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Abstrakt 

Prezentovaná diplomová práce se zaměřuje na výzkum permitivity uvnitř palivové 

nádrže. Zkoumá vliv chemického složení, teploty, tlaku a plynné fáze na permitivitu. Dále 

se zabývá závislostí tlaku sytých par na teplotě v uzavřeném systému s ohledem na různá 

paliva.  
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Abstract 

Presented master thesis is focused on permittivity investigation of liquids and saturated 

vapours inside fuel tank. It investigates permittivity dependence on chemical composition, 

temperature, pressure, and saturated vapour pressure.  It also examines temperature 

dependence of saturated vapour pressure in a closed system with respect to various fuels. 
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Introduction 

Electronic components are increasingly often used in unusual places where this was not 

possible in the past, or was not required. This master thesis investigates motor fuels from the 

perspective of dielectric properties with a focus on relative permittivity.  

Accurate measurement of relative permittivity is very complicated not only in terms of 

the required equipment, but also in terms of the measuring method. Finding the best solution 

was a long process, and tens of experiments and measurements were done to be able to gather 

accurate data. To confirm the suitability of the method and devices used, reference 

measurement was done using n-heptane as a calibration liquid.  

The first part of this thesis focuses on theoretical analysis, beginning with basics, and 

continuing to the problematic of polarization. In the next part, fuel properties and chemical 

composition are investigated. Chemical composition differs not only by the type of fuel, but 

also by the refinery where it was manufactured; in this work Diesel EN590 and Gasoline 

EN228 were used and only chemically pure liquids for fuel blending. The following sections 

are about practical investigations of relative permittivity dependencies. Temperature, 

frequency and pressure are the three main properties that might influence the relative 

permittivity of fuels. In addition the influence of the gaseous phase is examined in an 

experiment. The last part of the thesis deals with saturated vapour pressure for gasoline and 

gasoline-ethanol fuels.  
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1 Basic terms 

 Dielectric 

Dielectric is a designation for a material inside of which an electric field can exist and 

whose critical attribute is the ability to polarize itself in an electric field. This term has 

therefore a more general meaning. While every insulator is a dielectric, not every dielectric 

is an insulator. In practice, most dielectrics are good insulators too.  Distinguishing among 

dielectric is shown in figure 1.  [1] 

Dielectrics in capacitors serve three purposes: 

 Higher capacitances thanks to reduced distance allowed by using medium between 

them.  

 Getting the same charge at a lower voltage by reducing electric field strength, which 

results in an increase in effective capacitance 

 Increasing resistance against dielectric breakdown. [2]  

 

Figure 1. Distinguishing of dielectrics [3] 
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 Capacitance 

The definition of capacitance is how much charge per volt the capacitor can hold. This 

means that the amount of charge depends on voltage sourced to the capacitor. Less 

technically speaking, it means that connecting the capacitor to a higher voltage source will 

result in an increased number of electrons in comparison to connecting it to lower voltage 

source.  Capacitance is one of the most important parameters in this work, because 

permittivity is calculated from capacitance. [4] 

Definition of Capacitance: 

 𝐶 =
𝑄

𝑈
  (1) 

where 

C ............... capacitance in farads (F), 

Q ............... the charge on the capacitor in coulombs (C), 

U ............... voltage difference between the capacitor plates in volts (V). [4] 

 Capacitance of cylindrical capacitor 

 

Figure 2. Cylindical capacitor 
R1 – inner electrode radius, R2 – outer electrode radius, l – Length of capacitor; all 

values are in meters (m). ε- Permittivity of dielectric between two electrodes. [5] 

In the case of an ideal cylindrical capacitor as seen in Figure 2, assume that the charge 

on inner electrodes is +Q and on outer electrodes –Q. Also, only for practical purposes, 

assume that the positive charge on the inner electrode is located on its axis [4]. Electrical 

intensity can be calculated from:  

 𝐸𝑥 =
𝑄

2𝜋휀0휀𝑟𝑥
 . (2) 

 The potential difference (voltage) between those two electrodes is: 

 𝑈 = ∫ −𝐸𝑑𝑥
𝑥

−𝑥

= ∫ −
𝑄

2𝜋휀0휀𝑟𝑥

𝑥

−𝑥

𝑑𝑥 = −
𝑄

2𝜋휀0휀𝑟
∫

𝑑𝑥

𝑥

𝑥

−𝑥

 . (3) 
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Integrating the equation: 

 𝑈 = −
𝑄

2𝜋휀0휀𝑟

(log𝑒𝑅1 − log𝑒𝑅2) =
𝑄

2𝜋휀0휀𝑟
log𝑒 (

𝑅2

𝑅1
). (4) 

Using (1) we can edit (4) into equation (5) for capacitance:  

 
𝐶 =

2𝜋휀0휀𝑟

log𝑒  (
𝑅2

𝑅1
)
   . 

(5) 

For capacitor length L therefore applies (6): [4] 

 
𝐶 =

2𝜋휀0휀𝑟𝐿

log𝑒  (
𝑅2

𝑅1
)
   . 

(6) 

 Conductance and conductivity 

 Conductance  

Different currents flow through different conductors when attached to the same voltage 

source. Exactly how much current will flow through defines the parameter conductance. This 

depends on the specific properties of the conductor.  Electrical conductance denoted G  

(S= Ω-1) determines how easily a current can flow through a conductor. 

 Ion conductivity and electrolysis  

When talking about conductivity, it is important to mention the phenomenon of 

electrolysis. It is a chemical phenomenon caused by the passage of electric current in liquid 

in which chemical changes occur on the electrodes. An electrically conductive fluid contains 

a mixture of positive and negative ions formed by dissociation in the liquid. The passage of 

electric current leads to a movement of positive ions to negative electrode and the negative 

ions to the positive electrode. Positively charged ions move to the negative electrode during 

electrolysis. They receive electrons and are reduced. Negatively charged ions move to the 

positive electrode during electrolysis. They lose electrons and are oxidized.  
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 Electrophoretic conductivity  

Electrophoretic conductivity is not significantly different from ionic electrical 

conductivity. Electrophoretic conductivity occurs in colloidal systems, which are 

characterized by the fact that they consist of two phases. The first phase appears in the form 

of fine particles. It is called the disperse phase and is dispersed in a second phase, called the 

dispersion medium. In liquid materials there exists suspension and emulsion. Due to the 

force effects of the electric charges, the two phases will not separate.  

According to empirical rules, the colloidal particles are positively charged if their 

relative permittivity is higher than the relative permittivity of the dispersion medium and 

negatively charged if their permittivity is lower than the relative permittivity of the 

dispersion medium. However, there are also some exceptions. Colloidal particles generally 

absorb free ions and with it they retake their charge. As a result, each such particle has a 

certain potential, which we can designate ξ. It is called electrokinetic potential and its value 

is from 0.05 to 0.07 V.  

Final equation for electrophoretic conductivity is: 

 𝛾𝑘 =
𝑛𝑘𝑟𝜉

2휀2

6𝜋𝜂
 ,  (7) 

where  

γk  ............. is electrophoretic conductivity (S), 

η ................ is dynamic viscosity (N·s·m-2), 

ε  ............... is permittivity of liquid insulator, 

ξ  ............... electrokinetic potential (V), 

nk  ............. is concentration of colloidal particles, 

r  ............... is a radius. 
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 Temperature dependency of conductivity 

 The movement of free charge carriers is highly temperature dependent. It is also closely 

associated with dynamic liquid viscosity and its temperature dependency. The relation 

between conductivity, liquid viscosity and temperature is theoretically proven by the Walden 

equation:   

 𝛾 ∙ 𝜂 =
𝑛 ∙ 𝑞2

𝑙2
∙
𝑙1
2 ∙ 𝑓01

𝑙2
2 ∙ 𝑓02

∙ 𝑒−
𝑊1−𝑊2

𝑘𝑇  . (8) 

By index 1, parameters for ions are marked, index 2 is for molecular parameters. During 

the analysis, three possibilities can occur 

W1>W2 - Ions are bound to the molecules tighter than molecules between each other. 

Occurs even when with the raising temperature the concentration of free charge carriers is 

increasing- Dissociation occurs.  

W1<W2 - Bound between molecules are stronger than bonds ion-molecule. Product γ·η 

is lowering with raising temperature – drop of viscosity s faster than conductivity increasing. 

W1=W2 – Both bounds are similar. If f01=f02 and l1=l2, rise of conductivity γ and drop 

of dynamic viscosity η have identical character. With these circumstances, conditions of 

Walden rules are met in the form:  

 𝛾 ∙ 𝜂 =
𝑛 ∙ 𝑞2

𝑙2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (9) 

This chapter was written using [3], [6], [7], [8].  

 Polarization 

When a dielectric sample is placed in an external electric field E, it acquires a nonzero 

macroscopic dipole moment indicating that the dielectric is polarized under the influence of 

the field. There are two ways to describe polarization: macroscopic and microscopic. In this 

thesis only the macroscopic point of view will be discussed.  
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In this case, interest is in the result of polarization, which is the creation of a bound 

electrical charge on the surface of a polarized dielectric. That means that the whole dielectric 

gains a dipole moment. Moreover, based on this principle, it is possible define a vector of 

polarization �⃗� [𝐶 ∙ 𝑚−2], which characterizes a polarized dielectric. [3], [6], [7], [8] 

 𝑃 =
〈𝑀〉

𝑉
 (10) 

〈𝑀〉  is the macroscopic dipole moment of the whole sample volume V, which is 

comprised of permanent microdipoles (i.e. coupled pairs of opposite dielectric relaxation 

phenomena in complex materials) as well as dipoles that are not coupled pairs of 

microcharges within the electroneutral dielectric sample. The brackets 〈 〉  denote the 

ensemble average. In the linear approximation, the macroscopic polarization of the dielectric 

sample is proportional to the strength of the applied external electric field E:  

 𝑃𝑖 = 휀0𝜒𝑖𝑘𝐸𝑘 . (11) 

Where 𝜒𝑖𝑘 is the tensor of the dielectric susceptibility of the material and 휀0 = 8,854 ∙ 10−12 

is the dielectric permittivity of the vacuum. If the dielectric is isotropic and uniform, w is a 

scalar and Eq. (5) will be reduced to the more simple form:  

 𝑃 = 휀0𝜒𝑖𝑘𝐸 . (12) 

According to the macroscopic Maxwell approach, matter is treated as a continuum, and 

the field in the matter in this case is the direct result of the electric displacement (electric 

induction) vector D, which is the electric field corrected for polarization:  

 𝐷 = 휀0𝐸 + 𝑃 . (13) 

For a uniform isotropic dielectric medium, the vectors D, E, P have the same direction, 

and the susceptibility is coordinate-independent. Therefore: 

 𝐷 = 휀0(1 + 𝜒)𝐸 = 휀0휀𝑟E . (14) 

Where 휀𝑟 = 1 + 𝜒 is the relative permittivity. Traditionally, it is also called the dielectric 

constant, because in the linear regime it is independent of the field strength. However, it can 

be a function of many other variables. For example, for time variable fields it is dependent 

on the frequency of the applied electric field, sample temperature, sample density (or 

pressure applied to the sample), sample chemical composition, and so on. [9] 
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 Mechanisms of polarization 

Electronic (Atomic) polarization 

This is a polarization that occurs in atoms that are affected by an external electrical field. 

The electrical field leads to the disposition of electron. (see (a) in Figure 2). By the 

disposition of electrons, an internal atomic electrical field is created, in the opposite direction 

from that of the external field.  

Ionic polarization 

When an electric field is applied to an ionic material, 

cations and anions get displaced in opposite directions, 

which leads to a net dipole moment (see (b) in Figure 2). 

Dipole (Orientation) polarization 

All molecules have a dipole moment. It is the 

position of their charge. The basic molecules are not 

oriented without being affected by an external electric field. There are also exists permanent 

dipoles that are polarized even without any electric field affecting them (see (c) in Figure 3).  

Interface or Space change polarization 

Space charge polarization occurs due to the diffusion of ions, along the field direction, 

thereby giving rise to redistribution of charges in dielectrics. [10], [11] 

All polarization mechanisms respond to an electrical field by shifting masses around. 

This means that masses must be accelerated and de-accelerated, and this will always take 

some time. So we must expect that the (mechanical) response to a field will depend on the 

frequency f of the electrical field; on how often per second it changes its sign. If the 

frequency is very large, no mechanical system will be able to follow. We thus expect that at 

very large frequencies all polarization mechanisms will "die out", i.e. there is no response to 

an extremely high frequency field. This means that the dielectric constant εr will approach 1 

for f ⇒ ∞. [12]  

Figure 3. Polarization 
processes 
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Figure 4. Permittivity characteristics of a polar dielectric versus frequency [13] 

 Permittivity 

Permittivity (also called the dielectric constant) is the measure of a material’s influence 

on an electric field. The net capacitance will increase or decrease depending on the type of 

dielectric material. Permittivity relates to a material’s ability to transmit an electric field. In 

capacitors, an increased permittivity allows the same charge to be stored with a smaller 

electric field, leading to an increased capacitance. 

The capacitance is proportional to the amount of the dielectric constant. As the dielectric 

constant between the capacitive plates of a capacitor rises, the capacitance will also increase 

accordingly. The capacitance can be stated in terms of the dielectric constant, as in:  

 

   

  

𝐶 = 휀𝑟

휀0𝑆

𝑟
 ,  (15) 

 𝐶 = 휀𝑟 ∙ 𝐶0 ,  (16) 
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where 

C ........................ capacitance in farads (F), 

ε ......................... relative static permittivity of the material between plates, 

ε0 ....................... permittivity of free space, which is equal to 8,854 10-12 (F/m), 

S ......................... area of each plate, in square meters, 

r .......................... separation distance (in meters) of the two plates [14]. 

Complex permittivity 

Using complex numbers for impedance is very useful. It is also useful to use complex 

numbers while the describing parameters of loss dielectrics of the material variables. 

Connecting a dielectric to an electric field with sinusoidal waveform 

 𝐸(𝑡) = 𝐸0 ∙ 𝑒𝑗𝜔𝑡 , (17) 

where E0 is amplitude, ω is angular frequency and j is an imaginary unit for which it stays  

j2= -1. From Maxwell’s equations it is possible to express current density by the equation: 

 𝑗𝑑 =
𝑑𝐷

𝑑𝑡
 ,  (18) 

where 

jd  ........................ current density (A/m).  

While dielectric induction after introducing complex permittivity: 

 𝐷 = 휀0 ∙ 휀𝑟
∗ ∙ 𝐸 . (19) 

And after Eq. (17) is used in (19) and then in (18), an equation for ideal and loss current 

density is gained.  

 𝑗𝑑 = 𝑗𝑖 + 𝑗𝑧 = 𝑗𝜔휀0 ∙ (휀′ − 𝑖휀′′)𝐸 = 𝑗휀0휀
′𝜔𝐸 − 휀0휀

′′𝜔𝐸 ,  (20) 

where ε’ is the real part and ε’’ is the imaginary part of permittivity. The imaginary part of 

the equation on the right side expresses the ideal (polarization) part and the real part 

expresses the loss part of current density inside the dielectric. [1] 

  



Dependence of permittivity on the working conditions inside the fuel tank Jan Benda 2016 

20 

 Representation of a circuit 

For better understanding of what is happening when a source is connected to a capacitor, 

it is useful to imagine a scheme with AC connected in series to a capacitor with an air 

dielectric. The capacity of the capacitor is  

 𝐶0 =
𝑄

𝑈
  ,  (21) 

where 

C0 ....................... capacity, 

Q ........................ charge, 

U ........................ voltage. 

The capacitor is being charged by a current  

 𝐼𝐶0
=

𝑑𝑄

𝑑𝑡
= 𝐶0

𝑑

𝑑𝑡
(𝑅𝑒(𝑈0𝑒

𝑗𝜔𝑡)) . (22) 

The imaginary part j means that current outruns applied voltage by 90° and this can be 

written as 𝑒𝑗
𝜋

2  . Knowing that we can use 

 𝐼𝐶0
= 𝐼0𝑅𝑒 (𝑒𝑗(𝜔𝑡+

𝜋
2
)) , (23) 

where 𝐼0 = 𝐶0𝑈0𝜔.  

When taking into consideration other dielectrics than air, capacitance will be increased 

by 휀𝑟. The charging current for the capacitor is defined by  

 𝐼𝐶 = 𝑗𝜔𝐶0휀𝑟𝑈 . (24) 

That is for an ideal insulator. Because there is no such thing as an ideal insulator, it is 

necessary to rely on conductance through a dielectric. Therefore, a real capacitor will have 

two current components, IC which is classic capacitor current and IL, which is loss current or 

conduction current.  
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Figure 5. Equivalent circuit representation of the capacitor with dielectric between 
plates 

a) Parallel b) Series 

Current IL is can be defined by using Ohm’s law: 

 𝐼𝐿 =
𝑈

𝑅
= 𝑈𝐺 , (25) 

where 

G ........................ conductivity of dielectric, 

R ........................ equivalent resistance, 

U ........................ voltage. 

The total current in a real capacitor is the sum of current IL and IC. And using C instead 

of C0, the equation modifies to: 

 
𝐼 = 𝑗𝜔𝐶0휀𝑟𝑈 + 𝑈𝐺 . 

(26) 

The current now does not have 90°; it has 90-δ° because it has both a real and an 

imaginary part. [15] 

 Dielectric loss and dissipation factor tan δ 

It is important to consider the losses in AC capacitors. All dielectrics (except vacuum) 

have two types of losses. One is a conduction loss, representing the flow of an actual charge 

through the dielectric. The other is a dielectric loss due to movement or rotation of the atoms 

or molecules in an alternating electric field.  

One way of describing dielectric losses is to consider the permittivity as a complex 

number that was used before, more comprehensibly written as:  
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 휀 = 휀′ − 𝑗휀′′ = 휀𝑒−𝑗𝛿  ,  (27) 

where 

ε' ......................... permittivity of ac capacitance, 

ε'' ........................ dielectric loss factor, 

δ ......................... dielectric loss angle. 

Loss factor tan δ can be expressed as  

 𝑡𝑔𝛿 =
휀′′

휀′
 .  (28) 

In this thesis a real dielectric is being worked with, so it is important to take into account 

the existence of free charge carriers (conductivity), which means working with a current 

density in an electrostatic field (js) is a necessity required. [1], [3] 

 Dielectric absorption 

Dielectric absorption involves complicated nonstationary processes occurring in a 

technical dielectric that has been inserted between a capacitor’s electrodes after its 

connection to the source of DC voltage. [3] 

“A capacitor which has been charged for a long time and then been completely 

discharged, has a small voltage on its terminal wires again, within seconds or minutes.” [16] 

That means the capacitor does not charge immediately, but with some delay. It will also 

discharge with a similar delay. The reason for this is dielectric relaxation - a delayed response 

of a dielectric t the effects of an electric field caused by slow polarization. [16] 

2 Fuel properties and chemical composition 

 Gasoline, diesel fuel and their production 

Gasoline and diesel are both petroleum products. Petroleum is a mixture found in the 

earth, composed of crude oil and natural gas. While the products that are derived from 

petroleum power the modern world, raw petroleum is of little use until it is refined. It is the 

refining process that converts crude oil into gasoline, fuel oil, and diesel fuel. [17] 
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Crude oil contains hundreds of different types of hydrocarbons all mixed together and, 

depending on the source of the crude oil, different impurities. In order to produce gasoline, 

diesel or any other oil-based products, the hydrocarbons have to be separated, by refining of 

one type or another. 

Gasoline and diesel are both products of a fractional distillation process which is used 

on petroleum. At different temperatures, different products are created. Gasoline is produced 

first in this process because it is formed at temperatures between 35 and 200 degrees Celsius. 

Diesel needs at least 250 °C, up to 350 °C. The next step is blending with other elements to 

fulfil the requirements.  

“Diesel is composed of about 75 % saturated hydrocarbons (primarily paraffins 

including n, iso, and cycloparaffins), and 25 % aromatic hydrocarbons (including 

naphthalenes and alkylbenzenes). The average chemical formula for common diesel fuel is 

C12H23, ranging from approx. C10H20 to C15H28. Gasoline consists of hydrocarbons with 

between 5 and 12 carbon atoms per molecule but then it is blended for various uses. Overall 

a typical gasoline sample is predominantly a mixture of paraffins (alkanes), naphthenes 

(cycloalkanes), aromatics and olefins (alkenes). The ratios vary based on a variety of factors.” 

[18] 

Table 1. Difference between diesel and gasoline [18] 

 Diesel Gasoline 

Uses In diesel engines, heating systems In gasoline engines 

Made from Petroleum/ Crude oil Petroleum/ Crude Oil 

Made by Fractional distillation Fractional distillation 

Torque (for 10L engine) 1000 Nm @ 2000 rpm 300Nm @ 4000 rpm 

Power (for 10L engine) 490Hp @ 3500 rpm 600Hp @ 5500 rpm 

Power = torque*RPM More torque at low speeds Runs at higher RPM 

Auto-ignition 

temperature 
210 °C 246 °C 

CO2 emission 

Diesel fuel produces approximately  

13 % more CO2 gas per gallon of fuel 

burned, compared to gasoline engines. 

Lower than diesel. 

Viscosity increase at lower temperatures No change 

US Consumption (2006) 50 Billion gallons 148 Billion gallons 

Types of ignition Direct ( by compression ) Spark 
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 Biofuels 

 There are several different biofuels in the fuel 

industry. The main ones are ethanol and methanol for 

gasoline fuels and FAME (Fatty Acid Methyl Esters) 

and HVO (Hydrotreated Vegetable Oils) for mixing 

with diesel. HVO is a new product only introduced as 

this work was being finished. It will not be discussed 

or measured here, due to its unavailability.  

The energy per mass of ethanol is only about half that of gasoline. Car engines have to 

be manufactured or modified to be able to run on ethanol. Moreover it produces more ozone 

than gasoline and comparing the smog contribution, they are very similar. Those are 

negatives, but ethanol is a high octane fuel, its burning creates less carbon monoxide and 

thus it is cleaner than gasoline. A major advantage is that ethanol is easy to produce from 

renewable sources. The heat of combustion of ethanol is 24 MJ/l, in comparison to that of 

gasoline, at 34.2 MJ/l this is low. Methanol has similar parameters to those of ethanol, and 

has a lower heat of combustion, 17.9 MJ/l.  

Biodiesel reduces emissions and increases fuel lubricity. Their heat of combustion is 

high, 34.2 MJ/l. There are already problems with diesel engines in winter; biodiesel will 

increase these problems if it is not modified by additives to withstand lower temperatures. 

[19], [20] 

There are many sources for producing FAMEs: rapeseed, sunflower seed, soybeans, 

palm oils and animal fats are the most common. The final product is biodegradable and non-

toxic. FAME’s physical properties are similar to those of conventional diesel. The 

disadvantages of this fuel type are high production cost and its possible corrosive effects in 

fuel system. [21] 

  

Table 2. Heat of combustion of 

fuels and biofuels [19] 

Fuel 
Heat of combustion 

(MJ/l) 

Gasoline 34.2 

Diesel 38.6 

Ethanol 24 

Methanol 17.9 

Biofuel 33.5 
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Table 3. Comparison of Fuel Properties [21] 

 FAME Diesel 

Density at 20 °C (kg/l) 0,88 0,83 

Lower heating value (MJ/kg) 37,1 43,1 

Viscosity at 20 °C (mm2 / s) 7,5 5 

Cetane number 56 50 

Fuel equivalence 0,91 1 

GHG (gCO2eq/MJ) Rape seed: 46 

Waste veg. or animal oil: 10 

Palm oil: 54  

Greenhouse gases trap heat in the atmosphere, which makes the Earth warmer.  “The 

greenhouse gas (GHG) intensity for fuels and energy is expressed in terms of grams of 

carbon dioxide equivalent per Mega Joule of fuel (gCO2eq/MJ). The GHGs taken into 

account are carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4).” [22] 

 Chemical composition 

“Diesel is composed of about 75 % saturated hydrocarbons (primarily paraffins 

including n, iso, and cycloparaffins), and 25 % aromatic hydrocarbons (including 

naphthalenes and alkylbenzenes). The average chemical formula for common diesel fuel is 

C12H23, ranging from approx. C10H20 to C15H28. Gasoline consists of hydrocarbons with 

between 5 and 12 carbon atoms per molecule but then it is blended for various uses. Overall 

a typical gasoline sample is predominantly a mixture of paraffins (alkanes), naphthenes 

(cycloalkanes), aromatics and olefins (alkenes). The ratios vary based on a variety of factors.” 

[18] 

Examples of problems caused by unwanted components 

 Water: Low dissolving power in corrosion protection for conductive materials 

 Elemental sulphur: Reaction with Cu leads to creating insulating layers  

 Acids (from alcohol): Corrosion 

 Dust particles, particles: Abrasive wear and tear 

 Sodium chlorides (NaCl): Corrosion [23] 
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 Chemical composition of fuels according to the standards 

 

Table 4. Gasoline EN 228 [24] 

 Limits (%) 

Content of oxygen-

containing organic 

compounds 

Max 

Methanol 3 

Ethanol 10 

Isopropylalkohol 12 

Isobutylalkohol 15 

Tert-Butylalkohol 15 

Ether (5 or more C-Atom) 22 

Other oxygenates 15 
 

Table 5. Diesel EN 590 [25] Limits 

 Unit Min Max 

Polycyclic aromatic 

hydrocarbons 

% 

(m/m) 
- 8 

Sulphur mg/kg - 10 

Manganese mg/l - 2 

Carbon residue(on 10 % 

distillation residue) 
%  0,3 

Ash content  % - 0,01 

Water content mg/kg - 200 

Fatty acid methyl ester 

(FAME) content 

% 

(V/V) 
- 7 

Table 6. FAME (RME / PME / SME) EN 14214 [26] 

 Unit Min Max 

Fatty acid methyl ester content % 6,5 - 

Content of linolenic acid methyl ester % - 2 

Content of polyunsaturated fatty acid methyl 

esters with the double bonds ≥ 4 
% - 1 

Methanol- Content % - 0,2 

Monoglycerid- Content % - 0,7 

Diglyceride- Content % - 0,2 

Triglyceride- Content % - 0,2 

Acid value mg KOH/g - 0,5 

Water content mg/kg - 500 

Total pollution mg/kg - 24 

Ash content (sulphate ash) % - 0,02 

Sulphur content mg/kg - 0 

Content of alkali metals (Na + K) mg/kg - 5 

Content of alkaline earth metals (Ca+Mg) mg/kg - 5 

Phosphorus content mg/kg - 4 

 Additives 

The composition of gasoline can vary widely depending on the blending specifications 

required for different regions based on climate and environmental regulations. The trick, as 

one source puts it, is to formulate a gasoline that "does not cause engines to knock apart, 

does not cause vapour lock in summer but is easy to start in winter, does not form gums and 

deposits, burns cleanly without forming soot or residues, and does not dissolve or poison the 

car catalyst or owner."  [27] 
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 Anti-knock additives - Increase of the octane number (anti-knock index) 

 Antioxidants - Improvement of shelf life 

 Detergents - Pollution prevention (suction, fuel induction) 

 Corrosion protection - Fuel system protection 

 Anti-icer - Reduction of icing during fuel induction 

 Lubricative additive - Wear protection 

 Dyes - Used to identify fuel, because of taxes, octane number, usage, etc. Different 

countries have different uses for dyes [27] 

 Parameters of materials contained in fuels 

Table 7. Permittivity of materials contained in fuels at 20°C [28], [29] 

  Relative permittivity εr 

Vacuum 1 

Metals infinite 

Gassess 1.00XX (at one atmosphere) 

Hexane 1.8865 (20 °C) 

Cyclohexane 2.0243 (20 °C) 

Benzene 2.285 (20 °C) 

Gasoline 2 

Ethanol 23,72 

Methanol 33,1 

Water 87,9 (0 °C) to 55,5 (100 °C) 

Diesel 2,14 

RME 3,1 

 Process of fuel dilution 

For better understanding of ethanol fuels, it is important to examine concentrations that 

are commonly produced. To get these concentrations, 100 % ethanol, with less than 100 ppm 

of water and GE98, with about 550 ppm of water, were used to blend with. Using volume 

blending, however, is very inaccurate. This is caused by the fact that blending two materials 

with the same volume, but different densities results in a final liquid with a density that 

cannot be simply calculated and also the final volume ratio may not be the same. It can be 

better understood using an example. Blending 700 millilitres of gasoline with 300 millilitres 

of ethanol does not lead to GE30. Though the concentrations are given in volume units, a 

more accurate way to blend liquids to get the final concentration is by calculation of the 

weight of the fuel from the concentration required and the density. This way, the weight ratio 

is acquired.  All blending required was prepared by using Kern EW 2200-2NM scales. 
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3 Influence of frequency 

 Measuring method 

This measurement was done at room temperature, using a Hioki IM3536 LCR meter, 

thermometer and electrode system LCM-8716. The bottom of the electrode system was 

sealed, and the electrode was fully filled by fuel, the top open for the thermometer probe. 

The frequency range examined was from 100Hz to 1MHz with 41 measuring points. The 

temperature was recorded for every fuel.  While working with ethanol, it is important to 

minimize the time it is in contact with air, because it absorbs water from air humidity.  

 Measured fuels 

Table 8. List of measured fuels for frequency dependence investigation 

Diesel fuels Gasoline fuels 

Diesel EN590 Gasoline EN228 

ArcticD Ethanol 

R100 GE10 

S100 GE30 

DR30 GE55 

DS20 GE85 

DS30 GE98 

 Methanol 

 GM5 

 GM15 

 GM45 

 ArcticD- Arctic diesel 

 DR- Diesel- rapeseed oil blend 

 DS- Diesel- soybean oil blend 

 GE- Gasoline- ethanol blend 

 GM- Gasoline- methanol blend 

 Measuring corrections 

For these measurements, LCR meter Hioki IM3536 was used. Several options for 

reducing the measuring error were tested. A few experiments were done to investigate the 

influence of open, short and load correction. It was found that open correction can be avoided 

by using shielded connectors. It is important to measure with short and load corrections.    
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 Results 

In this measurement all fuels were measured by the same method and for each one of 

them, the temperature was recorded. Permittivity of nonpolar liquids is mainly dependent on 

the viscosity of the material. Therefore, in the range of these frequency measurements no 

changes can be seen. For polar liquids, the permittivity measurement is much more 

complicated due to polarization which affects capacitance. Interface polarization can be seen 

for all polar fuels, its effect is decreases with increasing frequency, fully negating its effect 

at tens of thousands Hz. In the figures below, there are examples of a several measurements. 

Full measurement data and graphs can be found in the technical report Frequency 

Dependence of Permittivity [37]. 

 
 Figure 6. Sample A  

 
Figure 7. Sample B  

 
Figure 8. Sample C  

 
Figure 9. Sample D  

 
Figure 10. Sample E  

 
Figure 11. Sample F  
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4 Influence of temperature 

 Measuring method 

For this measurement the test cell is filled with the fuel and connected to a barometer 

using Teflon tubes attached to the top entry of the test cell. The bottom input is used for 

attaching a thermometer probe connected to an Alhborn thermometer.  

The first examined liquid, sample A, was chosen because the measured temperature 

range was the widest. Therefore, it was the best to test the equipment used. 

It is important to take into account the volume expansion of liquids caused by changing 

temperature. Not leaving enough space for expansion may lead to an enormous increase in 

pressure. Fully filling the test cell and leaving just a bit of air in tubes leads to increasing 

pressure. At 60 °C the pressure was about 4 bars, increasing up to 15 bars when heated to 

80 °C.  

 On the other hand, having more fuel than needed will help avoid creating empty space 

in the test cell when decreasing temperature lowers the volume. To reduce the surface where 

fuel is in contact with air, a long narrow tube that led to the thermometer and barometer was 

used as a reservoir.  

 Cables 

Coaxial cables (RG316/U) were used for connecting the cell and Hioki LCR meter by 

BNC connectors. Results were corrected to cable length 1.8 m. Capacitance temperature 

dependency is approximately 0.05 pF/ °C and it was not considered. 

A decision to test cable connectors at temperature 130 °C for 1 hour was made, to be 

sure it could withstand the measuring temperature in the thermal chamber. This was done 

mainly because of the unknown behaviour of the dielectric part of the connectors, which was 

made from a material called delrin. After heating the connectors for one hour, we tested 

mechanical and electrical parameters were tested. Observed parameters did not change.  
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 Temperature controlling 

Measuring at different temperatures was done using the CTS (Climatic Temperature 

System) TS-50/530. This machine uses nitrogen as an atmosphere as a safety precaution, 

because spontaneous ignition can occur at higher temperatures for all fuels. Even though this 

system is sealed, any small leak might cause problems without the atmosphere. The CTS is 

able to control temperature and keep it constant in a range from -60 °C to +180 °C.  

 Results 

All results with data can be found in [38]. 

 Sample A 

The relative permittivity of this fuel decreases with increasing temperature. Most of this 

liquids substances are non-polar. Therefore, influence of interface polarization cannot be 

seen.  

 

Figure 12. Sample A relative permittivity dependence on temperature 
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 Sample B 

Sample B acts very similar to sample A. The only difference is in the temperature range, 

which was decreased because of its lower boiling point. To increase the boiling point and 

negate the negative effects of the gaseous phase, the pressure of the fuel was increased.  

 
Figure 13. Sample B relative permittivity dependence on temperature 

 Sample G 

 The figure below shows the decrease of permittivity at higher temperatures. At low 

temperatures there is also a trend, when permittivity is decreases with increasing frequencies.  

 
Figure 14. Sample G relative permittivity dependence on temperature 
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 Sample H 

 While measuring sample H interesting behaviour was noticed. At very low frequencies, 

the calculated capacitance increases significantly. This is caused by interface polarization. 

The best range for these measurements, where permittivity measurement is most precise, is 

from 100 kHz up to 1 MHz max.  

 
Figure 15. Sample H permittivity dependence on temperature 

 Gasoline-ethanol blends 

Blends of gasoline with ethanol with concentrations of 10, 30, 55, 85 and 98 were 

measured. These blends were chosen to cover the range of concentrations. Using the results 

in the technical report Temperature Dependence of Permittivity [38], it is possible to predict 

the permittivity of all other concentrations at required temperatures and frequencies.  
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5 Influence of pressure 

 Method 

From a theory it is known that very high pressure will influence the permittivity 

measurement due to the increased number of molecules in the same volume. The focus of 

these measurements was to explore the influence at lower pressures. The measurement was 

done for sample A at atmospheric pressure and at 15 bar and temperature 80 °C. The pressure 

was modified by increasing temperature for two volumes of air where the fuel can expand. 

The etalon of the barometer used was 0.025 % of R + 0.01 % FS. 

 Results 

The difference between the two measurements at different pressures was approximately 

0.005 (-) in relative permittivity, which is approximately a 0.25 % difference. Using data for 

density increase with pressure, a 0.115 % difference was calculated. As the permittivity 

reduces with increasing temperature, taking into account that the temperature is a little higher 

for results for higher pressure measurement, it is possible to assume that the increase in 

permittivity caused by a pressure increase is even a bit higher. A full list of measured data 

and figures can be found in [39]. 

6 Influence of power level 

Using different power levels may lead to increasing parasitic inductions. Also too low 

voltage may lead to decrease in measurement accuracy. These experiments consisted of 

three parts.  

In the first part measurements for an empty cell were taken. The hardware allowed the 

examination of a range from 0.01 V to 5 V.  For higher frequencies, the measurement 

results are very accurate at all used power levels. But for lower frequencies, as can be seen 

in the graphs below, there is a high influence of power level on accuracy. Increasing the 

voltage up to 1 V leads to significant accuracy improvement for low frequencies. The 

difference between 1 V and 2 V is negligible and there is almost no difference between 2 

V and 5 V.   



Dependence of permittivity on the working conditions inside the fuel tank Jan Benda 2016 

35 

The second part is focused on examining the power level influence on capacitance for 

an electrode system filled with methanol. It was done for 0.1 V, 1 V and 5 V power levels. 

In last part Rapeseed oil is measured for power level 0.01 V, 0.1 V, 1 V, 2 V and 5 V. 

Full report with data and graphs can be found in [40] 

Measuring at low power level leads to an increase of interference and measuring error. 

Depending on the circuit, it is necessary to give enough power output to negate these effects. 

From the results, it was decided that 1V is accurate for the circuit used in this paper. Also, 

higher voltage would disable the option to measure at higher frequencies above 1 MHz 

because of LCR meter limits. From the methanol measurement results it was found that the 

lower voltage increases in capacitance is caused by interface polarization. Measurement for 

R100 showed that using low voltage for less conductive fuels may cause huge errors. Using 

the highest available voltage is recommended for most accurate results. 

 

Figure 16. Measurement for empty cell with power level from 0.01V to 0.5V 
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Figure 17. Measurement for empty cell with power level from 0.1V to 5V 

 

Figure 18. Measurement for empty cell with power level from 1V to 5V 
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7 Influence of nonhomogeneous fuel 

For fuel blends there is a possibility that their blending will not be ideal. Due to different 

densities of ethanol and gasoline, there may occur that parts of the fuel separate. Density of 

ethanol is 785.1 (kg/m3) and density of gasoline is from 719 to 778.8 (kg/m3) [29]. These 

densities are quite similar, but may cause that the ethanol, with its higher density, may settle 

on the bottom.  

An experiment was performed to test if this is possible. One litre of fresh blended GE65 

fuel was left in a graduated cylinder for three days at constant temperature. The graduated 

cylinder was covered to prevent evaporation. After three days the two samples were 

withdrawn, one from the bottom of graduated cylinder and one from the top. Measuring both 

samples showed no difference in relative permittivity.  Nonhomogeneous medium may also 

occur by contamination of fuel by dust particles, however, these particles are small and will 

have negligible effect on relative permittivity of the volume.  

8 Influence of a gaseous phase 

Gasoline consists of many substances, some of which have a very low boiling point. 

Boiling these substances creates a gaseous phase that may influence the capacitance 

measurements. To analyse this, an experiment was done using water, because of its high 

permittivity, a plate capacitor, and a system for nitrogen injection, which substitutes for the 

gaseous phase.  

Two coplanar capacitors (Figure 19 and 20) were fixed to each other to create a plate 

capacitor. The measuring device was a Hioki LCR meter, used to measure capacitance. The 

final results are shown in the figure below. The flow rate of nitrogen was controlled in the 

range of 0-30 litres per minute with a step of 5, while waiting few seconds after each increase 

of flow.  After reaching 30 litres per minute, the flow was reduced to zero. At the end of the 

measurement there were a few bubbles attached to the electrodes, decreasing the capacity 

measured. There was no option to use shielding for the electrodes, nor the cables, so the 

influence of jamming has to be considered.  
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These results confirmed assumptions that the gaseous phase will reduce the number of 

molecules of higher permittivity material between electrodes. Therefore, the capacitance is 

decreased with an increasing flow rate. 

 

 

Figure 19. Support part of capacitor Figure 20. Electrodes 

 
Figure 21. Percentage change in capacity while changing flow rate of nitrogen 
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9 Vapour pressure 

“Vapour pressure is used as a classification criterion for the safe handling and carriage 

of petroleum products, feedstock and components; it has a relationship to the potential for 

hydrocarbon emissions, under uncontrolled conditions, and thus is the subject of 

environmental scrutiny.” [30] 

DVPE  

 Dry vapour pressure equivalent, also called RVP (Reid vapour pressure), is 

measured for 37,8 °C (100 °F) with the presence of air 

TVP  

 True (Absolute) vapour pressure is measured for any temperature without the 

presence of air or other gases.  

Vapour pressure is affected by temperature and the chemical composition of a fuel. 

Blending ethanol with gasoline increases the pressure significantly, with its peak up to about 

10 % ethanol. Further blending decreases the RVP.   

  
Figure 22. Effect of ethanol blending on 

vapour pressure of gasoline 

Reid Vapour Pressure ■ Furey and Jackson, 

1977; ♦US Department of energy, 1991; X 

Ethanol RVP; Δ gasoline RVP; *gasoline/ethanol 

blend of ideal solution, as a function of the mole 

fraction of ethanol (χeth) blended in gasoline. [31] 

 

Figure 23. Gasoline-ethanol blends: 
vapour pressure increase vs ethanol content 

[32] 
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Exact values are difficult to obtain due to different compositions of gasoline. Gasoline 

fuel is produced differently in summer and winter. This is caused by requirements for 

different temperatures. In winter, the temperature causes gasoline to evaporate less and that 

causes difficulties with starting a gasoline car, and it also runs rough. In summer, the 

temperature is high and the gasoline evaporates too much, which is a reason for using 

gasoline with a lower RVP. It decreases emissions and prevents drivability problems such 

as vapour lock. For future investigations using the procedures from DIN EN 13016-1 

standard is recommended.  

Table 9. Environmental specifications for market fuels to be used for vehicles 
equipped with positive-ignition engines [34] 

Parameter  Unit 
Limits 

Minimum Maximum 

Research octane number  95 — 

Motor octane number  85 — 

Vapour pressure, summer period  kPa — 60 

Distillation:    

— percentage evapourated at 100 °C % v/v 46 — 

— percentage evapourated at 150 °C % v/v 75 — 

Hydrocarbon analysis:    

— olefins % v/v — 18 

— aromatics % v/v — 35 

— benzene % v/v — 1 

Oxygen content % m/m  3,7 

Oxygenates    

— Methanol % v/v  3 

— 
Ethanol (stabilising agents may be 

necessary) 
% v/v  10 

— Iso-propyl alcohol % v/v — 12 

— Tert-butyl alcohol % v/v — 15 

— Iso-butyl alcohol % v/v — 15 

— 
Ethers containing five or more 

carbon atoms per molecule 
% v/v — 22 

— Other oxygenates  % v/v — 15 

Sulphur content mg/kg — 10 

Lead content g/l — 0,005 

A standard modifies the vapour pressure specification for regular grade gasoline for 

countries with low ambient summer temperatures to 70 kPa, for gasoline containing ethanol 

the vapour pressure limit is 60 kPa, increased by a value corresponding to the ethanol content 

from the table below. [34]  
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Figure 24. True vapour pressure of gasoline for different temperature [33] 

Table 10. Vapour pressure waiver permitted for gasoline containing bioethanol [34] 

Bioethanol 

content (% v/v) 

Vapour pressure waiver 

permitted (kPa) 

0 0 

1 3,65 

2 5,95 

3 7,2 

4 7,8 

5 8 

6 8 

7 7,94 

8 7,88 

9 7,82 

10 7,76 

Vapour pressure for different temperatures can be computed using the Clausius-

Clapeyron equation (29). For this calculation, data used are pressure p1 (kPa) at temperature 

T1 (K), constant R=8.3145 (J·K-1·mol-1), and also enthalpy of vaporization ΔHVAP (J·mol-1) 

for the substance and temperature examined. 

 ln
𝑝1

𝑝2
=

∆𝐻𝑉𝐴𝑃

𝑅
∙ (

1

𝑇2
−

1

𝑇1
) (29) 
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Using data collected by the Dortmund Data Bank (DDB) for ethanol ΔHVAP, it is 

possible to calculate its vapour pressure. However, for gasoline vapour pressure it is much 

more complicated due to its complexity and variety of its composition.  

There is a very good study on this topic called “Vapor Pressures of Alcohol-Gasoline 

Blends” [35] by V. F. Andersen, J. E. Anderson, T. J. Wallington, S. A. Mueller, and O. J. 

Nielsen. The gasoline they used for this work is also used for the U.S. Federal Test Procedure 

and its composition is accurately known. Also the alcohols used have a very low and 

controlled amount of water contamination.  Using this gasoline, they did several experiments 

on Reid vapour pressure.  

10 Measuring devices 

 Thermometer – ALMEMO 2590 – Connected to a measuring probe that is 

interposed in the electrode system. Temperature accuracy of this device is ± 

0.0276 °C. 

 Thermometer probe – GREISINGER Pt100. 

 Barometer – Used for investigating of pressure influence on permittivity. But it was 

always attached to the fuel system to check if everything was set and connected 

right during temperature measurements. In case of leakage the pressure did not 

increase.  

 Climatic chamber – CTS (Climatic temperature system) TS-50/530 – Used for 

heating the cell. Its temperature range is from -60 to +180 °C.   

 LCR Hioki IM 3536 – Device used for impedance and phase measurements, 

working in ranges from 4 Hz to 8 MHz.  

 LCM-8716-CF – Electrode system, manufactured by ALFF engineering, it 

conforms to the IEC 61620 and IEC 60247 standards. 

 Kern EW 2200-2NM – Weight machine used for fuel dilution. 
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11 Results accuracy and measurement uncertainty 

 Basic accuracy by manual 

The Hioki has multiple rates of speed of measurement. The difference between them is 

the number of waves per set of data given. In this work, the slowest and most accurate, slow2 

option was set.   

Table 11.  Number of waves for each measured data at different frequencies [36] 

Frequency range (Hz) Number 

of waves 

Frequency range (Hz) Number 

of waves from to from to 

4,00 10,00 4,00 100010 140000 2400 

10,01 39.99 10,00 140010 200000 2400 

40,00 99.99 40,00 200010 300000 960 

100,00 300,00 50,00 300010 400000 1600 

300.01 500 200 400010 500000 1600 

500.01 1000 300 500010 700000 2400 

1000.1 2000 600 700010 1000000 2400 

2000.1 3000 1200 1000100 1400000 960 

3000.1 5000 2000 1400100 2000000 960 

5000.1 10000 3000 2000100 3000000 1440 

10000.1 20000 1200 3000100 4000000 2400 

20000.1 30000 480 4000100 5000000 2400 

30000.1 50000 800 5000100 6000000 4000 

50000.1 100000 1200 6000100 8000000 4000 

Basic accuracy given by the manufacturer in its data sheet is: 

Z: ±0.05 % rdg. 

θ: ±0.03° (Representative value). 

Basic accuracy for measurements of temperature and frequency dependencies of 

permittivity are calculated using the Hioki IM3536 manual.  

Basic accuracy is calculated based on coefficients A and B from the table below, using 

equations (29) for range 1kΩ and higher and (30) for range 100 Ω and lower.  

𝐵𝑎𝑠𝑖𝑐 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  ±(𝐴 + 𝐵 ∙ |
10 ∙ 𝑍𝑥

𝑅𝑎𝑛𝑔𝑒
− 1|) (30) 

𝐵𝑎𝑠𝑖𝑐 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  ±(𝐴 + 𝐵 ∙ |
𝑅𝑎𝑛𝑔𝑒

𝑍𝑥
− 1|) (31) 
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Table 12. Accuracy chart coefficients A, B. (First row is for Z, second for Φ) [36] 

Range 

For AC measurement (measurement frequency (Hz) ) 

4 99,99 102 999,99 103 104 10001 105 100001 106 1000001 8·106 

A B A B A B A B A B A B 

100 (MΩ) 
6 5 3 2 3 2 - - - - - - 

5 3 2 2 2 2 - - - - - - 

10 (MΩ) 
0,8 1 0,5 0,3 0,5 0,3 2 1 - - - - 

0,8 0,5 0,1 0,2 0,4 0,2 2 1 - - - - 

1 (MΩ) 
0,4 0,08 0,3 0,05 0,3 0,05 0,5 0,1 3 0,5 - - 

0,3 0,08 0,2 0,02 0,2 0,02 0,6 0,1 3 0,5 - - 

100 (kΩ) 
0,3 0,03 0,2 0,03 0,2 0,03 0,25 0,04 1 0,3 2 0,5 

0,2 0,02 0,1 0,02 0,1 0,02 0,2 0,02 1 0,3 2 0,3 

10 (kΩ) 
0,3 0,03 0,2 0,02 0,05 0,02 0,3 0,02 0,5 0,05 2 0,5 

0,2 0,02 0,1 0,02 0,03 0,02 0,2 0,02 0,5 0,05 1,5 0,3 

1 (kΩ) 
0,3 0,02 0,2 0,02 0,2 0,02 0,2 0,02 0,4 0,02 1,5 0,2 

0,2 0,01 0,1 0,02 0,1 0,02 0,15 0,02 0,4 0,02 1,5 0,2 

100 (Ω) 
0,3 0,02 0,2 0,02 0,2 0,02 0,2 0,02 0,5 0,03 1,5 0,2 

0,2 0,01 0,15 0,01 0,1 0,01 0,15 0,02 0,5 0,03 1,5 0,2 

10 (Ω) 
0,5 0,1 0,4 0,05 0,4 0,05 0,4 0,05 0,8 0,1 2 1,5 

0,3 0,1 0,3 0,03 0,3 0,03 0,3 0,03 0,5 0,05 2 1 

1 (Ω) 
1,5 1 1 0,3 1 0,3 1 0,3 1,5 1 3 3 

0,8 0,5 0,5 0,2 0,5 0,2 0,5 0,2 0,7 0,5 3 2 

100 (mΩ) 
8 8 5 4 3 2 2 2 4 3 - - 

5 4 3 2 2 1,5 2 1,5 3 4 - - 

Measuring the sample gives Z and Φ. Inserting the data in Equations (30) and (31) from 

above, Z accuracy and Φ accuracy are calculated. Using Equations (32) and (33), Zmin and 

Zmax are calculated. The same principle applies for Φmin and Φmax see (34) and (35).  

𝑍𝑚𝑖𝑛 = 𝑍 ∙ (1 −
0,05

100
)   (% 𝑟𝑑𝑔. ) (32) 

𝑍𝑚𝑎𝑥 = 𝑍 ∙ (1 +
0,05

100
)   (% 𝑟𝑑𝑔. ) (33) 

Φ𝑚𝑖𝑛 = Φ ∙ (1 −
0,05

100
) (34) 

Φ𝑚𝑎𝑥 = Φ ∙ (1 +
0,05

100
) (35) 
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In the last step, the range within which Cp values can be acquired based on Z and Φ 

ranges is calculated. Equations (36) and (37) are used for calculating the minimum and 

maximum of the measured values. The basic accuracy equation is defined (38). [35] 

C𝑝𝑚𝑖𝑛 =
sinΦ𝑚𝑎𝑥

𝜔 ∙ |𝑍𝑚𝑎𝑥|
  (36) 

C𝑝𝑚𝑎𝑥 =
sinΦ𝑚𝑖𝑛

𝜔 ∙ |𝑍𝑚𝑖𝑛|
  (37) 

Basic accuracy =  ±
(𝐶𝑠 − 𝐶𝑚𝑖𝑛) ∙ 100

𝐶𝑠
 (% 𝑟𝑑𝑔. ) (38) 

 Basic accuracy by law of error propagation 

Using the error propagation law (43), SCP is acquired and Cpmin and Cpmax calculated.  

𝑆(𝐶𝑃) = √
cos2 Φ

𝑍2𝜔2
∙ 𝑆(Φ)2 +

sin2 Φ

𝑍4𝜔2
∙ 𝑆(𝑍)2 , 

(39) 

where:  

S(Cp) is difference between minimal (or maximal) and measured data. See next 

formula: 

𝐶𝑝𝑚𝑖𝑛 = 𝐶𝑝 − 𝑆(𝐶𝑝), (40) 

𝐶𝑝𝑚𝑎𝑥 = 𝐶𝑝 + 𝑆(𝐶𝑝). (41) 

Results for this basic accuracy are included in each measurement report.   
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 Design of experiment and analysis of variance 

The results for the gasoline-ethanol fuels were analysed using a design of experiment 

(DOE) and an analysis of variance (ANOVA). These methods were used twice, first for all 

data measured, including frequencies bellow 5 kHz. This model summary fits the data only 

in 8,14 %. Data from the DOE shows that there is another parameter which is not specified 

in the calculations. This parameter is an interface polarization and occurs at low frequencies 

for conductive liquids. Due to the difficulty of describing the polarization, data affected was 

excluded. By excluding all data for frequencies lower than 5 kHz, much better DOE results 

were achieved. Model fits in 99,2 %, and the results give very useful results, showing that 

main parameters influencing relative permittivity are concentration and temperature.  

 Results for DOE and ANOVA including data affected by interface 

polarization 

Figures 25 and 26 below shows that relative permittivity is mostly dependent on 

frequency and concentration. These results were given due to the fact that interface 

polarization is caused by ethanol molecules, and it occurs on low frequencies.  

 

Figure 25. Pareto Chart of Standardized Effects (response is Rel. Permittivity;α=0,05) 
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Figure 26. Interaction Plot for Rel Permittivity (-) 
Data means 

In Figure 27 there can be seen the mean for each parameter. The first graph shows that 

the relative permittivity increases with the concentration. The second graph shows that there 

is a huge decrease in the relative permittivity when increasing the frequency up to about 5 

kHz, however, further increasing the frequency has a negligible effect. The temperature 

graph is not so clear to read, that is because low concentration fuels are not that temperature 

dependent. Points with increased mean are for fuels with higher ethanol content.   

 

Figure 27. Main Effects Plot for Rel.Permittivity (-) 
Data Means 
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 Results for DOE and ANOVA excluding data affected by interface 

polarization 

After excluding the data affected by interface polarization, a model fitting in 99,2% was 

achieved. The Pareto Chart of the Standardized Effects below shows that the frequency has 

truly negligible effect and concentration and temperature have the main influence.  

 

Figure 28. Pareto Chart of the Standardized Effects  
(response is Rel. Permittivity (-); α= 0,05) 

 

Figure 29. Interaction Plot for Rel.Permittivity (-) 
Data Means 
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The temperature dependence is increased with increasing concentration as can be seen 

in Figure 29. The Main Effects Plot for Rel. Permittivity below describes the characteristics 

of each parameter. There is still a very low increase in the frequency graph at frequency 5 

kHz, meaning that for some concentrations there is still the interface polarization in process. 

Also notice that the temperature mean is reversed, showing that the relative permittivity is 

decreasing with increasing temperature. These results prove conclusions made for 

measurements.  

 

Figure 30. Main Effects Plot for Rel.Permittivity (-) 
Data Means 
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12 Conclusion 

From the biofuel point of view, it is possible to divide fuels into two groups, gasoline 

and diesel fuels. Gasoline is mixed with ethanol or methanol to create biofuel blends. The 

second type, diesel, is mixed with biofuel FAME or the new biofuel type HVO.  

The conclusion from the first part of this thesis is that gasoline and diesel fuels have low 

permittivity, and adding even low concentrations of biofuels may affect the final permittivity. 

Ethanol and methanol both have permittivity more than ten times greater than gasoline has. 

Similar changes will occur for blending diesel with FAME. However, its permittivity is 

much lower, and the difference will not be so significant. Therefore the determination of the 

concentration of a bio-component is more accurate for gasoline biofuels due to their wide 

range of permittivity. For diesel biofuels, it will require a much more accurate method and 

devices to get the accurate percentage value of the concentration. It is also worth mentioning 

that this work do not take into account any special additives that are added to fuel by 

distributers, which improve the quality and also the parameters. 

To inspect the accuracy of the measuring method and devices, n-heptane liquid was used. 

Its table permittivity is 1,209. Fifty measurements were done at one frequency and at 

constant temperature, giving an average value of 1,2075 with the greatest variance of a 

0,000044. This gave enough confidence in the measuring method and devices.  

  Frequency dependence is highly affected by the type of fuel, its parameters, and also 

by the measuring method. Using a method with low capacity increases the influence of 

parasite inductance and external jamming. For accurate results, electrode shielding and 

corrections for inductance are recommended. For conductive fuels, for example ethanol fuels, 

at low frequencies the interface polarization increases capacitance significantly. There is also 

confirmed by measurement that the presence of water in the ethanol has great influence on 

results. Using ethanol with 3000 ppm and 550 ppm of water gives very different results.  

The relative permittivity of fuels decreases with increasing temperature. This is caused 

by fuel volume expansion, which results in less molecules are between the electrodes. 

Moreover for polar fuels, temperature affects dipole movement and therefore the relative 

permittivity too. The relative permittivity of polar fuels is decreasing more than nonpolar.   
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The influence of modifying voltage while measuring was also examined. Low voltage 

leads to reducing the effect of parasite inductance in the measuring system. However, it 

increases disturbance at low frequencies. Therefore, the power level should be chosen 

depending on the measured frequency range and to the measuring method. For frequency 

and temperature measurements the power level of 1 V was chosen.  

The experiment done to investigate the influence of pressure showed that increasing 

pressure up to 15 bars results in a negligible increase of permittivity, due to the low 

compressibility of liquids. The influence of pressure might be noticeable at much higher 

pressures or when using gases instead of liquids. Another experiment was performed to 

confirm the assumption that a gaseous phase decreases capacitance. The results confirmed 

the assumption, a gaseous phase reduces the number of molecules of higher permittivity 

material (fuel) between electrodes therefore the capacitance is decreased with increasing 

flow rate. 

In the last part of this thesis, saturated vapour pressure was investigated. For this part, 

all data required was found in professional articles and other literature, using this data it was 

concluded that the highest Reid vapour pressure occurs when gasoline contains 

approximately 10 % of ethanol. Problems with vapour pressure occur only for lower 

concentrations of ethanol and increasing the ethanol concentration reduces vapour pressure. 

Gasoline vapour pressure for the winter season is increased in refineries, and blending with 

ethanol further increases the pressure. Using fuel like that at higher temperatures may cause 

vapour lock due to increased vaporization.  

Design of experiment and analyse of variants were used to analyse the data for gasoline 

fuels. These methods showed that the concentration and temperature are the main two 

aspects influencing the relative permittivity. The frequency influence is very low for 

frequencies not affected by polarizations. For accurate measuring of the relative permittivity 

dependencies, defining the range affected by polarizations and working only with the data 

that is not affected is crucial. The results from DOE and ANOVA confirm findings by 

measurements.    
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MC5 : 25519309

JTT100/CB Nr. 159 - M3

JTT100/CB Nr. 159 - M3

Lineární

Kód prístroje

Výrobní císlo

Výrobce

Prevodní funkce

Tisk: 9.3.2015 11:34:45
Vytiskl: Josef Dlabik
CMX Verze: 2.7.444.0 (2.7)

JTT100/CB Nr. 159Název pozice
Pozice

9.3.2015 11:26:00Cas kalibrace

24 °CTeplota okolí

ETC/JTT100_CB/Podnik

Umístení AHLBORN ALMEMO 2590

Josef DlabikProvedl:

-40 ... 140 °C

Funkce (ud)Název

8.3.2017Príští kalibrace

9.3.2015 11:26:00

19 %Vlhkost okolí

Kalibracní list
C. kalibracního listu: ETC-Q-Bj - KL - 83

Kód pozice: JTT100/CB Nr. 159

Prístroj

Zmena rozpetí

Provozní teplota

Císlo zakázky údržby

Funkce Kalibrace

Provozní vlhkost

Poznámka ke kal.::

-40 ... 140 °CRozsah

Modul na výstupu

Kalibrátor na výstupu

Modul na vstupu

Kalibrátor na vstupu

C
h

y
b

a
 v

ý
st

u
p

u
 [
°C

]

-0,200

-0,100

0,000

0,100

0,200

Vstup [°C]

-40,00 5,00 50,00 95,00 140,00

Před seřízením (1)

Mez chyby pro zamítnutí

Klasifikace

8.3.2017Datum príští kalibrace

Mez chyby pro zamítnutí > 0,1 °C

Mez chyby po serízení % meze pro zamítnutí

Kalibracní strategie

Kalibracní postup
730 dníKalibracní lhuta

Kalibrátory

ET : 59910

Datum príští kalibrace: 17.2.2016

Datum príští kalibrace: 17.2.2016

Datum príští kalibrace: 

Datum príští kalibrace: 

Strana: 1/ 1

1. Pred ser. VYHOVUJE
Maximální chyba:: 0,0 °C

Jmenovitý vstup
[°C]

Aktuální Vstup
[°C]

Jmenovitý
výstup

[°C]

Aktuální Výstup
[°C]

Nalezeno
Chyba

[°C]

-40,00 -40,00 -40,00 -40,000 0,0

0,00 0,00 0,00 0,000 0,0

60,00 60,00 60,00 60,000 0,0

100,00 100,00 100,00 100,000 0,0

140,00 140,00 140,00 140,000 0,0

100,00 100,00 100,00 100,000 0,0

60,00 60,00 60,00 60,000 0,0

0,00 0,00 0,00 0,000 0,0

-40,00 -40,00 -40,00 -40,000 0,0



MB140 : 3

JTT100/CB Nr. 250

JTT100/CB Nr. 250

Lineární

Kód prístroje

Výrobní císlo

Výrobce

Prevodní funkce

Tisk: 8.4.2016 12:11:31
Vytiskl: Josef Dlabik
CMX Verze: 2.7.444.0 (2.7)

PT100Název pozice
Pozice

8.4.2016 8:25:00Cas kalibrace

24 °CTeplota okolí

ETC/JTT100_CB/Podnik

Umístení GREISINGER Pt100

Josef DlabikProvedl:

-40 ... 140 °C

Funkce (ud)Název

8.4.2017Príští kalibrace

8.4.2016 8:25:00

29 %Vlhkost okolí

Kalibracní list
C. kalibracního listu: ETC-Q-Bj - KL - 217

Kód pozice: JTT100/CB Nr. 250

Prístroj

Zmena rozpetí

Provozní teplota

Císlo zakázky údržby

Funkce Kalibrace

Provozní vlhkost

Poznámka ke kal.::

-40 ... 140 °CRozsah

Modul na výstupu

Kalibrátor na výstupu

Modul na vstupu

Kalibrátor na vstupu

C
h

y
b

a
 v

ý
s
tu

p
u

 [
°C

]

-2,000

-1,000

0,000

1,000

2,000

Vstup [°C]

-40,00 5,00 50,00 95,00 140,00

Před seřízením (1)

Mez chyby pro zamítnutí

Klasifikace

16.3.2016Datum príští kalibrace

Mez chyby pro zamítnutí > 1 °C

Mez chyby po serízení % meze pro zamítnutí

Kalibracní strategie

Kalibracní postup
1 rokuKalibracní lhuta

Kalibrátory
Datum príští kalibrace: 

Datum príští kalibrace: 

MC5 : 25519309

ET : 59910

Datum príští kalibrace: 17.2.2016

Datum príští kalibrace: 17.2.2016

Strana: 1/ 1

1. Pred ser. VYHOVUJE
Maximální chyba:: 0,1630 °C

Jmenovitý vstup
[°C]

Aktuální Vstup
[°C]

Jmenovitý
výstup

[°C]

Aktuální Výstup
[°C]

Nalezeno
Chyba

[°C]

-40,0000 -40,082 -40,0000 -40,13 -0,05

0,0000 -0,013 0,0000 0,07 0,08

60,0000 60,007 60,0000 60,17 0,16

100,0000 100,012 100,0000 100,15 0,14

140,0000 140,051 140,0000 140,08 0,03

100,0000 99,990 100,0000 100,12 0,13

60,0000 59,997 60,0000 60,15 0,15

0,0000 -0,021 0,0000 0,05 0,07

-40,0000 -40,086 -40,0000 -40,13 -0,04







MC5 : 25519309

JMM100/2CB Nr. 9

JMM100/2CB Nr. 9

Lineární

Kód prístroje

Výrobní císlo

Výrobce

Prevodní funkce

Tisk: 25.2.2015 15:30:54
Vytiskl: Josef Dlabik
CMX Verze: 2.7.444.0 (2.7)

HONEYWELLNázev pozice
Pozice

25.2.2015 15:03:00Cas kalibrace

23,5 °CTeplota okolí

ETC/JMM100_2CB/Podnik

Umístení

Josef DlabikProvedl:

0 ... 20 bar (P)

Pressure Indicator (pi)Název

25.2.2017Príští kalibrace

25.2.2015 15:03:00

23 %Vlhkost okolí

Kalibracní list
C. kalibracního listu: ETC-Q-Bj - KL - 77

Kód pozice: JMM100/2CB Nr. 9

Prístroj

Zmena rozpetí

Provozní teplota

Císlo zakázky údržby

Funkce Kalibrace

Provozní vlhkost

Poznámka ke kal.::

0 ... 20 bar (P)Rozsah

Modul na výstupu

Kalibrátor na výstupu

Modul na vstupu

Kalibrátor na vstupu

C
h

yb
a

 v
ýs

tu
p

u
 [%

 r
o

zp
ě

tí]

-0,400

-0,200

0,000

0,200

0,400

Vstup [bar]

0,00 5,00 10,00 15,00 20,00

Před seřízením (1)

Mez chyby pro zamítnutí

Klasifikace

25.2.2017Datum príští kalibrace

Mez chyby pro zamítnutí > 0,2 % rozpetí

Mez chyby po serízení % meze pro zamítnutí

Kalibracní strategie

Kalibracní postup
2 rokuKalibracní lhuta

Kalibrátory

INT20C : 46924

Datum príští kalibrace: 17.2.2016

Datum príští kalibrace: 17.2.2016

Datum príští kalibrace: 

Datum príští kalibrace: 

Strana: 1/ 1

1. Pred ser. VYHOVUJE
Maximální chyba:: 0,168 % rozpetí

Jmenovitý vstup
[bar]

Aktuální Vstup
[bar]

Jmenovitý
výstup
[bar]

Aktuální Výstup
[bar]

Nalezeno
Chyba

[% rozpetí]

0,0000 0,0001 0,0000 0,006 0,030

5,000 5,0236 5,000 5,004 -0,098

10,00 10,0226 10,00 10,01 -0,063

15,00 15,0052 15,00 15,01 0,024

20,000 20,0020 20,000 20,00 -0,010

15,00 15,0021 15,00 15,01 0,039

10,00 9,9948 10,00 10,00 0,026

5,000 4,9966 5,000 5,004 0,037

0,0000 0,0003 0,0000 0,034 0,168


