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ABSTRACT 
Since a fisheye lens can capture a wide angle scenery, it is broadly used for surveillance or outdoor sports. However, 

acquired images suffer from severe geometric distortions. Most of the existing distortion correction algorithms 

depend on linear features: images of linear features are first identified and then 2 dimensional warping is applied 

to make the curved images look straight. We propose a novel fisheye distortion correction method that estimates 

3 dimensional (3D) locations of a foreground first, and then projects them to an image plane by perspective 

projection. When we know approximate distance of the foreground object, as in cases of head mounted camera, 

we can assume the 3D object plane of the foreground, and then estimate the 3D location from image points after 

internal camera calibration. For head mounted camera, foreground is a face and body of a human, and distortion 

of human figure is quite unnatural and awkward. Moreover, human figures lack linear features which excludes the 

use of conventional 2D warping techniques. We present techniques to estimate the 3D position from a 

corresponding 2D image point, which enables calculation of 3D object location. And then apply perspective 

projection to the 3D object position to obtain a distortion-free image. We demonstrate the efficacy of the proposed 

method using fisheye camera images and the applicability of the proposed concept to real applications. 
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1. INTRODUCTION 
Fisheye lens can capture extremely wide view, 

therefore, it is useful for surveillance or outdoor sports 

camera. However, fisheye images have geometric 

distortion which is more severe toward the boundaries 

of the image. Moreover, depending on the position, 

foreground objects or a human is distorted severely, 

and then the fisheye image looks unrealistic. 

Therefore it is necessary to correct for the geometric 

distortion to restore natural and realistic figures. 

There are several methods on correcting fisheye lens 

distortion by processing on viewing spheres [Sha10a], 

[Cha13a], [Car09a], [Wei12a], [Kan06a]. Sharpless 

[Sha10a] and Chang [Cha13a] introduced two-step 

projection methods from viewing sphere which can 

map from wide angle images into image planes. 

Sharpless firstly maps the sphere image into 

equirectangular space and then rectilinear-projects by 

adjusting a scale controlling a distance between the 

center of the projection and the view plane. He applied 

the scale into azimuth angle and altitude angle and 

then obtained corrected image coordinates. It makes 

the regions to be horizontally compressed that are 

between the radial lines from the central vanishing 

point. This concept was based on the paintings of Gian 

Paolo Pannini and many painters of Italian Baroque 

period: they created the wide angle paintings using 

standard perspective projection, but the distortion of 

the projection was not shown in the paintings. 

Sharpless [Sha10a] adopted the method to correct for 

the distorted wide angle scenery. Chang [Cha13a] 

further developed Sharpless’ two step projection 

method  from the viewing sphere to an image plane in 

[Cha13a]. For an initial projection, Chang [Cha13a] 

introduced a swung surface which was created by 

finding parameters linearizing line segments, which 

were found in 6 faces obtained by box projection. 

After the initial projection to the surface, the surface 

was projected to image plane using perspective 

projection. Then, this method conserved the linearity 

of horizontal lines better than those of vertical 

direction. While two methods established projection 

models, Carroll [Car09a] and Wei [Wei12a] 

adaptively corrected for the fisheye lens distortion by 

using user inputs, such as line constraints that should 

be conserved as straight lines. Carroll [Car09a] used 

line constrains users entered and dealt with the 

straightness of them, neighbor pixels’ conformality 

and smoothness to warp each pixel in order to obtain 

natural images having little fisheye distortion. In other 
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words, for each pixel, they find a new image 

coordinates optimizing sum of several energies such 

as straightness, conformality and smoothness. In 

[Car09a], Carroll used static images, while Wei 

[Wei12a] utilizes video images of several frames. Wei 

[Wei12a] carried out the above process tracing input 

line constraints over consecutive frames. However, 

these methods could not work properly when the 

number of inputs were inadequate or the fisheye 

images were severely distorted. 

We propose a new fisheye lens distortion correction 

method using 3D position information with a prior on 

the distance, whereas current methods focus on 

conserving the linearity of straight lines, and mapping 

in 2D. In a situation of capturing an outdoor activity 

by a head mounted camera, the distance between the 

human and the camera is almost fixed, thus we can use 

the distance between them for distortion correction. If 

the foreground is assumed to be on a plane of known 

distance, we can calculate the 3D position of the 

foreground from images coordinates after inverse 

projection. Then, we can project these 3D coordinates 

using perspective projection, and reconstruct the 

foreground image without nonlinear geometric 

distortion. Usually, the foreground and camera is close 

and the solid angle covered by the object is 

considerable, which results in severe image distortion.  

Substantial distortion of human face or body is quite 

unpleasing, however, because there is no straight line 

features in human images, it is not possible to apply 

the existing distortion correction methods. The 

proposed algorithm does not apply 2D image warping; 

the novel method estimate the 3D position of the 

foreground object from a prior and the image position, 

and then apply perspective projection to the estimated 

3D location for generating distortion corrected images.  

In order to correct for the distortion of foreground in 

fisheye lens images, we firstly segment the foreground 

in captured images, estimate 3D coordinates of them 

assuming the distance to the foreground, and then 

project 3D coordinates into the image coordinates by 

perspective projection where the mapped coordinate is 

inversely proportional to the distance to the lens. 

The paper is organized as follows. Section 2 describes 

the proposed method which is estimating 3D location 

of foreground and then perspective projection of the 

foreground to an image plane. Section 3 shows the 

experimental results. Lastly, Section 4 presents 

conclusions and future work. 

 

 

Figure 1. Block diagram of the proposed method 

2. PROPOSED METHOD 
We describe an innovative concept of distortion 

correction: virtual 3D coordinates of foreground 

objects are estimated first and then re-project them to 

obtain distortion-free images. 

Figure 1 shows a block diagram of the proposed 

process. As shown in Figure 1, we initially segment 

the foreground object from an image, and then 

estimate 3D locations of the foreground using image 

coordinates assuming planar object plane. The 

distance and the orientation of the plane is assumed to 

be known. For head mounted cameras, the distance 

from the camera to the foreground is stable and the 

image distortion is not sensitive to perturbation of the 

distance, therefore, distortion correction can be 

accomplished. 

Once 3D coordinates are estimated, geometric 

distortion can be completely eliminated without linear 

features. We can apply perspective projection to 

generate an image without nonlinear distortion. 

2.1 Internal Calibration 

Fisheye camera lens model can be characterized as a 

function of image distance 𝒓 and an angle 𝜽, where 𝒓 

is the distance between the principal point and the 

image position 𝑝 (in Figure 2(b)) on the image plane, 

and 𝜽 represents the angle between the incoming ray 

from the 3 D point P (in Figure 2(b)) and the optical 

axis of the camera. Figure 2(a) shows curves of several 

fisheye lens models and Figure 2(b) represents an 

image plane (𝑥, 𝑦) and the camera lens coordinates in 

3D space (𝑋𝑐 , 𝑌𝑐 , 𝑍𝑐), which represents the lens model. 

Figure 2. (a) Various models of fisheye lens. Lens 

models can be represented as 𝒓 − 𝜽  curve with 

focal length  𝒇 = 𝟏 where 𝒓 is the distance from the 

principal point to a point 𝒑 in the image plane and 

𝜽 is an azimuth angle of object position 𝑷. (b) Fish-

eye camera model setup. The image point of the 

point 𝑷 is 𝒑 whereas it would be 𝒑′ by a pinhole 

camera [Kan06a]. 

Journal of WSCG

Volume 24, 2016 20 ISSN 1213-6972

No.1



 

Figure 3. Fisheye image of a grid pattern for 

internal calibration captured by GoPro HERO4 

Silver. Optimized focal length and principal point 

are found by using the coordinates (𝒖, 𝒗)  of this 

image. 

We used GoPro HERO4 Silver camera model and we 

found that the orthographic model ((v) in Figure 2(a)) 

fits the distortion of the camera. In Figure 4, 𝜃 − 𝑟 

curves from experiment (red dot) and by orthographic 

lens model (blue line) are plotted together, which 

shows good agreement of the observed data and the 

orthographic model. The proposed method can be 

applied to any lens distortion model.  

By finding an optimized focal length and principal 

point for this model, we enhance the accuracy for 

estimating the 3D coordinates. For orthographic lens, 

projection can be described by the following equation, 

𝑟 = 𝑓 sin 𝜃, (1) 

where r is the image distance from the principal point 

(𝑢0, 𝑣0)  to an image point (𝑢, 𝑣) . We used a grid 

pattern perpendicular to the optical axis as shown in 

Figure 3. Then the tangent of angle  is 
ℓ

𝑑
 where d is 

the distance from the optical center to the center of the 

grid pattern (𝑥0, 𝑦0)  and ℓ  is the distance from 

(𝑥0, 𝑦0) to the grid point (𝑥𝑝 , 𝑦𝑝). The image positon 

of (𝑥0, 𝑦0)  corresponds to the principal point. We 

applied affine transform to establish a mapping of the 

center of the grid pattern and the principal point 

[Lee16a]. To find the optimized internal parameters, 

focal length and principal point, we find the minimum 

mean square error solution: 

where N is the number of data points. 

2.2 Estimating 3D Location of Foreground 

Once we have an equation of the foreground plane in 

3 D space, then we can find the 3D location of a point 

from a calibrated image point. The intersection of the 

optical axis and the foreground plane is (0, 0, d) and 

the tilt angle is 𝛼; the rotation axis of tilt is the  

 

Figure 4. Observed 𝜽 − 𝒓  curve (red dot) is 

obtained by calculating 𝜽  and 𝒓  using 36 image 

points which are 1cm apart horizontally from the 

principal point of the image (max 𝜽 = 𝟓𝟔. 𝟐° ). 

Theoretical 𝜽 − 𝒓 curve (blue solid line) is drawn 

from the orthographic lens model. 

y-axis (in Figure 5) for simplicity. We derive the 

3Dlocations of the foreground by finding the 

intersection of the image ray and the object plane. 

Figure 5 shows a 3D space with a surface and x, y, z- 

-axis. Also the center of the lens is shown as the origin 

𝑶 . As shown in this figure, we can derive the 

coordinates on the object surface (𝑥𝑝 , 𝑦𝑝)  when we 

know image coordinates (𝑢, 𝑣). 

Figure 5 also illustrates the relationship of the object 

surface coordinates and the image coordinates. The 

principal point 𝑶′ is (𝑢0, 𝑣0), and the angle  between 

a ray from the object center to a surface point P and a 

horizontal axis of the surface is 𝜑 which is obtained 

from the following equation, 

1 0

0

tan
( ) / cos





 

  
 

u u

v v
, (3) 

u and v are the image coordinates along the x-axis and 

y-axis of Figure 5, respectively. Since the foreground 

surface S is tilted by the angle α along the axis of y, 

we divide 0v v  by cos 𝛼  to compensate for the 

foreshortening. The direction angle 𝜑  on the 

foreground surface can be obtained from the image 

coordinates because we know the tilt angle of the 

foreground surface. The vertical axis of the surface is 

the same as that of the image plane, whereas the 

horizontal axis is rotated by α. And then, we can 

calculate the image distance 𝑟, 

𝑟 = √(𝑢 − 𝑢0)2 + (𝑣 − 𝑣0)2, (4) 

which is the Euclidean distance from the principal 

point (𝑢0, 𝑣0) to an image point. Moreover, we can 

obtain the angle 𝜃,  in the 3D space, using the 

calibrated lens model of the equation 1. 

With the known angles 𝜑 , and 𝜃 , we are ready to 

calculate the distance ℓ which is  the distance from the 

center of the object surface to a point on the 
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Figure 5. (𝒙𝒑, 𝒚𝒑) of the foreground surface 𝑺 can 

be derived using the 3D relations in terms of the 

known priors, such as the distance 𝒅 between the 

center of the lens 𝑶 and the center of the surface 𝑶′ 
and tilt angle of the surface 𝜶, and parameters 𝜽 

and 𝝋  derived from image coordinates. Also the 

perspective projection is the mapping of each 3D 

coordinate to the image position depending on the 

value 𝒛. The depth 𝒛 is calculated from 𝓵 as in the 

figure because we know 𝝋 and 𝜶 already from the 

image. 

surface. The equation for ℓ can be derived as, 

2

2 2

sin ( sin cos )
, cos sin

cos
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. (5) 

Since the image direction angle 𝜑  is obtained by 

equation 3, we could calculate the object image 

location (𝑥𝑝, 𝑦𝑝) on the surface plane by the following 

formula, 

(𝑥𝑝, 𝑦𝑝) = (ℓ cos 𝜑 , ℓ sin 𝜑) (6) 

In other words, the surface coordinates are 

reconstructed from the image coordinates and object 

surface information through equations 3 to 6. 

2.3 Rendering an Image without Distortion 

In order to render an image without distortion, we 

apply perspective projection to the surface coordinates 

(𝑥𝑝 , 𝑦𝑝). And then, perspective projected foreground 

is overlaid on the input image so that we can obtain a 

distortion corrected foreground over a wide angle 

background image.  

Firstly, we need to find the 3D coordinates of the 

object surface points so that we can apply perspective 

mapping. The 3D coordinates (𝑥, 𝑦, 𝑧) are derived by 

the following equation: 

the relation between an object image position (𝑥𝑝, 𝑦𝑝) 

which is the surface coordinates and the 3D camera 

coordinates (𝑥, 𝑦, 𝑧) are shown in Figure 5. 

Once we obtain the 3D position, we can calculate 

image coordinates which are finally mapped to the 

corrected image. At this stage, we adjust the range of 

𝑧 values because it controls the ratio of the sizes of the 

near and far foregrounds. 

We refer the parameter to adjust the range of 𝑧  as 

𝑧𝑅𝑎𝑛𝑔𝑒𝑆𝑐𝑎𝑙𝑒, and the scaled 𝑧 values are represented 

with 𝑧𝑠 as in the following equation, 

𝑧𝑠 = (𝑧 − 𝑚𝑧)𝑧𝑅𝑎𝑛𝑔𝑒𝑆𝑐𝑎𝑙𝑒 + 𝑚𝑧, (10) 

where 𝑚𝑧 is the minimum 𝑧 value of the foreground 

and 𝑧𝑅𝑎𝑛𝑔𝑒𝑆𝑐𝑎𝑙𝑒  is the z-length of the foreground 

object. 

After finding 𝑧𝑠  for each (𝑥𝑝, 𝑦𝑝) , we derive a 

corresponding image coordinates (𝑢, 𝑣) which is the 

result of perspective projection by the following 

formula, 

0/ )(s z su g m z x u   (11) 

0/ ) y(s z sv g m z v  , (12) 

where g𝑠  controls the global size of the foreground 

object on the resulting image plane. The principal 

point 𝑢0 and 𝑣0 are added to shift the (0, 0) principal 

point of the camera model to the actual principal point 

on the image coordinates.  

3. EXPERIMENTS 
After finishing internal camera calibration which 

estimates internal parameters of the camera, such as 

the focal length and the principal point, we estimate 

the 3D coordinates of an object from image 

coordinates. In this section, we verify the accuracy of 

each step and analyze experimental results. 

3.1 Estimation of 3D Coordinates  

We applied the calibration process which is described 

in Section 2.1 by using an image of a tilted grid pattern. 

This tilted grid pattern image has distortions, therefore 

the same interval is shown differently depending on 

the position in the image as in Figure 6. However 

because the grid pattern shows the ground truth 

location, we can find the error of the estimated 

position easily. We verified that the derived equations 

for calculating the 3D object plane coordinates 

(𝑥𝑝 , 𝑦𝑝)  are accurate with the test results. In this 

experiment, we optimize the distance 𝑑 and the angle 

𝜃 by using 30 image coordinates of horizontal points 

on the tilted grid image of Figure 6. 

𝑥 = 𝑥𝑝 (7) 

𝑦 = 𝑦𝑝 cos 𝛼 (8) 

𝑧 = 𝑦𝑝 sin 𝛼 + 𝑑, (9) 
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Figure 6. A fisheye image of a tilted plane captured 

by GoPro HERO4 Silver. The plane is set up away 

from the lens by 30cm, and rotated horizontally by 

𝟑𝟎° (𝒅 ≈ 𝟑𝟎𝐜𝐦, 𝛂 ≈ 𝟑𝟎°). 

We can verify the accuracy of the calculated 

coordinates (𝑥𝑝 , 𝑦𝑝) because we know the true 

coordinates by the reading the graph and then compare 

with the calculated position. We represent a result 

showing both the true and obtained ℓ  which is the 

distance from the center of the foreground surface, and 

calculate an error between them as in Figure 7. We use 

Figure 6 for this task. It is an image of a grid pattern 

30 cm away and with 30° tilt. 

In Figure 6, horizontal 30 points of 1 cm interval are 

used for calculating foreground image position 

(𝑥𝑝 , 𝑦𝑝). The distances ℓ between the center of the 

grid paper (0,0)  and the coordinates (𝑥𝑝, 𝑦𝑝)  are 

shown with the corresponding ground truth 

coordinates in Figure 7. Also we calculate the 

maximum absolute error (MAE) and mean square 

error (MSE) for the 30 data points after optimizing the 

𝑑 and 𝛼. The errors show quite accurate results: the 

root mean square error of 30 points is 0.1 cm and the 

maximum error is 0.24 cm. Therefore the defined 

equations are reliable for calculating the 3D 

coordinates. Based on the fact that the derived 

equations can estimate the 3D positions with high 

reliability, we can reconstruct the 3D foreground 

surfaces from image coordinates of real scenes in the 

following subsection with high accuracy. 

3.2 Perspective Projection Method 

We apply a perspective projection for re-projecting the 

obtained 3D coordinates to the image plane to correct 

for the fisheye lens distortion of the foreground image. 

We use indoor/outdoor real images for finding 3D 

coordinates of foregrounds, and then reconstruct a 

distortion-free result image by the perspective-

projection method of section 2.3. 

We correct for the geometric distortion of a human 

figure in Figure 8(a). Firstly, a foreground object is 

segmented using MATLAB toolbox Image Segmenter. 

 

Figure 7. Calculated (blue ×) and ground truth 

(red ◌) distance 𝓵. 𝓵 is calculated by the proposed 

equations using the foreground information of the 

distance, the tilt angle, and the image coordinates. 

And then if we know the distance from the lens to the 

3D foreground surface and  the tilt angle of the 

foreground, then we can derive 3D coordinates of 

every foreground pixel from the extracted image 

coordinates and the prior. The reconstructed object 

surface from the original image is represented in 

Figure 8(b). The coordinates of the object plane is 

(𝑥𝑝 , 𝑦𝑝) as explained in Section 2.2. The recovered 

foreground is perspective projected and overlaid to the 

original image as shown in Figure 8(c). We can notice 

that the human figure looks more natural after the 

distortion correction using the proposed method. It is 

hard to find linear features in this human figure image, 

therefore, previous distortion correction cannot be 

applied to this class of images. We apply the 

correction method to Figure 9(a) and the resulting 

image, Figure 9(c), shows more familiar looking 

human figure with better proportions. The background 

of this image is window frames and floor, which can 

be approximated as two separate planes in 3D space. 

We applied the same correction algorithm to the 

background, and the result image is Figure 10. Input 

image Figure 9(a) is divided into the figure foreground, 

the floor background and the window frame 

background, and then 3D position of each object plane 

is recovered and then perspective projected separately. 

This result shows excellent correction of distortion of 

the human figure and the background. Merging of the 

foreground and background is not perfect yet, 

therefore, we notice mismatch between them. The 

performance of the proposed distortion correction 

algorithm heavily depends on segmentation and 

merging of the foreground.
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(a) (b) (c) 

Figure 8. (a) Original Image, (b) recovered foreground image, (c) overlay of the perspective projection of 

the foreground 

   

(a) (b) (c) 

Figure 9. (a) Original Image, (b) recovered foreground image, (c) overlay of the perspective projection of 

the foreground

4. CONCLUSION 
Most of previous researches corrected fisheye lens 

distortion by finding features of straight lines and then 

applied 2D warping to make the images of linear 

features straight. We propose a novel correction 

method for fisheye lens distortion. For cases where the 

distance between the lens and the foreground 

object/human is stable, for example head mounted 

cameras, we propose an algorithm to correct for the 

fisheye distortion by estimating 3D locations of the 

foreground. In order to fulfill this objective, we 

derived techniques for estimating 3D positions from 

image coordinates of the foreground and apply a 

perspective mapping to the estimated 3D coordinates 

to render a distortion-free image of the foreground. 

Future work includes application of the proposed 

method when the 3D foreground is composed of many 

planes or curved surfaces. Estimation of the depth or 

distance to the foreground is also an interesting topic. 

 

Figure 10. Perspective projection of the 

background (the window frames and the floor) 

with the overlay of the perspective projection of the 

foreground human figure. 
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