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Abstract

Software modules and components have always played a key role in software en-
gineering, primarily as key abstractions that embody the principle of information
hiding. Modelling components is an increasingly important task, especially with
the current interest in model-driven development and server-side component tech-
nologies.

This technical report presents an update to the ENT meta-model for structuring
component interfaces, originally defined in an earlier report (TR-2002-10 “The
ENT Model: A General Model for Software Interface Structuring”) and author’s
PhD thesis [6]. While the core of the meta-model has not changed, three important
improvements have been made which warrant the creation this version 2 of ENT.

Firstly, several clarifications of key concepts have been incorporated. This in-
cludes more precise terminology and enhancements to the classification system.

Secondly, the meta-model has been re-structured for ease of comprehension.
It now starts with the definition of component which has been enriched with
component-level tags, and is recursively decomposed into traits and elements.
Former categories have been moved outside the structure and, hopefully more
appropriately, called views.

Lastly, our recent work has resulted in the creation of the ENT model for En-
terprise JavaBeans. It is included in this report in Appendix C, complementing
SOFA and CORBA Component models. Also a XML representation of the ENT
data has been added to this report.
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1 Introduction
This paper presents an updated version of the ENT meta-model, originally defined
in [5, 6]. It is concerned with the interface of software components [41] and
marginally also modules [29], the key abstractions which support the separation
of interface and implementation, driven by the principle of information hiding.

Component models [14] define, among others, the kinds of structures visible
on the component interface1 and their concrete syntax. Models are put into op-
eration by component frameworks; examples are the CORBA Component Model
[23], EJB [40], Koala [44] in industrial use, or SOFA [31] and Fractal [8] from
the research community.

Component meta-models (the M3 level in the Meta Object Facility [24]) define
the vocabulary and structures from which the capabilities of concrete models are
derived. Some meta-models are created “a-priori” (for example the UML EDOC
Profile [25], at least to a large extent), other ones by distilling the commonalities
of existing component models (“derived meta-models”) for analysis or technology
conversion purposes. An example of the latter is Rastofer’s metamodel [33].

The problem with current meta-models is that the structures and relations they
define are mostly straightforward generalisations of the present state of the tech-
nology. Except for [37], they offer few forward-thinking ideas and provisions to
handle future developments. In a longer run, this lack of abstraction hinders the
development and adoption of advanced component features necessary for tackling
the increasing complexity of software.

Worse yet, even some of the “penetrating” technological features currently in
wide use (persistence, reliability, concurrency) are handled in an ad-hoc manner
on a per-model basis, instead of being defined at the meta-level. This leads to a
duplication of effort and problems in component interoperability.

New, enhanced meta-models are therefore needed to accommodate both the
state of the technology and the upcoming developments (streaming media [9],
mobility, emphasis on quality of service). The ENT2 meta-model, defined in this
paper, is able to fulfill these needs and additionally allows multi-faceted views and
analyses of the component interface.

1.1 Who is Interested in Component Interface
The component interface declares the features through which the component and
its environment interact. Thus it is principal to understanding component’s us-

1The rules for the creation, composition and communication of individual components, also
defined by the models, are not our primary interest.

2The name comes from the abbreviation of a key set of structures – Exports-Needs-Ties; see
Section 2.3 below.

3



age. We define four classes of clients with distinct, and different, interests (or
viewpoints) in such understanding.

buyer Ordinary users consult component interface specification to see what it
does or how it differs from what they currently have.

application assembler Application assembler need to know how to incorporate
the component into an component-based application – what types and op-
erations it provides, which interfaces it depends on, what properties govern
the usage of the component, etc. She is interested in the business interface
of the component, as well as in the dependencies to other interfaces/compo-
nents and lifecycle management of the component instances.

The tools used by assemblers need to be able to reliably compare component
specifications (for the purpose of linking or interconnecting components),
extract type information, etc.

deployer The deployer’s role is to deploy an assembled application onto its target
runtime environment (e.g. a container). She is therefore interested in com-
ponent dependencies, declared configuration and run-time properties such
as persistence or concurrency, as well as in security issues.

run-time client The run-time software clients execute/use the components of an
deployed application. They are thus primarily concerned with their provi-
ded business interfaces, but also with component lookup, identity and life-
cycle management.

We note that for all these reasons, the specification of component interface
should at the same time be clear, precise, rich and human readable – which unfor-
tunately is rarely fulfilled by current component models.

1.2 Goal and Structure of the Paper
This report presents an updated version of the ENT derived component meta-
model [5, 6]. The key design goal for the meta-model is to facilitate the un-
derstanding of components in a way equally useful for both the human and the
software-based clients. It addresses this challenge by defining its structures based
on an analysis of several existing component models and frameworks, driven by
the viewpoints described above. This approach also allows ENT to be an open
meta-model which easily encompasses realizations of the “penetrating” and fu-
ture technologies manifest on the interface level.

The need for update of the model has arisen for several reasons. Firstly, our
recent work resulted in better understanding of component models and required a
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more precise interface element classification system. The second important reason
was the desire to re-structure the model for better readability; linked to this was the
need to enhance the representation of the whole component by component-wide
tags. There were also some implementation developments which we to include in
the updated definition.

The core of the updated ENT model is described in Section 2 of this paper.
The enhancements since the first version include a more precise and detailed clas-
sification system of interface elements, and a better structuring of the model itself.
Section 3 describes two prototype applications which use the ENT meta-model:
a CORBA Component Model editor, and a generic viewer which uses XML for
ENT-representation of the component specifications. Next, we evaluate the mo-
del, compare it with some related work and mention the current open issues in
Section 4. After the conclusion, the appendices provide ENT-based definitions of
the SOFA, CORBA Components and Enterprise JavaBeans component models.
Appendix C provides the specification of the XML form of ENT component rep-
resentation.
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2 The ENT Meta-Model of Component Interface
To create an open meta-model for components, an understanding of the current
and foreseeable technological trends is substantial. We have therefore conducted
an analysis [6] of key component meta-models, concrete models and the designs
of important modular programming languages. In the approach and classification
used, we have been inspired by the comparative study by Medvidovic and Taylor
[16].

For our analysis, we have among others selected the following frameworks:
SOFA [31] and Han’s model [11] for their interesting properties, CORBA Com-
ponent Model (CCM) [23] and Enterprise JavaBeans [40] for their industrial rel-
evance, and Fractal [8] as a new research effort. In addition, we briefly surveyed
the ArchJava language [2] with its alternative approach, package specifications in
Ada [12] because of its acclaimed language design, and several older, research
component models.

2.1 Commonalities in Current Component Models
Results of the analysis told us that each component model uses slightly different
terms for the same or very similar concepts. We can therefore distill the common-
alities into high-level abstractions, similarly to other existing meta-models.

In general, the specification of a given component’s interface consists of el-
ements which define its capabilities accessible from outside of the component.
Most elements are uniquely named (within the scope of the component interface)
and can be distinguished – apart from their language type – by various characte-
ristics as observed by humans (users, developers, deployers of the component).
A range of such characteristics which we obtained by the analysis is described in
this section; a schematic view which motivates the approach is given in Figure 1.

The key distinguishing characteristics of elements is their nature. A compo-
nent’s interface can contain syntactic elements (“features”), or elements which
declare its semantic or non-functional properties (“rules”).

This nature of the element abstracts away not only from the particular inter-
face specification languages with their syntax and type systems, but also from the
individual characteristics of component models. Examples of syntactical features
are an IDL interface of a CORBA or SOFA component, an event sink of a CORBA
component, a log file created and written to by a web server module, etc. Typical
instances of semantic rules are behaviour protocols in SOFA, state transition des-
criptions in Rapide [13], or the “illities” Han’s model [11]. Non-functional rules
are e.g. the quality of service indications [10].

Next, we have observed several other properties of the elements which we
consider important from user’s point of view. A fundamental distinction of the
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Figure 1: Interesting parts of software component interface

elements is by what we call the kind of the element. The operational features
and rules describe or are used to invoke functionality (e.g. interfaces, events).
The data features describe (sets of) data which the component exchanges with its
environment (most often, these are called attributes, as in the CORBA component
model). There can also be features and qualities which contain a mix of these two
characteristics.

An orthogonal property is the element’s role in component interactions. Each
component provides elements which its clients can use to invoke its functionality
and which thus represent the purpose of the component. On the other hand, the
component may require the connection to or existence of some elements in its
environment for correct linking or execution. Some kinds of elements (e.g. the
behaviour protocol in SOFA components) describe the ties between these two
parts of component interface, i.e. exhibit both provided and required roles. This
distinction of element roles is explicit in the component-based systems and in
many modular programming languages.

A user may be interested in the granularity of the element, since coarser el-
ements tends to be more abstract and consequently better aligned with the gran-
ularity of the component as a whole. An element which is a single item is not
structured in inter-component interactions, as is common with the data kind ele-
ments (e.g. CORBA attributes, JavaBeans properties). At at the operational level
we prefer structures as sets of items (e.g. whole interfaces). An extrapolation, not
found in current models, is a compound of structures.

From the point of view of the specification language, it is sometimes important
to distinguish the language construct of the element declaration. In most cases,
the element will define an instance of a type; in rare circumstances (e.g. properties
in UniCon [38]) also a constant value. Sometimes however, the element will
contain just type information in the form of type definition or type reference. Then
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its contents is not accessible via an identifier within the scope of the component
declaration – as, for example, the supports interfaces of CORBA components.

In some systems, an element’s necessity of presence can be designated. Or-
dinarily an element is permanent which means that it will always be present on
the component interface at run-time; a mandatory element moreover has to be de-
clared in the interface for the component to be valid. On the other hand, optional
elements may be missing at run-time and still the component conforms to its spe-
cification. An example of a component model which uses this distinction is the
Fractal framework [8].

Next, each feature may have different arity with respect to the bindings on
that feature. We differentiate two cases, single arity for 1:1 bindings, and multiple
for 1:N links. An example of using arity are CORBA Component Model’s event
publishers (which allow multiple sinks) and emitters (for one-to-one communica-
tion).

Lastly, we can differentiate features and rules according to their usage during
or applicability to different stages in component lifecycle. Current models distin-
guish several such stages: development for correct compilation, static or dynamic
linking, and packaging (when e.g. component assemblies are created from individ-
ual pieces), assembly (or design) for the integration stage of creating component
interconnections in a visual tool and configuring the composed application, de-
ployment which covers the phase of (re)configuring the application in the actual
deployment environment, setup stage of application initialization and tear-down,
and run-time stage which exercises interface elements during application execu-
tion for inter-component communication. Again, some elements may be relevant
in several phases of the lifecycle – for example provided interfaces of a CORBA
component are useful in compile-time, design-time as well as run-time stages.

2.2 Classification System of Element’s Characteristics
We now formalize these findings in a classification system which uses the faceted
classification approach [32]. The system has, at the present stage, eight facets
called “dimensions” suitable for the classification of component interface features
and quality attributes as described above.

The term space of each facet is represented as a set of identifiers that are de-
fined as a set Identifiers which contains strings described by the regular expres-
sion [a-zA-Z ][a-zA-Z0-9 ]*.

We use a set Id spec = {ε, na, nk} ⊂ Identifiers of special identifiers which
denote an empty value, a not applicable case, and an unknown value, and any
value, respectively. The na value is used in the cases when the given dimension
is not applicable to the given feature or quality. The nk value (not known) is used
when the class cannot be clearly determined.
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Definition 2.1 (ENT classification system) Let the term interface element clas-
sification system denote a faceted classification system suitable for classifying
component interface elements, using a facet collection Dimensions = {dim1, dim2,
... , dimD} where dimi = {i|i ∈ Identifiers} ∪ Id spec. Let the term classifier de-
note an ordered tuple (d1, d2, . . . , dD) such that di ⊆ dimi.

The ENT classification system is an interface element classification system
which uses an ontology (based on the understanding of interface elements by hu-
man users and developers) DimensionsENT = {Nature, Kind, Role, Granularity,
Construct, Presence, Arity, Lifecycle} where

• Nature = {syntax , semantics , nonfunctional},

• Kind = {operational, data},

• Role = {provided, required, neutral},

• Granularity = {item, structure, compound},

• Construct = {constant, instance, type},

• Presence = {mandatory, permanent, optional},

• Arity = {single, multiple},

• Lifecycle = {development, assembly, deployment, setup, runtime}.

The classification of an object is done via an ENT classifier. This is an ordered
tuple (nature, kind, role, granularity, construct, presence, arity, lifecycle) =
(d1, d2, . . . , dD) such that di ⊆ dimi, and dimi ∈ DimensionsENT . This classi-
fier structure, which is a net result of the conducted analysis of component models
and frameworks, is used as a key part of our meta-model described in the follow-
ing section.

While this classification system has been found sufficient for the description of
several existing component models, it is independent of the number of dimensions
and open to further development. On the other hand, there may be systems which
can unambiguously distinguish interface elements using a subset of the core ENT
classification. For example, the {Contents, Kind, Role} facet collection would
be sufficient for the current SOFA component model.
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2.3 The Meta-Model: Component, Traits and Elements
This section provides a complete definition of the structures which form the ENT
meta-model as such. Its overall structure is as follows. The meta-model describes
a set of concrete component models. The primary meta-object in a component
model is a component type with the meaning corresponding to the classic Szyper-
ski’s definition [41, 6]. The component is composed of (and its type defined by)
a set of characteristic traits which group individual interface elements sharing the
same classification properties.

The rest of this section provides a formal definition of these structures, in a
bottom-up fashion, followed by a notion of trait categories which provide a user-
defined abstraction layer. At each layer, both the definition and representation of
the given structure are described.

2.3.1 Component Model

A concrete component model is in the ENT meta-model defined by a set of its
component types.

Definition 2.2 (Component model) A component model is the pair M = (name,
CS) where name ∈ Identifiers is the model’s name and CS = {Ci,def} is a set of
component type definitions.

The component type definition is described next. We do not define compo-
nent model representation, since the definition is itself a model’s representation (a
model is the meta-level for component representations described below).

2.3.2 Component

The top of the meta-model structure for a concrete component model is the com-
ponent type, plus a corresponding representation of concrete components of this
type. As mentioned above, the types of components in a component model are de-
fined by describing the commonalities of their interface elements using the notion
of component traits.

Definition 2.3 (Component type) A component type is defined as a tuple Cdef =
(ctname, tagset, TS) where ctname ∈ Identifiers is the name of the component
type, tagset = {(namei, valseti, default i)}, namei ∈ Identifiers , valseti ⊆
Identifiers , and default i ∈ valseti ∪ {ε} is the definition of possible component-
level tags, and the TS = {Ti,def} is the definition of the component type’s trait
set.

The following consistency rules must hold for components in a component
model M :
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1. Component types of one component model must be distinct, i.e. ∀Ci, Cj ∈
M.CS, i 6= j : Ci 6= Cj ∧ Ci.ctname 6= Cj.ctname.

Definition 2.4 (Component) An ENT representation of a concrete component is
a tuple c = (name, ctname, tags, ts) where name is the component’s name3,
ctname is the name of a component’s type, tags = {(namei, valuei)}, valuei ∈
Identifiers is the set of its tags, and ts = {ti} is the concrete trait set of the
component with traits as defined below.

The following consistency rules must hold for a concrete component represen-
tation to be valid:

1. The type name of a concrete component must refer to one of the model’s
component type names, i.e. ∀c ∃Ci,def ∈ M.CS : c.ctname = Ci,def .ctname.

2. Tag values in the component representation c must be taken from the value
set in its type definition, i.e. ∀t ∈ c.tags ∃d ∈ Ci,def .tagset : t.name =
d.name ∧ t.value ∈ d.valset where c.ctname = Ci,def .ctname.

By component interface element set Ec we will understand the set of all spe-
cification elements (as defined below) contained in the specification of concrete
component c. In other words, Ec completely represents of the component’s inter-
face in our model.

The component type is the meta-level definition for a concrete component
model. For instance, “session bean” is one component type in the Enterprise Jav-
aBeans component model with its characteristic trait set (see Appendix A.3). The
tagset part of the component type defines – in a declarative form – the optional
semantic or non-functional information attached to the whole component. An
example of such concept are the persistence and transaction management tags de-
fined for Enterprise JavaBean components. Each tag has a name, a set of possible
values (which is an enumeration of identifiers), and a default value. The special
default ε is used to denote the case when there is no default, i.e. the value of the
tag must be specified explicitly.

Every value of each tag is expected to map to some language phrase(s) of the
specification language(s) used by the concrete component model (e.g. the keyword
readonly in CORBA component model, or the session-type XML ele-
ment plus implements javax.ejb.SessionBean Java language phrase
for Enterprise JavaBeans).

The component representation concerns a concrete component defined accord-
ing to one type available in a component model. For instance, AddrBookManager

3Note that in many component models, several instances of a concrete component can be
created, each with unique identity. We do not deal with instances at the ENT meta-model level.
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component Parking
{
provides ParkingAccess barriers;
readonly attribute PlaceNumber capacity;
attribute string description;
provides ModifyState for_admin;
readonly attribute PlaceNumber free;
readonly attribute ParkingState state;
publishes ChangeState state_notify;

};

Figure 2: Interface specification of an example CORBA component

is a concrete EJB session bean. In the representation, the tags tuple contains the
single concrete value of each tag. If the interface specification from which the
representation is obtained does not contain a corresponding specification language
phrase with the tag’s content, the default value from the definition is used.

Note: At present, the ENT meta-model does not deal with component appli-
cations as sets of interconnected concrete components. This is reserved for future
work.

2.3.3 Component’s Characteristic Traits

As was said at the beginning of this chapter, we would like our model to handle
the declarations of elements in the component interface specification in a manner
natural to our human perception. For example, it is quite natural for us to think of
all component’s provided interfaces as a group, regardless of their concrete inter-
face types and location in the specification source. The meta-type and classifier
element parts help us in creating this abstraction, which we call the characteristic
traits of the component.

Definition 2.5 (Trait definition) Let CT be a tuple (ct1, ct2, ..., ctD) called trait
classifier, where cti ⊆ dimi, dimi ∈ DimensionsENT . A component trait defini-
tion is a tuple Tdef = (tname, metatype, CT , tagset) where tname ∈ Identifiers
is the trait’s name, metatype ∈ Identifiers is the meta-type of the elements in this
trait, and tagset is the set of allowed tags of these elements.

The following consistency rules must hold for a valid trait definition:

1. Traits of one component type must be distinct, i.e. ∀Ti, Tj ∈ Cdef .TS, i 6=
j : Ti 6= Tj ∧ Ti.tname 6= Tj.tname.

Definition 2.6 (Trait) An ENT representation of an interface trait (of a concrete
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component c) is a pair t = (def, E) where def is a (reference to) trait definition
and E ⊆ Ec is a subset of component’s interface elements.

The following consistency rules must hold for a valid trait representation:

1. For any concrete component c in a given component model M , its trait set
must conform to the model’s definition, i.e. ∀t ∈ c.ts∃Cdef ∈ M.CS :
t.def ∈ Cdef .TS .

2. The trait set definition of a component type must cover all interface elements
of any concrete component c without duplicates, i.e. ∀ti, tj ∈ c.ts : ti.E ∩
tj.E = ∅ ∧ ∪ti∈c.tsti.E = Ec.

In the trait definition, the metatype denotes the meta-type of the trait’s ele-
ments (such as “interface” or “event”). In practice, it may be related to or derived
from the name of the corresponding non-terminal symbol in the grammar of L.
The CT element is the ENT classifier which uniquely describes the classification
properties of the trait’s elements. The tagset has the same definition and meaning
as that of the component, described above, except that the concrete tag values are
assigned to individual elements (not to the trait).

The information about the meta-type and classification is based on an a-priori
human analysis or design of the concrete component model, its component types
and the meaning of the phrases of its interface specification language(s). The
purpose of such effort is to create a complete but minimal set of meta-types and
classifier combinations which can reliably distinguish the desired characteristic
traits (of specification elements) in the model’s component types. Once this work
is done, its results are built into the parsers/generators of the interface specification
language(s) for the component model.

A trait (the representation) is then a named set of interface elements with the
same meaning, given by the trait definition, which represents their human percep-
tion. Thus we can for example get traits of provided events, required interfaces,
provided design-time qualities, etc., mirroring user’s view of the component.

Traits group elements of a component even if in the source these may be writ-
ten in various places (as shown in Figure 3 on the following page). This allows
us later to analyse the interface specification by the meaning of its parts rather
than by their place of occurence or language type. This approach is similar to
connection protocols described in [1].

We should note that not all combinations of element classification dimension
values need make sense in the given specification language4. This in practice
greatly reduces the number of traits and thus the complexity of the model. For

4In such cases we can use partial classification like (quality, na, nk, runtime), providing as
much information as practical.
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example, the SOFA system provides the component specifier with just four traits
of elements, as shown in Appendix A.1.

Figure 3: A CORBA component with ENT structures highlighted

2.3.4 Interface Elements

The smallest parts of the interface specification which are of interest to component
users are called elements in the ENT meta-model. They are the ultimate subject
of analysis and manipulation of the component interface specification.

Definition 2.7 (Interface element) An interface element e of a concrete compo-
nent c with interface specification written in language L is a tuple e = (name,
type, tags, inh) where name ∈ Identifiers is the element’s name, type ∈ L
is a language phrase denoting its type, tags = {(namei, valuei)}, namei ∈
Identifiers , valuei ∈ Identifiers is the set of element’s concrete tags, and inh =
(i1, . . . , in); n ≥ 0, im ∈ Identifiers is the source of the element in c’s inheritance
hierarchy.

The following consistency rule must hold for an element in a trait:

1. Tag values of trait’s t elements must be taken from the value set in the
trait definition, i.e. ∀e ∈ t.E∀t ∈ e.tags ∃d ∈ t.def.tagset : t.name =
d.name ∧ t.value ∈ d.valset.

A specification element is a complete representation of one component inter-
face feature identified by language name and/or type. All its parts are directly re-
lated to its specification source code (the human classification and understanding
of an element is attached to its containing trait). Operations on them are therefore
subject to the syntax and typing rules of the language L used for the component
interface specification.
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The tags part is a (possibly empty) ordered set of named tags which represent
– in a declarative form – additional semantic or other non-functional information
pertaining to the particular element (not to its type); similarly to the component-
level tags. Note that the element’s tags are defined in its trait definition, since all
elements of one trait necessarily have the same set of tags.

They are important if one needs to e.g. precisely compare two elements or re-
generate a valid source code for the element. For example, in final static
int x = 5, the final static keywords would be mapped to the tags part
of x. If the interface specification from which the element representation is ob-
tained does not contain a corresponding language phrase with the tag’s content,
the default value from the element’s trait definition is used.

The inh part denotes, as an ordered tuple of identifiers, the fully qualified
name of the concrete component from which the element is inherited. For ex-
ample, an element inherited from a component ::core::foo::Bar will have
inh = (core, foo,Bar). This inheritance information is used to reconstruct the
necessary inheritance clauses in the component specification. The ENT meta-
model thus provides for component inheritance5.

name = capacity,
type = PlaceNumber,
tags = {(access, readonly)},
inh = ∅

Figure 4: The capacity element of the Attributes trait in ENT representation

Completeness of the element means that it includes all the information about
the feature contained in the component interface specification (with respect to
both the language declarations) even if this information is not available in a single
language phrase. For example, in SOFA CDL an interface variable belongs to
either the provides or requires section but these keywords are not part of
the interface variable declaration itself.

2.4 Categories: User-Defined Views on Components
Although traits are a useful grouping of specification declarations, for an archi-
tectural level view of a component their granularity is still too small. In high-level
analyses of software we often come into situations where would like to handle
for example “all provided features” as a single group. Such groups are called
categories in our model.

5Although the author is not convinced of the usefulness of this concept.
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Definition 2.8 (Category set definition, category) The definition of category of
interface traits is a tuple Kdef = (kname, fK) in which kname ∈ Identifiers
is the name of the category and the trait selection function fK : (d1, . . . , dD) →
Boolean; di ∈ DimensionsENT is a boolean function on ENT classifiers. A ca-
tegory set definition is a set of category definitions KS = {Kdef

1 , Kdef
2 , ..., Kdef

n }
such that ∀Ki, Kj ∈ KS, i 6= j : Ki 6= Kj ∧Ki.kname 6= Kj.kname.

The category of a concrete component’s (c) interface traits is a tuple kc =
(def, ts) where def is a (reference to) category definition and ts ⊆ c.ts is a set of
traits. A concrete component’s category set is a set of categories kc

S = {ki}.
The following consistency rules must hold for category set definitions and rep-

resentations:

1. The trait selection functions of any category set definition KS must generate
non-overlapping categories, i.e. ∀c∀ki, kj ∈ kc

S, i 6= j : ki.ts ∩ kj.ts = ∅.

2. Any concrete component’s category set kc must conform to a category set
definition, i.e. ∀kc

S ∃Kdef |kc
S| = |Kdef | ∧ ∀ki ∈ kc

S∃Ki ∈ Kdef : ki.def =
Ki.

3. A trait t belongs to a category if its trait selection function evaluates to true
on the trait’s classifier, i.e. fK(t.CT ) = true.

(Note that the category set definition is not required to cover all traits of a
component model, i.e. each trait from the component trait set belongs to at most
one category of a given category set: ∀c : ∪ki∈kc

S
ki.ts ⊆ Ec.)

Categories group traits which are similar in some aspect(s) from human point
of view. This is expressed in our model by sharing the values in some of their
classification dimensions while disregarding other dimensions, as specified by the
trait selection function fK .

Figure 5: A CORBA component structured by different category sets
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The other notable characteristic of categories is that they group elements of
different meta-types. They therefore allow operations based on a high-level mean-
ing of elements rather than on the syntax or the typing system of the language.

E-N-T (Exports-Needs-Ties)
fE = λC. C.role = {provided})
fN = λC. C.role = {required})
fT = λC. C.role = {provided, required})

F-D (Functionality-Data)
fF = λC. (C.kind = {operational})
fD = λC. (C.kind = {data})

Fe-Q (Features-Qualities)
fFe = λC. (C.nature = {syntax})
fQ = λC. (C.nature ⊆ {semantics, nonfunctional})

S-Q (Server-side view)
fS = λC. (C.nature = {syntax} ∧ C.role = {provided})
fQ = λC. (C.nature ⊆ {semantics, nonfunctional} ∧

C.role = {provided})

aPR (assembly-relevant Provided and Required)
fP = λC. (C.role = {provided}) ∧ (assembly ∈ C.lifecycle)
fR = λC. (C.role = {required}) ∧ (assembly ∈ C.lifecycle)

Figure 6: Example category sets

Since the category selection fuction is independent of any concrete component
model (being defined on the classifiers, not on traits themselves), categories create
a unifying abstraction layer on the component interface structure. Furthermore,
these functions and thus the category sets are user-defined, which provides a way
to express different sets of interests in the component interface. Thus we can
define any number of different category sets independently of component models.
The category sets, superimposed on ENT component interface representation by
traits, can give us completely different views of the component. These two aspects
make categories a good vehicle for the analysis of components on a fairly abstract
level.

The category sets that can be useful in the ENT model applications are shown
in Figure 5. The set of categories we find most useful is obtained by focusing on
the Role dimension. This way we get three categories, “Exports”, “Needs” and
“Ties” – an “ENT” – which emphasises the different aspects which each part of
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the interface has from the point of view of the component interconnections6. This
view is crucial for both the developers and component framework implementa-
tions to ensure proper functionality of component applications [7].

6The T category explicitly sets apart the elements which express the bindings between the two
parts of the component interface, such as SOFA behaviour protocols or the parametrised contracts
[35].
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3 Applications of the Model
The model of component interface structuring presented in the preceding section
is applicable to a wide range of module- and component-based systems. It is also
general enough to serve different purposes, suitable for the component developers
(mainly in component understanding) as well as their tools (automated compo-
nent comparisons). In this chapter we briefly present these aspects of the model,
together with tools that are available as a result of ENT model development.

3.1 Applicability to Current Component Models
Although the ENT meta-model is designed to encompass future developments,
it was developed by analysing current state of the technology. Its first version
was mostly based on the CORBA Component Model (CCM [23]) and the SOFA
framework [31], and these models can be defined in terms of the ENT meta-model
cleanly (see Appendix A.2 and A.1). In a similar manner, other component or
modularization systems which use an IDL-like language for the specification of
component interface [19, 42] can utilize the ENT model.

Our subsequent work concerned the component models built on the Java plat-
form, in particular the JavaBeans [39] and Enterprise JavaBeans [40] (EJB). The
ENT-based model of the former is included in [6], for the latter see Appendix A.3
in this report.

The application of the ENT model to these two models however shows their
key deficiency: the lack of explicit declaration of externally available component
features. In other words, some interface elements are only declared within the
source code of the beans and their methods, and thus are not accessible even
by the Java reflection API. In JavaBeans, this is manifested by the design-time
vs. run-time designation of elements by testing the isDesignMode() dyna-
mic property7 inside method bodies. In EJB this is mainly the case of messages
accepted by message-driven beans.

This approach of Sun’s component models makes it very difficult to recon-
struct an ENT-based representation of existing components. Unless a sophistica-
ted analysis of method body code (which is not always available) is used, it is
impossible to correctly set the element’s classification properties or even to find
the elements themselves.

Based on our experiences, we expect the ENT model should be applicable
also to widely used modular programming languages, such as to Delphi units,
Ada packages or C language modules. However, the same problems as with the
JavaBeans/EJB component models can be expected in these cases.

7From the java.beans.DesignMode interface
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3.2 Design of New Component Models
Based on the experiences gained in developing the ENT meta-model, we believe
it should be actually quite easy to design component models with rich sets of
features and precise specifications.

The meta-model’s key benefit in this respect is the guidance it would give
to the model designers. By considering the values from the ENT classification
system, the designer can concentrate on the desired high-level properties of the
components, express them in appropriate traits, and then devise suitable syntacti-
cal structures to represent them in a specification language of their choice.

The following IDL-like code shows how we envisage a full-featured compo-
nent specification, using the experiences gained in developing the ENT model
described in this paper. The notable enhancements agains current IDL/ADL lan-
guages are:

• Explicit declaration of data features like files and streams, including means
for datatype and/or format specification of their records.

• Use of annotations to describe semantic, classification and quality of service
properties of individual elements as well as of the whole component.

• The ability to include versioning information in the component IDL speci-
fication.

dataformat LogFile [ascii]
{

DateTime date;
String<20> object;
int result;

}

component ExampleCo [remote rev=3.1.1]
{

provides:
InterfaceA a1 [rev=4.1 synchronized arity=1];
InterfaceB b1 [arity=any bind-after=a1]
[* response-time:avg=1ms,max=30ms *];

LogFile log [filename=SystemLogDir."ExampleCo.log"]
[* growth-rate-avg=230 *];

requires:
InterfaceX x1 [rev-from=2.0 rev-to=3.3 synchronized];
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ConfigFile cfg
[filename=SystemConfigDir."ExampleCo.cfg" read-write];

properties:
int MAX = 256 [design-time run-time];
String<80> WindowTitle [design-time];
String SystemLogDir = "/var/log/";
String SystemConfigDir = "/etc/components/";

state:
int count;
float[] data;

invariant:
count >= 0 and count < MAX;

protocol:
<init> { log.open ; cfg.read } ;
( ?a1.a { !x1.a ; log.write }

|| ?a1.b { !x1.a ; !x1.b ; log.write } )
+ ?b1.q ;
<finishing> { log.close }

}

In our opinion the design of models based on the ENT meta-model, compared
to the current state of the practice, can lead to better component interoperability,
potential for code generation from the specifications, and more robust software
because of a smaller number of hidden interdependencies.

3.3 Use for Humans: Flexible Visual Representation
Component developers or application assemblers, who use visual modeling of
components would benefit if the component appearance could be affected accord-
ing to a desired viewpoint. This means visual software presentation in user terms
rather than (as common now) in language terms. The ultimate aim is to provide
for easier and less error prone evaluation of component-based applications, thus
facilitating tasks such as visual design, re-engineering and maintenance. The ENT
structures together with trait categories provide the abstractions that support such
presentation.

Following this idea, we developed a visual representation of software compo-
nents that is inspired by the UML notation [21]. It tries to stick with the UML
representation of class/interface structures — the component is shown as a box
with its name in the top row, and constituent parts in separate boxes.
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However, the contents of the component is structured according to a selected
category set. The possibility to define category sets as desired provides a degree
of flexibility in this structuring. Our model therefore allows us to parametrize the
visual representation and additionally to group the constituent parts hierarchically,
unlike the standard UML profile which prescribes a fixed flat structure of the class
box.

Figure 7 gives an example of the resulting proposed visual representation of
components, when applied to a CORBA component. On the left, the component
is shown in the E, N , T category set while on the right in the Functionality-Data
set. As can be seen, the use of category sets enables us to look at the component
interface in completely different ways. We could similarly create a custom cate-
gory set to e.g. show only the event-based part of CORBA components’ interfaces,
important when designing an application with asynchronous communication. The
other interface elements, which would only distract from the primary design goal,
would be completely elided from view.

We have developed two prototype tools which support this representation. One
is a prototype application (shown on Figure 8) which uses XML representation of
the ENT component model and component instances data, plus a set of XSLT
stylesheets to convert and render this data. The second tool is a plug-in for the
Borland JBuilder IDE for IDL3 (CORBA Components) editing, that enables to
switch between source and visual views. The visual view uses the XML ENT
model representation to parametrise component visualisation. At present, only
separate components are displayed; the representation of inter-component links is
planned for future work.

We propose that such view parametrization can have three applications:

1. In assembly (binding) of components into applications, e.g. in solving the
tasks “now I want to see just the links between the provided and requi-
red ifaces” in CORBA components, or “let’s see how events propagate” by
showing just event sinks/sources with event names.

Figure 7: Two views of a CORBA component
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Figure 8: The ENT-VIS tool displaying a set of SOFA components

2. In search/evaluation, the model can provide a tree view of a single compo-
nent in which the user can expand category, trait, and specification element
contents to trace down a particular feature. Another such use is narrowing
a search result set by augmenting the search methods (e.g. fulltext search in
descriptions, signature matching, etc.) using the classifiers and other meta-
data associated with elements, traits and categories.

For example, in seaching for the animationRate property of the Juggler
JavaBean, the developer would use the Operational-Data categories and un-
fold, in sequence, the “Data” category and the “Properties” trait, to find
the property in a candidate component. Alternatively, she could restrict a
full-text search to just syntactical data elements.

3. In maintenance or servicing, the maintainer can test change propagation in
“what-if” scenarios using the Role of elements (see Figure 9 on the next
page) – change is OK if the proposed modification is an extension of the
provided or a reduction of the required features.

Another option how to utilise the ENT concepts in visual representation would
be different colourings of interface elements depending on their enclosing trait
and/or category. This would allow an enrichment of current standard component
notations like that used in UML 2 [26].
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Figure 9: Text- vs. grammar-based component comparison

3.4 Use for Tools: XML-based Representation
In the area of tool-based component processing, the ENT model can provide sup-
port for automated component evaluation. The unique and interesting feature
in this respect is the possibility to represent in the same format the interface of
component from different models. This opens the opportunity for side-by-side
comparison, high-level analyses, and even for translation of component interfaces
between platforms.

For easier program manipulation with specifications structured according to
the ENT meta-model, we have designed a simple XML data structure. It consists
of two parts: definition of the concrete component model in the meta-model terms,
and representation of a given component according to this definition.

The following example shows parts of the ENT XML of the SOFA model des-
cription and the E, N , T category set definition. For simplicity, the current data
model uses simple conjunction as the category selection function; this is a suffi-
cient approximation for the category sets defined above. The full specifications of
the XML formats are given in Appendix B.1.

<model>
<name>CCM</model>

<ctype>
<name>component</name>
<trait>

<name>facets</name>
<metatype>interface</metatype>
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<classifier>
<dim name="nature">syntax</dim>
<dim name="kind">operational</dim>
<dim name="role">provided</dim>
...

</classifier>
</trait>
...

</ctype>
...
</model>

<catset><!-- a category set ->
<name>ENT</name>
<category>
<name>Exports</name>
<classifier>
<!-- AND assumed between dim’s -->
<dim name="role">provided</dim>

</classifier>
</category>
...

</catset>

After a component model is defined, a concrete component’s representation in
the XML format looks as shown on the next example. The full specification of the
format is in Appendix B.2.

<entrep>
<component model="sofa">
<provider/>
<namespace>::network::http</namespace>
<name>HTTPClient</name>
<element>

<name>connection</name>
<type>HTTP</type>
<tags/>
<trait>facets</trait>

</element>
<element>

<name>timeout</name>
<type>long</type>
<tags><tag name="access">readonly</tag></tags>
<trait>attributes</trait>

</element>
...

</component>
...

</entrep>
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The XML representation is used by the prototype tool for component visuali-
sation, described in the previous section.
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4 Evaluation and Discussion
The purpose of creating models is to abstract away details of the subject which are
not interesting from the particular point of view. Therefore, care must be taken
to balance simplicity and precision in the model definition. The subject of our
work, modular and component-based software systems, exhibit a great degree of
variation. Thus the goal of our work may be noble but is not easy to attain.

In this section, we would therefore like to discuss in more detail the ENT
meta-model, its advantages and weaknesses. This opens the way for further work
on applications and improvements of the model, as well as in related areas.

4.1 Advantages of the Model
The main objectives of the model are conceptual simplicity and close correspon-
dence to human (primarily developer’s) view on software components. The sim-
plicity lies primarily in the use of a restricted set of classification facets and meta-
data items attached to interface elements, and in straighforward rules for their
grouping into traits and categories. The model should thus be easy to comprehend
and implement in code.

The application of the model to a given component framework or modular
programming language results in a representation of components that is easy to
visualise and comprehend. This stems from the selection of classification facets
and from the natural hierarchy of elements, traits and categories. The model is
thus a contribution to the area of program understanding.

Additionally, the model allows to manipulate the software specification (ana-
lyse, compare, transform) based on interesting semantic properties. While these
properties are not always directly expressed in the syntax of the language, it is
relatively easy to augment the given parser to extract them. Furthermore, the mo-
del hints the possible improvements in specification languages (see Section 3.2 on
page 20).

Considering the primary role of meta-models, the ENT’s novel approach to
meta-modelling allows the designers to reason about the desired usage properties
of components, rather than restricting them to the low-level problems of compo-
nent wiring. In other words, the model directs towards what is useful and possible
rather than merely about what is currently implemented.

The model was designed to be very general and independent of any particular
technology or specification language. It is thus and applicable to many research
and industrial platforms (see the concrete models redefined in ENT terms in Ap-
pendix B). As the definition of trait and category is not bound to a predefined
classifier, the model allows to flexibly define ENT-based software representations
for various purposes. The main practical application is the ability to reduce the
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interface specification to an “interesting” subset (e.g. to the provides part of
the component interface) depending on the concrete interests of the users.

Finally, the model is open for extensions. It was noted in Section 2 that the
facet collection used in ENT classification is not fixed. Should the analysis of plat-
forms, frameworks and languages not covered by our research reveal new classi-
fication dimensions, they can be added without directly affecting the model itself.
Similarly, the comparison relation (subsumption) can be changed, e.g. using the
approach to relaxed signature matching presented by Zaremski and Wing [45].

4.2 Disadvantages and Open Issues
The ENT model presented here has however several shortcomings that need the
attention in future research. The primary problem as we see it is the need for
manual classification of specification elements in the given language, when an
ENT-based meta-model of a current component model is defined. This need arises
because automated classification is in general a difficult problem [4, 45], in this
case further complicated by the lack of expressiveness of some specification and
programming languages. This opens room to different interpretations and thus
imprecise classification of features and properties (e.g. along the Lifecycle di-
mension).

The second problem concerns the fact that elements are taken as atomic units
without considering the details of their internal structure. For example, in the
element property: readonly int count; the keyword readonly ex-
presses mainly semantics of the property but this information is largely disre-
garded in the current model. Similar case are methods in Eiffel [18] with pre- and
post-condition expressions.

This calls for a more accurate handling of the tags part of the specification el-
ement. The desired effect would be achieved by attaching a classifier to the tags.
This would make the model match reality better but at the expense of readability
and simplicity. We therefore accept the simpler approach and consider declara-
tions as monolithic, classified by its overall proximity to the classification facet
terms. The internal structuring of declarations will be re-considered in future if
such need arises.

In the present version, the ENT meta-model is concerned only with individual
components, not with component applications as sets of interconnected compo-
nents. It would be beneficial to include modeling formalism for these interconnec-
tions since their properties are equally interesting for application assemblers (this
is e.g. the case of entity bean relationships specified in the Enterprise JavaBeans
model).

Last but not least, the implementation of the ENT model for some languages
requires non-trivial amount of work. In some cases it is necessary to redesign
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the language grammar so that elements and traits are easier to separate. In any
case the approach depends on the creation of suitable parsers which extract the
relevant data from the specification source. These two tasks combined pose a
challenge mainly in the case of syntactically rich programming languages like
C/C++ or Java.

4.3 A Note on Current Component Specifications
There are however a few problems outside of the ENT meta-model, in specifica-
tion languages themselves, which may hinder the full use of our approach to inter-
face structuring. The most unfortunate one is the lack of expressiveness of current
specification languages. For example, while the support for the provides role
is common, only several research and a few industrial languages allow to specify
required features [31, 23].

Similarly, the languages allow the specification of only a limited number of
data feature types. The only common one are data properties, but in reality soft-
ware components often depend on or create various data files and streams. No
component framework in widespread use provides support for file or stream spec-
ifications that would capture this important aspect of their functionality.

The result is that the model presented in this paper can easily accomodate
today’s specifications but is not used to its full potential. Thus our reasoning
about features and properties provides hints on what can (and should) be done in
terms of improving component specifications. Section 3.2 on page 20 shows how
we envision a component specification with some of these aspects implemented.

Taking this issue further, we have learned how important it is to have interface
specification data for a component in an accessible form. It is difficult to re-create
such information, be it in ENT-based or some other form, from the component
models that do not use (full) separate interface specification, for example EJB.
The consequence is that the users of such models have problems comprehending
the component as a cohesive black-box entity which ultimately diminishes the
desired effects of component-based programming.
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5 Related Work
Meta-models. The work on the ENT meta-model was started by a comparative
analysis of several component models. A similar, more detailed study of high-
level similarities of various systems was done by Medvidovic and Taylor [16].
It concentrates around the principal purpose of both modules and components,
for the basic understanding of the concepts. It uses a classification system which
separates the features that can be specified on component interface into the syn-
tactical structures (“interface”), semantics, and non-functional properties. We find
this a useful classification scheme, and term it the nature of the component’s fea-
tures. On the other hand, they do not differentiate operational from data features,
a distinction which we find important.

There exist several meta-models, both from the industry and research commu-
nity, for software components. What we are interested in here are abstractions at
the M3 (meta-metamodel) layer of the metadata ar-chitecture described in OMG’s
Meta Object Facility specification [24, Section 2.2].

The UML Profile for Enterprise Distributed Object Computing Specification
(EDOC) [25, Chapter 3] defines the Component Collaboration Architecture, a
UML profile for component-based modelling. It provides good modelling features
and flexibility in terms of current industrial standards. EDOC is interesting in the
distinction of three kinds of component interfaces which include mixed in-out
interfaces (“protocol ports”) and data-oriented interfaces (“flow ports”).

The problems we find with EDOC are several ones. First, the term “compo-
nent” is very loosely defined in the specification (“something that is composable”
[25, Section 3.3.3]) which makes it difficult to interpret its meaning and relate
meta-model’s structures to concrete models. Next, the protocol ports allow to mix
the specification of syntax (operations) and semantics (choreography) without dis-
tinction by identifiers, associations or language constructs. We believe that a clear
separation of these concepts on the meta-model level is crucial for component
modelling, implementation and analysis.

As a last point, the EDOC meta-model allows recursive composition of in-
terfaces. This feature adds flexibility but we have doubts about the practical ap-
plicability of such abstraction, and feel that recursively defined ports are overly
complex to understand.

Based on the (now withdrawn) Java Specification Request 26 “UML/EJB
Mapping Specification” (http://jcp.org/), two industrial proposals for an
EJB meta-model have been published. Both are presented as UML profiles for
UML and are based on the UML 1.1 specification which makes them rather out-
dated nowadays (it is true though that the EJB 3.0 specification, now in preparation
[?], may render any EJB meta-model obsolete including the one presented in this
report in Appendix A.3). The profile by OMG [27] models a bean as a class which
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has composition relationships to its various provided and required elements. This
makes it possible to use a bean as a standard design element in static structure
UML diagrams. However, neither the nature nor the role of the elements (in our
terminology) are differentiated, and the specification does not provide mapping to
the EJB implementation. These deficiencies make practical use of the meta-model
for everyday development harder.

A proposal by Rational [?] is a draft specification presented by the JSR 26
workgroup. It is more detailed than the OMG one and specifies precisely imple-
mentation mappings (including the corresponding parts of deployment descriptor
DTD) and constraints. However, it uses stereotyped package/subsystem for bean
representation, probably motivated by its heterogenous implementation consisting
of several artefacts. We believe this to be inappropriate since the meta-model is
bound to implementation details instead of providing support for the more impor-
tant design operations.

The research meta-model described by Seyler and Aniorte [37] is unique in
the separation of the data and control flow in component description. The com-
ponent interface is split into functional (control) and data (information) parts, and
orthogonally into the standard required and provided roles. This meta-model pro-
vides features we think the commonly known models are lacking, and supports
our position that data elements should be specified on component interface. On
the other hand, its notion of information points is a very general concept which
needs more concrete mapping on real objects – files, data streams, tables etc.

Rastofer [33] has developed a simple meta-model which is derived directly by
extracting common basic features of ADLs and major industrial component fra-
meworks. Although it includes connectors and constructs for describing compos-
ite components, we find its expressiveness (the range of features) rather limiting.

Component models. In the area of component models, there exists several
widely known research and industrial systems. Some of them (C2 [42], SOFA
[31], CORBA [23]) provide a reasonable component model which uses interface
specification language (under various names – ADL, IDL, CDL) with syntactic
distinction of provided and required parts of the interface. In some cases, a form
of semantic properties specification is also available. There are also other frame-
works (e.g. COM [19], EJB [40]) which do not match our general model too well
but are interesting due to their widespread practical use. However, there seems to
be a lack of explicit work on modeling module and component interfaces [28, 17].

The notion of module-based programming [29] first introduced the concept
of information hiding and the separation between interface and implementation
in software. This is now taken as one of the fundamental principles in software
engineering and in the pure form is represented by the systems which use various
IDL-like languages [22, 30, 36].

There are several languages representing the module-based programming pa-
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radigm that are interesting from our point of view. First, the Ada programming
language [12] provides very rich and precise means for specifying module and
class interfaces. The Eiffel language [18] is interesting from the point of view
that its class declarations can contain semantic properties in the form of pre- and
post-condition plus class invariant. Also, the Eiffel compiler set includes a tool
to generate a digest form of class declaration which is close to the specification
languages mentioned above.

Among the languages that are more common in practical use, we might men-
tion Java with its javadoc tool that can be used to generate a documentation of
the interface to public elements in the class declaration.

Feature classification. The ENT model uses an (admittedly simple) faceted
classification system first introduced to software by Prieto-Diaz [32]. However,
the main inspiration comes from the implicit classification of features (keywords
like provides, imports, etc.) found in some IDL languages [23, 31, 42]

Specification analysis. There are several works which deal with the analysis
of software source code, be it interface specification or the implementation code.
Medvidovic and Taylor [17] mention in this respect mainly enforcement of prop-
erties, simulation and code generation. Zaremski and Wing [45] extract method
signatures from Standard ML code and then apply various forms of their matching
in a library search approach.

CASE tools (e.g. Together [43], Rational Rose [34]) usually support so-called
“round-trip engineering” where source code can be generated from an UML mo-
del, modified and then parsed to re-create the model.

Software visualization. Most component-based systems support some form
of visual design mode in which components represented as elements without inter-
nal structure can be interconnected. However as Medvidovic [17] notes “support
for other views is sparse”.

There have been several proposals at a visual notation for software compo-
nents (e.g. [20]), none of which has gained wider support. It is primarily due to
the strength of UML as the de-facto standard modeling notation. With this role,
the authors of UML2 [26] could have, in our opinion, paid a greater attention to
the component meta-model built into the new version of the notation. In its present
form, it cannot support even existing industrial component models (e.g. message-
based communication used in both CCM and EJB). The visual representation of
the components shown in the examples in Section 3 is inspired by the UML app-
roach but goes further in the possibility to collapse individual levels (categories,
traits, elements) and to parametrize the display by the category set used.

In the area of software comprehension, the work on visualizing change prop-
agation (see e.g. [?]) touches a topic related to our work. The use of the ENT
model can bring the benefit of separating dependencies between individual traits,
allowing to focus on change propagation only in particular aspects.
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6 Future Work
The ENT meta-model in its current version is, after several years of effort, quite
rich and mature. Nevertheless there are several opportunities for future work.
They are listed below in no particular order.

First, it would be beneficial to verify the model on a wider range of modu-
lar programming languages, component frameworks and specification languages.
The main purpose of this expected work is to verify the structure of the specifi-
cation element and the choice of classification dimensions. Among the candidate
systems are .NET assemblies [?], research frameworks like the Wright language
[3] and the ACME ADL [?], and also modular programming languages especially
the Ada language packages [12].

The lack of meta-modeling support for component interconnections has been
detected as one of the model’s deficiencies. We expect that component link mod-
eling can greatly benefit from the tailorable component visualization using cate-
gory sets. This issue will therefore be one of our priorities in further research and
implementation efforts on the ENT meta-model.

The possibility to visualise the component’s ENT representation opens the
way to further research its possible use in software visualisation, comprehension
and modeling. While there exist various notations and approaches in this area that
help software developers the ENT model can add the possibility to parametrize
the visual representation by chosen category set. This may be interesting e.g. in
relation to showing version differences or change propagation [?]. Obviously, we
will be looking for ways how to use ENT modeling features to enhance the UML
notation.

While we mention the Meta Object Facility in several places, a MOF repre-
sentation of ENT metamodel is still missing. This gap will have to be closed in
a near future, together with a closer study of the relation of the concepts behind
ENT to those of MOF meta-models.

To support automated ENT data extraction, more research into the possibili-
ties of grammar tagging is needed. The purpose of this work is to tag specification
language grammar rules to indicate, whether the rule contributes to a particular
element, trait, or their class. Such grammar tagging would enable us to automat-
ically generate ENT parsers or at least their skeletons, thus eliminating the most
mundane work on the model implementation.

There is also need for more work on the implementation of the model as pre-
sented in this paper. CORBA Component modeling has been partially imple-
mented (see Section 3 on page 19) recently. At present, this work is concentrating
on the Enterprise JavaBeans framework for which prototype tools are being de-
signed.
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7 Conclusion
In this report we have presented an updated version of the ENT component meta-
model. It is a general model for natural structuring of the interface of software
modules and components, motivated by the need to to enable analyses based on
user understanding of the software. The model uses a rich faceted classification
of interface elements derived from their various aspects as perceived by human
developers and users. Based on this classification, the meta-model introduces a
novel structuring of the interface into characteristic traits of like elements, and
provides user-defined views.

The resulting structuring of interface into, among others, the exported and
needed elements formalizes and extends the notion of software component as de-
fined by Szyperski [41].

The key feature of the model is its extensibility and applicability to different
component- and module-based systems. While being general enough to cover
most current systems, its aim is to actively lead developers of future component
models by concentrating on important properties of components rather than on
their implementation details. In addition, the meta-model can easily incorporate
ongoing developments by extending the classification system and/or enhancing
the comparison methods used. As it is not tied to a concrete system it may serve,
among other uses, as a unifying platform for software visualization.

Our subsequent work on the model will be mainly driven by the needs to fur-
ther improve some aspects of the model, mainly in order to make it more precise in
modeling detailed aspects of the component interface and interconnections. Also,
several applications of the model will be explored together with a research into
techniques facilitating further automation.
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A ENT Definitions of Selected Component Models

A.1 SOFA Framework
The research SOFA component framework [31] defines one kind of components,
with no component- and element-level tags and with four traits. The trait definiti-
ons are ordered by relative importance.

provides – provided interfaces
metatype = interface,
classifier = ({syntax}, {operational}, {provided}, {structure}, {instance},
{permanent}, {multiple}, Lifecycle),

requires – required interfaces
metatype = interface,
classifier = ({syntax}, {operational}, {required}, {structure}, {instance},
{permanent}, {multiple}, Lifecycle),

properties – data attributes
metatype = property,
classifier = ({syntax}, {data}, {provided}, {item}, {instance}, {permanent},
{multiple}, {development, assembly, runtime}), and

protocol – behavioural specification
metatype = protocol,
classifier = ({semantics}, {operational}, {provided, required},
{item}, {type}, {permanent}, {na}, {development, assembly, runtime}).

A.1.1 Example

frame FAddressBook {
provides:
IAddressBook book;
IAddressSearch search;

property short maxSize;
requires:
::system::FileAccess files;
::OfficeApps::IPhoneBook phone;

protocol:
// this protocol is incomplete and inaccurate, but will do for
// illustration purposes
?book.addPerson { !files.create? ; !files.write }
;
( ?book.clear { !files.write }
| ?book.getPerson { !files.read }
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...
)*

}

The representation of the FAddressBook component in traits is as follows,
ommitting empty traits and element classifiers.

provides = {(book, IAddressBook , ∅, ∅),
(search, IAddressSearch, ∅, ∅)}

requires = {(files , :: system :: FileAccess , ∅, ∅),
(phone, :: OfficeApps :: IPhoneBook , ∅, ∅)}

properties = {(maxSize, short, ∅, ∅)}

protocol = {(ε, ?book.addPerson . . . , ∅, ∅)}

A.2 CORBA Component Model
The CORBA Component Model specification [23] defines one meta-type of com-
ponents, with a mixture of element metatypes and some element-level tags. Its
trait definitions are ordered by relative importance.

supports – component-level interfaces
metatype = interface,
classifier = ({syntax}, {operational}, {provided}, {structure}, {type},
{permanent}, {na}, Lifecycle)

facets – provided interfaces
metatype = interface,
classifier = ({syntax}, {operational}, {provided}, {structure}, {instance},
{permanent}, {multiple}, Lifecycle)

receptacles – required interfaces
metatype = interface,
classifier = ({syntax}, {operational}, {required}, {structure}, {instance},
{permanent}, {single, multiple}, Lifecycle)
tags: arity = {single, multiple}

publishers – multicast events pushed out
metatype = event,
classifier = ({syntax}, {operational}, {required}, {item}, {instance},
{permanent}, {multiple}, Lifecycle)
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emitters – events pushed out
metatype = event,
classifier = ({syntax}, {operational}, {required}, {item}, {instance},
{permanent}, {single}, Lifecycle)

sinks – accepted events
metatype = event,
classifier = ({syntax}, {operational}, {provided}, {item}, {instance},
{permanent}, {multiple}, Lifecycle)

attributes – data attributes
metatype = attribute,
classifier = ({syntax}, {data}, {provided}, {item}, {instance}, {permanent},
{na}, {development, assembly, deployment, runtime})
tags: access = {readonly, readwrite}

A.2.1 Example: The Parking Component

The source (from OpenCCM [15] examples):

component Parking
{
// parking states.
readonly attribute string description;
readonly attribute ParkingState state;
readonly attribute PlaceNumber capacity;
readonly attribute PlaceNumber free;
// parking facets.
provides ParkingAccess for_barriers;
provides ModifyState for_admin;
// parking events ports.
publishes ChangeState state_notify;

};

The representation of the Parking component in traits is as follows, ommit-
ting empty traits and element classifiers.

facets = {(for barriers , ParkingAccess, ∅, ∅),
(for admin,ModifyState, ∅, ∅)}

publishers = {(state notify , ChangeState, ∅, ∅)}

attributes = {(description, string, {(access, readonly)}, ∅),
(state, ParkingState, {(access, readonly)}, ∅),
(capacity,PlaceNumber , {(access, readonly)}, ∅),
(free,PlaceNumber , {(access, readonly)}, ∅)}
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A.3 Enterprise JavaBeans: the ENT meta-model
This appendix contains the specification of the Enterprise JavaBeans component
model (version 2.1) [40] in terms of the ENT meta-model. It consists of the tag
set for the EJB components and the definition of their trait set.

Since the EJB component model is hard to model to a full detail, included in
the model is primarily type-related data. See section A.3.4 below for what has
been omitted and what compromises had to be made.

Notes on conventions used: Metatypes used by traits are briefly described
in section A.3.4. Tags are specified by name and the set of permitted values.
The “Source” clauses point to the parts of EJB 2.1 component source where the
given trait or tag is primarily defined. In other words, it is a hint (not a complete
specification) on the mapping between the model and the implementation. The
word “specification” denotes the Enterprise JavaBeans 2.1 specification [40].

A.3.1 Component Types

The Enterprise JavaBeans meta-model defines three component types: Session-
Bean, EntityBean, and MessageDrivenBean. For brevity of their definition we
declare the following two sets of tag and trait definitions common to all of them:

tagsetcommon = { security id }

traitsetcommon = Tprovided ∪ Trequired where Tprovided = { business interfaces,
home interfaces, security roles } and Trequired = { business references,
msg destination references, web service references, home references, env entries,
resource managers, resource env references, timer service }.

SessionBean
tags: tagsetcommon ∪ { state, transaction }
trait set definition: traitsetcommon ∪ { web service endpoint } (a provided
trait)

EntityBean
tags: tagsetcommon ∪ { persistence, reentrancy, schema }
trait set definition: traitsetcommon ∪ { attributes } (a provided trait)

MessageDrivenBean
tags: tagsetcommon ∪ { transaction, msg type }
trait set definition: traitsetcommon ∪ { msg consumed, msg activation }
(provided traits)
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A.3.2 Tags on the Component Level

The EJB specification defines several component-level tags which mostly describe
non-functional properties. The tags are listed in alphabetical order.

msg type = Identifiers , default javax.jms.MessageListener
Java interface for message reception callback methods.
Source: deployment descriptor (the messaging-type element). Refer-
ence: specification section 23.5 (XSD definition of message-driven--
beanType).

persistence = {container, bean}, default ε
Persistent state manager (for entity beans).
Source: deployment descriptor (the persistence-type element).

reentrancy = {reentrant, non reentrant}, default reentrant
Reentrancy mode.
Source: deployment descriptor (the reentrant element). Reference for
the default value: specification section 10.5.12.

schema = Identifiers , default ε
Abstract schema name.
Applies only when persistence = container. Source: deployment descrip-
tor (the abstract-schema-name element).

security id = {use caller, run as}, default use caller
Which identity to use for authentication.
Source: deployment descriptor (the security-identity element). Ref-
erence for the default: specification section 21.3.4.

state = {stateful , stateless}, default ε
State handling mode.
Source: deployment descriptor (the session-type element).

transaction = {container, bean}, default ε
The transaction manager to use.
Source: deployment descriptor (the transaction-type element).

A.3.3 Trait Definitions

Trait definitions are ordered alphabetically by trait name.

attributes – persistent fields of entity beans.
metatype = attribute
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classifier = ({syntax}, {data}, {provided}, {item}, {instance}, {permanent},
{multiple}, Lifecycle)
tags: status = {normal, primary key}

Notes:

1. Source: deployment descriptor for container-managed entity beans (the
cmp-field and primkey-field elements), Java source (!) for
bean-managed persistence.

business interfaces – bean’s primary functionality.
metatype = interface
classifier = ({syntax}, {operational}, {provided}, {structure}, {type},
{mandatory}, {multiple}, {development, assembly, deployment, runtime})
tags: locality = {local, remote}

Notes:

1. Source: deployment descriptor (the remote and local elements);
Java source

business references – depended-upon functionality.
metatype = interface
classifier = ({syntax}, {operational}, {required}, {structure}, {instance},
{permanent}, {single}, Lifecycle)
tags: locality = {local, remote}

Notes:

1. Source: deployment descriptor (parts of the ejb-ref and ejb-local-ref
elements; see also the home references trait). Contrary to the EJB de-
ployment descriptor we separate these traits by the use of the elements
rather than by the (in our opinion far less important) locality of the
referenced beans.

2. Arity is single because only one server will satisfy the dependency
link at a time.

3. This trait covers the whole lifecycle; the dependencies have to be set-
up by the bean itself on its startup.

4. The Construct dimension is classified as instance since the refer-
ences are named in the deployment descriptor. This is not entirely ac-
curate (the name denotes the environment entry of the reference, not
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the name of interface instance) but this way we emphasize the pres-
ence of the name which we find important.

env entries – environment entries the bean needs.
metatype = structureenv entry type

classifier = ({syntax}, {data}, {required}, {item}, {instance}, {permanent},
{single}, Lifecycle)
tags: ∅

Notes:

1. Source: deployment descriptor (the env-entry element)

2. The environment entries concrete type within the structure is of Java’s
primitive type wrappers, i.e. java.lang.Integer and similar.

3. The arity is based on the specification: “An environment entry is scoped
to the enterprise bean whose declaration contains the env-entry el-
ement. This means that the environment entry is inaccessible from
other enterprise beans at runtime (. . . )”

home interfaces – lifecycle management.
metatype = interface
classifier = ({syntax}, {operational}, {provided}, {structure}, {type},
{mandatory}, {multiple}, {development, assembly, deployment, setup})
tags: locality = {local, remote}

Notes:

1. Source: deployment descriptor (the home and local-home elements);
Java source.

2. Although home interfaces can theoretically be used at run-time, their
primary role (from the providing bean’s viewpoint) is at the set-up time
(cf. the key create(), findBy...() and remove() methods.)

home references – access to depended-upon beans.
metatype = interface
classifier = ({syntax}, {operational}, {required}, {structure}, {instance},
{permanent}, {single}, {development, assembly, deployment, setup)
tags: locality = {local, remote}, bean = Identifiers

Notes:
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1. Source: deployment descriptor (the ejb-ref and ejb-local-ref
elements).

2. See notes on the business references trait.

3. The tags capture the added information about which bean should be
used to satisfy this dependency (bean corresponds to the ejb-ref-name
element). Strictly speaking, this information is not interesting for
the developer, and will be added during the assembly or deployment
stages. The ejb-ref-type element is a pure duplication of in-
formation and as superfluous is therefore omitted in this model. The
ejb-link element is outside of scope of an individual bean and can-
not be captured in this model.

msg activation – communication activation properties for message-driven beans.
metatype = map,
classifier = ({syntax}, {data}, {provided}, {item}, {instance}, {permanent},
{multiple}, {development, deployment})
tags: ∅

Notes:

1. Source: deployment descriptor (the activation-config-property
element). Reference: specification section 15.4.9.

2. The activation configuration properties listed specifically in the speci-
fication (message acknowledgement, selectors and destination) pertain
only to JMS-based bean communication and are therefore not part of
the EJB component model – rather, they are part of its particular im-
plementation.

msg consumed – names of message classes accepted by the bean.
metatype = class ,
classifier = ({syntax}, {operational}, {provided}, {item}, {instance},
{permanent}, {multiple}, {development, assembly, runtime})
tags: ∅

Notes:

1. Source: Java source (the onMessage() method implementation)

2. This trait is included in the model for fundamental reasons: the set of
messaged accepted by the bean is key to understanding its function-
ality. However, from practical point of view it will be very difficult
to extract this information from existing beans due to the source of
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the trait elements. Therefore, we suggest that a single element with
javax.jms.Message interface name be provided as default trait
contents in cases where the source is unavailable or impossible to parse
correctly.

3. Arity is multiple because in general the message may originate from
a multicast. Lifecycle includes assembly because the knowledge of
messages interchanged between beans is vital for application assem-
bler; although in current reality there is no provision for declaring the
messages emitted by other beans in EJB.

msg destination references – destinations for message-based communication.
metatype = structuremsg destination ref type ,
classifier = ({syntax}, {data}, {required}, {item}, {instance}, {permanent},
{single}, Lifecycle)
tags: ∅

Notes:

1. Source: deployment descriptor (the message-destination-ref
element). Reference: specification section 20.7.

2. For explanation of arity, see env entries trait notes.

3. The type structure for the metatype is given by the XSD definition of
message-destination-refType.

resource env references – objects needed by resource factories.
metatype = map
classifier = ({syntax}, {data}, {required}, {item}, {instance}, {permanent},
{single}, {development, deployment, setup, runtime})
tags: ∅

Notes:

1. Source: deployment descriptor (the <resource-env-ref> parts)

2. The kind dimension is data because these elements are objects used
by or associated with the resource managers as “parameters”.

resource managers – resource factories needed.
metatype = map
classifier = ({syntax}, {operational}, {required}, {structure}, {instance},
{permanent}, {single}, {development, deployment, setup, runtime})
tags: sharing = {shareable, unshareable}, authentication = {application, container}.
Notes:
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1. Source: deployment descriptor (the <resource-ref> parts)

2. The arity is based on a similar clause as in the env entries trait. The
sharing tag – as far as can be deduced from the specification (section
20.5.1.1) – applies to the objects acquired from the given resource
manager, not to the manager itself.

security roles – security roles associated with business interfaces.
metatype = identifier ,
classifier = ({nonfunctional}, {operational}, {provided}, {item}, {constant},
{permanent}, {na}, {assembly, deployment})
tags: ∅

Notes:

1. Source: deployment descriptor (the security-role-ref element).
Reference: specification chapter 21.

2. The role is based on the fact that security roles are associated with
business interface methods. The lifecycle values are based on the spe-
cification which says that the values are used only by the application
assembler and deployer; at runtime, the EJB container (not the bean)
takes care of calling only methods corresponding to current security
role.

timer service – reaction to timed events.
metatype = interface
classifier = ({syntax}, {operational}, {required}, {structure}, {type},
{permanent}, {single}, {development, setup, runtime})
tags: ∅

Notes:

1. Source: Java source (bean class implements the javax.ejb.TimedObject
interface). Reference: chapter 22 of the specification. This trait is ex-
ceptional in that it defines a dependency that is satisfied by the EJB
container, rather than by some other bean.

2. The callback ejbTimeout() method which the bean as a result im-
plements (as if provides) is just a technical means to realize the func-
tionality of the dependency; therefore the required role.

3. The arity is derived from the fact that only one timer service is avail-
able to a bean; see the javax.ejb.EJBContext interface.
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web service endpoint – access to functionality via web services.
metatype = interfacesei

classifier = ({syntax}, {operational}, {provided}, {structure}, {type},
{permanent}, {multiple}, {development, assembly, deployment, runtime})
tags: ∅

Notes:

1. Applies only to beans with tag value state = stateless.

2. Source: deployment descriptor (the service-endpoint element);
Java source

3. The metatype is “service endpoint interface” as per the Web Services
for J2EE specification [?].

web service references – depended-upon web services.
metatype = structureservice ref group

classifier = ({syntax}, {operational}, {required}, {structure}, {instance},
{permanent}, {multiple}, {development, deployment, setup, runtime})
tags: ∅

Notes:

1. Source: deployment descriptor (the service-ref element).

2. The arity of this trait needs to be confirmed.

A.3.4 Notes on the EJB Model

The meta-types used in the definitions have the following meaning. The interface
and attribute correspond to Java interface and class types. The structureX type
denotes a XML element whose structure is given by the DTD or XSD specifica-
tion of the X; relation is just a special case of structure. Finally, map is to be
interpreted as “name-value pair” where the interpretation of the value depends on
the name of the property (e.g. for the trait msg activation below, the JMS-based
beans use values which are strings, enumerates and class names).

Several EJB features are omitted from this model, mostly because they have no
meta-level counterparts in the ENT meta-model. While this prevents the resulting
model to be used in round-trip transformations (between the model and code),
at present there is no clean solution to this deficiency. Features of EJB 2.1 not
modeled are:

• Entity bean relations (the <relationships> section of the deployment
descriptor for CMP and the code implementing them for BMP beans) since
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these describe the links between components and are thus not a part of their
interfaces.

• Finder and select queries for CMP beans – queries are implementation
rather than interface elements.

• The implicit dependency on bean context (javax.ejb.EJBContext)
since this is always accessible – being mandatorily provided by the con-
tainer – and its use is not manifest in the component interface (contrary to
the timer service).

• Sub-element aspects, in particular transaction and security properties of
business interface methods (see the assembly-descriptor part of de-
ployment descriptor). The ENT meta-model does not currently capture sub-
element properties.

• The deployment descriptor contains an optional element client-ejb-jar
with references to .jars with helper classes used by clients to compile/link
with the beans; however, since it is outside the scope of individual compo-
nents, this provided information cannot be modelled.

• Features and patterns of preceding versions of the EJB specifications (2.0
and older) were ignored in the model development, i.e. things that can be
done both old- and new-way are modelled only as the new-way.

Finally, we should warn that this model is based on detailed study of the EJB
2.1 specification, 2 books, and experiments with core EJB features. Message-
driven beans and their aspects, environment and resources, and web services have
yet to be tried in practice to validate (possibly update) the model.

A.3.5 The EJB Component Model in Light of ENT

Several decisions have to be made to match EJB features with the ENT modelling
viewpoint. The one which we would like to mention here is how to model depen-
dencies on other beans (the ejb-ref part of the deployment descriptor). The
options were (1) as per EJB 2.1 deployment descriptor specification, to model this
dependency as an required bean element with home and business interfaces as
tags; (2) is sync with the provided side of the interface as three traits, that is the
bean, the home and the business interface.

What the dependency really means is the client will want to access the busi-
ness interface of the referenced bean, and from this point of view the bean itself
and the home interface are just supporting implementation details. Furthermore,
if we want to use this dependency in substitutability checks, we need to work
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with business interface, not the bean. Therefore we model the dependency by the
business references and home references traits.

A second decision worth mentioning is the specification of aspects pertaining
to specific kinds of beans only (for example, only stateless session beans can have
web service endpoint defined). Since there is currently no provision for such rules
in the ENT meta-model, the solution is to provide their written specification in the
form of the “Applies only to. . . ” clauses.

Our study of EJB 2.1 has shown that it has several weaknesses from the black-
box component point of view. Firstly, it has several traits which are not de-
clared in the externally available deployment descriptor – the msg consumed and
timer service traits in full, and attributes in case of bean-managed persistence.
The bean’s source code has to be parsed to obtain the corresponding elements of
existing beans; this makes it impossible to distill full ENT-based model in the
standard case of deployment form of the bean (the .jar file). Complete infor-
mation about these elements should be included in the deployment descriptor in
order to make EJB components fully black-box.

Secondly, several pieces of information are duplicated in the source code and
deployment descriptor, sometimes unnecessarily. A prime example is the specifi-
cation of business and home interfaces; the duplication is necessary for the Java
implementation to work. Additionally however, the business and home references
needlessly force the application assembler and deployer to specify information
which is already available elsewhere. The home and remote sub-elements of
ejb-ref can be deduced from the required bean’s deployment descriptor. The
specification of its meta-type (the ejb-ref-type element) is in our opinion
completely irrelevant.

A.3.6 Example: A Sample SessionBean

The following is an excerpt from the deployment descriptor of a simple session
bean component, which is the primary source of its interface specification. The
declarations of types listed need to be obtained from the component’s .jar file
by introspection or from its source code by syntactic analysis.

<enterprise-beans>
<session>

<ejb-name>AddrBookListing</ejb-name>
<home>hello.beans.AddrBookListingRemoteHome</home>
<remote>hello.beans.AddrBookListingRemote</remote>
<ejb-class>hello.beans.AddrBookListingBean</ejb-class>

<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
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<ejb-ref>
<ejb-ref-name>ejb/AddressBook</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>hello.beans.AddrBookRemoteHome</home>
<remote>hello.beans.AddrBookRemote</remote>
<ejb-link>AddrBook.jar#AddrBook</ejb-link>
</ejb-ref>

</session>
...

The representation of the AddrBookListing component in traits is as fol-
lows.

component-level tags: state = stateless, transaction = container

business interfaces = {(ε, hello.beans.AddrBookListingRemote,
{(locality, remote)}, ∅)}

home interfaces = {(ε, hello.beans.AddrBookListingRemoteHome,
{(locality, remote)}, ∅)}

business references = {(ejb/AddressBook, hello.beans.AddrBookRemote,
{(locality, remote)}, ∅)}

home references = {(ejb/AddressBook, hello.beans.AddrBookRemoteHome,
{(locality, remote)}, ∅)}
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B XML Representation
This appendix contains full document type definitions (DTDs) for the XML rep-
resentation of ENT structures. Examples of their use are given in Section 3.4 on
page 24 “Use for Tools: XML-based Representation”.

B.1 Component Model and Category Set Definitions
The following DTD defines the XML data structure for a concrete component
model definition in ENT terms. Only one component model can be defined in one
data file. The default extension of component model definition data files shall be
“.emd” for “ENT model definition”.

<?xml version="1.0" encoding="UTF-8" ?>
<!--
ENT component model definitions (EMD) DTD
-->

<!-- component model -->
<!ELEMENT model (name, description?, ctype+) >
<!-- component meta-type -->
<!ELEMENT ctype (name, description?, trait*) >
<!-- trait definition -->
<!ELEMENT trait (name,description?,metatype,classifier) >
<!-- trait classifier -->
<!ELEMENT classifier (dim*) >

<!-- trait’s elements metatype -->
<!ELEMENT metatype (#PCDATA) >
<!-- single classification dimension; the names and their
corresponding values are defined in Section 2 -->
<!ELEMENT dim (#PCDATA) >
<!ATTLIST dim
name NMTOKEN #REQUIRED >

<!-- generic descriptive elements -->
<!ELEMENT name (#PCDATA) >
<!ELEMENT description (#PCDATA) >

The following document type definition defines the XML data structure for
ENT category set definitions. Multiple category sets can be defined in one data
file. The default extension of category set definition data files shall be “.ecd” for
“ENT category set definition”.

<?xml version="1.0" encoding="UTF-8" ?>
<!--
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ENT category set definitions (ECD) DTD
-->

<!ELEMENT categories (catset*) >
<!-- category set -->
<!ELEMENT catset (name,description?,category+) >
<!-- category definition; attribute "hidden" refers to default
display of the category in visual tools -->
<!ELEMENT category (name,description?,classifier)>
<!ATTLIST category
hidden (yes|no) "no" >

<!ELEMENT classifier (dim)*>
<!ELEMENT dim (#PCDATA)>
<!ATTLIST dim
name NMTOKEN #REQUIRED >

B.2 Concrete Component Representation
This document type definition defines the XML data structure for ENT component
representation. The representation allows multiple components from several com-
ponent models to be mixed in one data file. The default extension of component
representation data files shall be “.emr” for “ENT module/component representa-
tion”.

<?xml version="1.0" encoding="UTF-8" ?>
<!--
ENT module/component representation (EMR) DTD
-->

<!ELEMENT entrep (component)* >
<!ELEMENT component (provider, namespace, name, tags?, element*)>
<!ATTLIST module
model NMTOKEN #REQUIRED>

<!-- component naming -->
<!ELEMENT provider (#PCDATA)>
<!ELEMENT namespace (#PCDATA)>
<!ELEMENT name (#PCDATA)>

<!-- generic description element -->
<!ELEMENT description (#PCDATA) >

<!-- single interface element -->
<!ELEMENT element (name,typel,tags,trait) >
<!-- element language type -->
<!ELEMENT type (#PCDATA)>
<!-- component- or element-level tags -->
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<!ELEMENT tags (tag)* >
<!-- single tag; name-value pair -->
<!ELEMENT tag (#PCDATA) >
<!ATTLIST tag
name CDATA #IMPLIED >

<!-- name of the trait the element belongs to; must refer to
one trait name defined in the EMD for the component model
named in the enclosing "component" element’s "name"
attribute. -->
<!ELEMENT trait (#PCDATA) >

(Note: There is no separate XML representation for categories applied to a
concrete component, since such representation is created by applying category set
definition on a concrete component representation. It is only useful at run-time
and need not be persistent.)
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