slept for a longer time
than it had to. This situation could not be prevented because W2

could not be interpreted before T2 got control, i.e. it could not be
interpreted “in the future” because there was a runnable thread that
had to run “now”.

33

11. Both T1 and T2 are runnable so any of them can run. Let’s say that
T1 is selected to run. . .

Wake-up events are stored in the JiJ calendar and sorted by their simulation
time. Every wake-up event holds information about the simulation time
when the event should be interpreted, the thread to be woken up and the
type of the event: sleep-type, wait-type, or join-type.

If there are classic J-Sim events and JiJ wake-up events for the same simu-
lation time and the current value of simulation time is equal to their time,
the following priorities apply:

1. First, classic J-Sim events are interpreted (i.e., a J-Sim process is given
control) because they do not shift the simulation time to the future.

2. Second, JiJ wake-up events are interpreted, i.e. a JavaThread gets
runnable but it does not run. Neither this type of event does shift the
simulation time to the future.

3. Third, a runnable JavaThread is selected and permitted to run until
its next consistent state. The simulation time will be adjusted at the
end of the step.

These priorities a encoded in the next-step-selection algorithm in
JiJSimulation.step().

4.7 JiJSimulation

Every JiJ simulation is controlled using a JiJSimulation instance that must
be created prior to any JSimProcess or JavaThread creation. It can be seen
as a container for both types of objects.

There is just one important method: step(). The method performs one
simulation step which can be of one of the following types:

• Classic J-Sim step – A JSimProcess is run.

• JiJ wake-up step – A JavaThread is transferred from non-runnable to
runnable state.

• JiJ run step – A JavaThread is run.

34

In any case, the calling thread is suspended during execution of the step, i.e.
the method does not return immediately. It returns when the step is really
completed – after a JavaThread reaches a consistent state or a JSimProcess
calls hold() or passivate(). The return value (true/false) indicates
whether there are still threads that can be run and therefore whether it
makes sense to call step() again.

35

5 Control Program Verification Procedure

The verification procedure is strongly application dependent, so we can only
give some general recommendation here. Generally the procedure is similar
as when testing the control program within its real-world environment, i.e.
a well chosen set of activity scenarios (tests) is developed and then executed.

Let us assume a non-stop activity of the overall system. Then the model of
environment should issue a (very long) stream of (possibly random) events
that the control program should cope with. The model based execution gives
us the possibility of arbitrarily detailed observation of the execution process
without a “probe effect”, i.e. the model-time dynamics of the modelled
system is not influenced by the observation. The execution can be deter-
ministically repeated as well, even when a random sequence of events is used
to stimulate the control program activity15. We have two basic possibilities
what to follow during a model-based test execution:

• State invariants, i.e. conditions that should apply all the time of ex-
ecution (or – more generally – within a bounded part of the model
execution). These invariants can be constructed using variables (ob-
jects states) from both the control program and environment parts of
the simulation model. As for the timing of invariants evaluation we
have two possibilities again: to do it either with every change of the
model state (i.e. after every step of the dicrete-time simulation run) or
regularly – using a special “Sample and Evaluate” simulation process.

• Behavioral protocols, i.e. rules that should apply for a sequence of
events (possibly including their timing) at the control interface16.

Clearly, the problem of the performed tests number and length (diagnostic
coverage, completeness) stays open – similarly as when we are testing the
program at a real device. But here we have extended possibilities of the
tests organization (e.g. the possibility to use a “wild” environment activity
or to change randomly the control program timing in order to reveal race
conditions). The possibility of the model activity observation and investiga-

15The used J-Sim’s random numbers generators can be started from a given “seed”.
16It means that the model of control interface should be constructed as a state machine

that is able to pass to a “wrong state” when the sequence of events does not correspond to
the (checked) behavioral protocol. Generally every object behavior within the simulation
model can be checked this way.

36

tion is better here as well, what means that the number (and the coverage)
of the tests performed can be extended in this case.

37

6 Case Study

To demonstrate the presented method, a case study has been developed.
It should be simple enough to be used for the demonstration purpose. On
the other side it should not be trivial. We chose an abstract embedded
application that controls water level of a water station tank and several
connected water sources. See figure 7 for overview.

Figure 7: Case Study – Overview of the Controlled Water System

There are N water sources with a pump and pipes connected to a main water
tank. There are two sensors in each source: the first sensor signalling the
water level being too low (the pump must be switched off) and the second
one signalling the water level being high enough (the inactive pump can be
switched on). Similarly the tank is equipped with two sensors: the first
signaling low level (as many pumps as possible should be switched on) and
the second signalling high level (all the running pumps should be switched
off).

38

Our aim is to keep the tank level between the limits, if possible (i.e. if the
capacity of sources is sufficient). We are able to switch on/off the pump
placed in each source and we are able to get its current state. There is one
more sensor on the pipe leading from the main tank that reports the current
output flow. As a limitation, only K pumps (K ≤ N) can run at once due
to (assumed) unsufficient power supply.

The output flow and the quantity of water coming to each source are random
processes generated in the environment model part. The sources have a
certain natural level limit that can never be overpassed. This level is above
the ‘high level limit’ where a sensor is placed.

The demonstration application can be downloaded from the J-Sim
web page as a part of the J-Sim distribution archive, directory
CaseStudies\1 WaterSystem.

The simulation model program code (package watersystem17) contains
three principal parts that are described below:

• the abstract control interface, implemented by a class of the environ-
ment model;

• the control program (its simulation version),

• the model of the environment.

A modular structure of the source code is depicted in figure 8.

6.1 Abstract Control Interface

It’s a Java interface that binds the submodel of control program and two
submodels of its environment together. It is contained within the package
watersystem.

The Java-interface CommonControlInterface contains methods that allow
to read the sensor values (boolean) and to switch on/off the pumps. The
interface is implemented within the submodel of control program environ-
ment (class ModelInterface). In the case of real-world control program this
interface needs to be implemented using JNI functions to communicate with
the real hardware (i.e. in the case of the real control program the interface
implementation is a part of its code).

17cz.zcu.fav.kiv.jsimcasestudies.watersystem, more precisely

39

Figure 8: Case Study – Modular Structure of the Water System Simulation
Source Code

6.2 Model of Control Program

The control program model code (package controlprogram) contains the
following components (i.e. classes):

• For each source, there is a monitor object (class SourceMonitor) that
is able to report a consistent state of all its sensors. It is also able to
switch the pump on/off.

• For each source, there is a control thread (class
SourceControlThread). It is an endless loop consisting of peri-
odic sensor data reading, evaluation, and possible reaction. In most
cases, there is no reaction. Just in the situation when the level has
just got over/below the high/low limit, the pump must be switched
on/off. During every loop, the control thread sleeps for a fixed time

40

interval.18 There is a hysteresis between the low and high water level,
i.e. the pump can be switched on only if the level is above or equal
to the high limit and must be switched off when the water level falls
below the low limit. Before switching on the pump, using the source
monitor object, the thread must pass via a ‘semaphore P-function’ of
the main water tank’s monitor, as described below.

• For the main water tank, there is a monitor object (class
SourceMonitor) that is able to report a consistent state of all
its sensors. It also provides two ‘semaphore functions P and V’
requestActivity() and releaseActivity(). If K pumps are al-
ready running or the tank is already full, the monitor suspends the call-
ing control thread of a source willing to switch its pump on. The con-
trol thread can be later resumed in releaseActivity() when another
control thread switches its pump off or in wakeUpBlockedThreads()
by the station coordinating thread, described below.

• For the main water tank, there is a periodic thread – called station
coordinating thread – that reads the high-level sensor data. Whenever
it founds that the level in the tank has dropped below the high-level
limit, it invokes method wakeUpBlockedThreads() of the station mon-
itor. This is necessary because it may happen that all control threads
are blocked in the requestActivity() method of the monitor because
of the tank’s water level being too high. The three monitor methods
share the same lock – the monitor itself – and therefore it is possible
to wake the blocked control threads with a simple notifyAll() call.

• Class WaterStationControl. An encapsulation of the whole control
program part of the simulation. Constructor of the class creates ob-
jects (monitors) of water sources as well as the object (monitor) of
the water station. It also creates threads responsible for controlling
pumps of water sources. Source code of this class needs to be edited
when passing it from the model to the production version.

18This may lead to a temporary corruption of invariants since the control thread may
appear not to be ‘quick enough’ if the invariants are tested just after an important change
occures but before the control thread can react.

41

6.3 Model of Control Program Environment

The control program environment model part (package model19) is
divided into three (sub)parts. The first part (package iohw20) contains
a model of HW components that are a part of embedded device and
that is the control program communicating with (e.g. parallel ports of
the assumed microcomputer and the sensors connected to single bits
of these ports). The second part (package environment21) contains
a model of processes that is the control system (i.e. control program
plus the embedded device HW) interacting with. The third part (class
ModelInterface) encapsulates all the control program environment
part and implements the CommonControlInterface.

Principally: the part environment communicates with the part
iohw and this part communicate with controlprogram (using im-
plemented functions from CommonControlInterface). The parts
controlprogram and iohw together form a model of control system
(i.e. the embedded computer device including the connected sensors
and actuators). The part environment is the model of the controlled
environment. When passing from the model to the real-world version
of the control system, the part controlprogram should not change
(or as few as possible) and the part iohw should be straightforwardly
replaced by real HW devices (the functionality assumed within iohw
should not change).

The code of iohw part contains the following classes:

– Class StationHardwareData. It contains an encapsulation of
hardware data provided by sensors of the main water station tank,
i.e. it is the data model of HW interface that should store the
data.

– Class SourceHardwareData. It contains an encapsulation of
hardware data provided by sensors of a water source, i.e. it is
the data model of HW interface that should store the data.

The code of environment part contains the following classes:
19cz.zcu.fav.kiv.jsimcasestudies.watersystem.model, more precisely
20cz.zcu.fav.kiv.jsimcasestudies.watersystem.model.iohw
21cz.zcu.fav.kiv.jsimcasestudies.watersystem.model.environment

42

– Class Source. For each water source there is an object holding
its current state (level of water) and a reference to sensors data.
The same applies to the main tank (class Station).

– For each water source, there is a J-Sim process adjusting its water
level (class SourceProcess). The value of the level depends on
the amount of water incoming from outside (modeled as a random
number) and the amount of water pumped away if the pump is
running (we assume a steady flow). The process also sets the
sensors of low/high water level. It cannot, however, switch the
pump on/off because this is a function of the control program.

– For the main tank, there is a J-Sim process adjusting its water
level (class StationProcess). It works similarly to the source
process.

– There is one more J-Sim process that simulates the changes of
the output flow (class WaterConsumptionProcess), i.e. it emp-
ties the tank and it sets the output flow register. The function
modeling this value should behave reasonably, according to a pos-
sible daily consumption of water. But for testing purposes, it can
be virtually any random number generator.

The third part of the model package (class ModelInterface) en-
capsulates all the control program environment part. It creates the
model objects and binds them together. Moreover it implements
the CommonControlInterface, i.e. it provides methods for read-
ing/writing some data items of the model, especially values of the
sensors and the pumps activity flags.

6.4 Overall Model Activity

The main program of the simulation application is contained in the
class MainSimulation right in the package watersystem. It exists
merely to create the simulation version of the control interface (in-
stance of ModelInterface) and the control program itself (instance
of WaterStationControl), both of them being parts of a JiJ simula-
tion (instance of JiJSimulation).

The simulation is then executed in a step-by-step manner. After every
completed step, the basic state of the system is printed out to the
console and all invariants are checked. The quantity of information

43

available to the user depends on the mode in which the application is
run; see below.

The source code should be rewritten substantialy when converted to
the real-world version of the control system. Actually, the only things
that will remain in the production version are the creations of the
control interface (instance of NativeInterface or whatever name it
will be) and the control program.

The simulation of the water station control system has to be started
with two parameters:

java cz...watersystem.MainSimulation MaxTime RunMode

where:

MaxTime means the overall time of simulation in “seconds”,

RunMode prescribes a mode of simulation program activity:

– Value 0 – Time, check of invariants, current output flow and tank
volume are printed in every simulation step, check of invariants
doesn’t influence flow of computation.

– Value 1 – Like 0, but a state of the environment and the control
program is printed moreover, an invalid invariant passes compu-
tation to a step-by-step mode (RunMode = 2).

– Value 2 – Like 1, but every simulation step is triggered by a key.
The key ‘Q’ means “to finish”.

In every step22, validity of chosen invariants is verified (see function
checkInvariants(), class ModelInterface):

• Invariant no. 1 – Number of running pumps should not exceed the
value K.

• Invariant no. 2 – If the tank volume is at the high level, no pump
should be running.

• Invariant no. 3 – If any source is below low level, its pump must be
switched off.

22One step means to perform a part (an activity) of simulation process that is at the
head of the planning list (calendar). Every activity is performed in one model-time point
(discrete-time simulation).

44

• Invariant no. 4 – If the tank volume is below low level and number of
sources at the high level is higher than the limit K, then the number
of running pumps should equal K.

Note: In fact, during the model run, an invariant can be invalid for a
short time interval. The control program will react in a future step – not
necessarily the next one – as soon as it reads respective sensor values. The
reaction itself (after sensor data are read) may take several simulation steps
because it usually involves invocation of a synchronized method.

Measured in simulation time, state invariants of the controlled objects can
be invalid for a time interval that is less or equal then the control system
response latency – the sleep time of control threads plus some time for code
execution.

In the present version of the demonstration application we test only the state
invariants of the controlled environment23. Generally an arbitrary kind of
checks can be performed either in every simulation step or ocassionally. A
special simulation process “observer” can be constructed to periodically eval-
uate the model activity. All the tests are performed (due to the model time
concept) without any influencing of the modeled control program activity
(i.e. no “probe effect” occurs).

The model runs for a given stationary random process of the tank output
flow that models a behavior of water consumers (possibly “wild”, when it is
this way programmed within WaterConsumptionProcess).

23State invariant tests are not quite sufficient here due to the built-in hysteresis of the
modeled system behavior (e.g. between source level limits the pump can be either passive
or active, depending on the “history of pumping”). So we prepare a version with the
control interface behavioral protocol checking and reporting.

45

7 Conclusion and Future Work

The paper presents a method of model based development and (partial)
verification of concurrent Java-written control programs that are embedded
within a device. The method combines model-time serialization of the con-
trol program threads with the conventional discrete-time simulation of the
control program environment. Unlike other existing methods, it is an exper-
imental method targetted on testing real Java code24 and not a theoretical
system model. Moreover, the method does not require any special Java vir-
tual machine and is convenient (in contrast to other verification methods)
for non-terminating programs as well.

The method takes into account the control program environment behavior
and tests both parts of the (designed) control system together which is
completely omitted in other program verification approaches.

Further work will be focused mainly on customization of the Java source code
conversion tool for purposes of this project and also on the J-Sim JiJ (Java in
Java) subpackage improvements and extensions. The set of demonstration
applications will be extended in order to gain more experience. We plan
to extend this set for distributed (e.g. CAN or TTP/C serial bus based)
control applications as well.

Extensions of the JiJ package for Real-Time Java and RMA (Rate Mono-
tonic Analysis) are planned. We currently study their theoretical back-
grounds.

24That is straightforwardly modified into a model-form and returned back after the
performed tests.

46

References

[1] Kačer J., Racek S.: A Method of Java Concurrent Programs
Debugging. Proceedings of the 5th International Scientific Conference
ECI-2002, pp. 80-85. ISBN 80-7099-879-2.

[2] Kačer J.: Java Programs Serialization. Proceedings of the 5th In-
ternational Conference ISM-2002, pp. 69-76. ISBN 80-85988-70-4.

[3] Štika J.: Návrh simulačńı metody verifikace RT programů (De-
sign of a Simulation Method for Verification of RT Programs). Ph.D.
Thesis, University of West Bohemia, 2000.

[4] Kačer J.: Discrete Event Simulations with J-Sim. Proceedings of
the Inaugural Conference on the Principles and Practice of Program-
ming in Java, pp. 13-18. ISBN 0-901519-87-1

[5] Jacobs B., Piessens F.: A π-Calculus Semantics of Java: The
Full Definition. Report CW 355, Department of Computer Science,
Katholieke Universiteit Leuven, Leuven, Belgium, 2003.

[6] Igarashi A., Kobayashi N.: A Generic Type System for the π-
Calculus. ACM SIGPLAN Notices, Proceedings of the 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, Vol. 36 Issue 3, 2001.

[7] Magee J.: LTSA – Labelled Transition System Analyser. Univer-
sity of London, Imperial College of Science Technology and Medicine,
Department of Computing, London, UK, 1999.

[8] Godefroid P.: Model Checking for Programming Languages us-
ing VeriSoft. Proceedings of the 24th ACM Symposium on Principles
of Programming Languages, Paris, France, 1997.

[9] Holzmann G.J.: The Model Checker SPIN. IEEE Transactions on
Software Engineering, Vol. 23, No. 5, 1997.

[10] Bruening D., Chapin J.: Systematic Testing of Multithreaded
Programs. MIT/LCS Technical Memo, LCS-TM-607, Massachusettes
Institute of Technology, Cambridge, Massachusettes, USA, 2000.

[11] Brat G., Havelund K., Park S., Visser W.: Java PathFinder – Sec-
ond Generation of a Java Model Checker. Proceedings of the
Workshop on Advances in Verification, Chicago, Illinois, USA, 2000.

47

[12] The Real-Time for Java Expert Group: Java Specifica-
tion Request #1: Real-time Specification for Java.
http://jcp.org/en/jsr/detail?id=1

[13] Grillinger P., Racek S.: Transient Faults Robustness Evaluation
of Safety Critical System Using Simulation. Baltic Electronic
Conference 2002, Tallin, Estonia, 2002, pp. 257-260, ISBN 9985-59-
292-1.

[14] Herout P., Racek S., Hlavička J.: Model-Based Dependability
Evaluation Method for TTP/C Applications. Fourth European
Dependable Computing Conference, Toulouse, France, 2002, pp. 271-
282, ISBN 3-540-00012-7.

[15] FIT – Fault Injection for TTA. http://www.fit.zcu.cz

[16] J-Sim Home Page. http://www.j-sim.zcu.cz

[17] Kopetz H.: Real-Time Systems, Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Publishers,
1997.

[18] JavaCC Home Page. https://javacc.dev.java.net

[19] Herma J.: Konverze zdrojových text̊u jazyka Java dle exterńıch
uživatelských pravidel (Conversion of Java Source Code Driven by
External User-Defined Rules). Master’s Thesis, University of West Bo-
hemia, Faculty of Applied Sciences, Department of Computer Science
and Engineering, Pilsen, Czech Republic, 2004.

48

