ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ

Katedra výkonové elektrotechniky

BAKALÁŘSKÁ PRÁCE

Stanovení frekvenční charakteristiky třífázového LCL filtru

Jan Drahoš

ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta elektrotechnická Akademický rok: 2015/2016

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Jan DRAHOŠ
Osobní číslo:	E12B0014P
Studijní program:	B2612 Elektrotechnika a informatika
Studijní obor:	Elektrotechnika a energetika
Název tématu:	Stanovení frekvenční charakteristiky třífázového LCL filtru
Zadávající katedra:	Katedra elektromechaniky a výkonové elektroniky

Zásady pro vypracování:

Předmětem bakalářské práce je měření parametrů třífázového LCL filtru a stanovení amplitudové a fázové frekvenční charakteristiky pomocí simulací.

- 1. Změřte parametry RLC třífázového LCL filtru.
- 2. Sestavte jednoduchý matematický model.
- 3. Proveďte simulace amplitudové a fázové frekvenční odezvy.
- 4. Stanovte amplitudové a fázové frekvenční charakteristiky.

Jan Drahoš

Rozsah grafických prací: podle doporučení vedoucího Rozsah kvalifikační práce: 30 - 40 stran Forma zpracování bakalářské práce: tištěná/elektronická Seznam odborné literatury:

Student si vhodnou literaturu vyhledá v dostupných pramenech podle doporučení vedoucího práce.

Vedoucí bakalářské práce:

Ing. Martin Janda, Ph.D. Katedra elektromechaniky a výkonové elektroniky

Datum zadání bakalářské práce: Termín odevzdání bakalářské práce: 2. června 2016

15. října 2015

Doc. Ing. Jiří Hammerbauer, Ph.D. děkan

V Plzni dne 15. října 2015

Prof. Ing. Václav Kůs, CSc. vedoucí katedry

Abstrakt

Předkládaná bakalářská práce je zaměřena na měření frekvenčních charakteristik třífázového LCL filtru a porovnání výsledků s nasimulovanými průběhy v programu MATLAB.

Klíčová slova

LCL filtr, frekvenční přenos, Laplacův operátor, spínací frekvence.

Abstract

This work is focused on measuring frequncy characteristics of a three-phase LCL filter and comparing the results with simulated models in MATLAB.

Key words

Three-phase LCL filter, Laplace transformation, switching frequency,

Prohlášení

Prohlašuji, že jsem tuto diplomovou/bakalářskou práci vypracoval samostatně, s použitím odborné literatury a pramenů uvedených v seznamu, který je součástí této diplomové práce.

Dále prohlašuji, že veškerý software, použitý při řešení této bakalářské/diplomové práce, je legální.

.....

podpis

V Plzni dne 1.6.2016

Jméno příjmení

Obsah

OBSA	Н	8
SEZN	AM SYMBOLŮ A ZKRATEK	9
ÚVOI)	10
1 N	IĚNIČE PRACUJÍCÍ NA SÍTI	11
1.1	NAPĚŤOVÉ PULSNÍ USMĚRŇOVAČE	
2 K	OMPENZÁTORY JALOVÉHO VÝKONU	11
2.1	HZAZENÁ KOMPENZACE	
2.2	AKTIVNÍ VÝKONOVÉ FILTRY	11
3 L	CL FILTR	14
4 S	IMULACE LCL FILTRU	16
4.1	SIMULACE ZÁVISLOSTI VÝSTUPNÍHO NAPĚTÍ NA VSTUPNÍM NAPĚTÍ LCL FILTRU	
4.2	SIMULACE ZÁVISLOSTI VÝSTUPNÍHO PROUDU NA VSTUPNÍM NAPĚTÍ LCL FILTRU	
5 M	IĚŘENÍ LCL FILTRU	20
5.1	MĚŘENÍ ZÁVISLOSTI VÝSTUPNÍHO NAPĚTÍ LCL FILTRU NA VSTUPNÍM NAPĚTÍ	20
5.2	MĚŘENÍ ZÁVISLOSTI VÝSTUPNÍHO PROUDU LCL FILTRU NA VSTUPNÍM NAPĚTÍ	23
ZÁVĚ	R	25
SEZN	AM LITERATURY A INFORMAČNÍCH ZDROJŮ	26
PŘÍLO	ЭНҮ	27

2016

Seznam symbolů a zkratek

<i>L</i> 1, <i>L</i> 2, <i>L</i> 3	Fázové vodiče napájecí soustavy
<i>p</i>	Laplacův operátor
<i>Uw</i>	Napětí měniče
I _s	Výstupní proud[A]
F ₀	Rezonanční frekvence[Hz]
<i>P</i>	Činný výkon [W]
<i>Q</i>	Jalový výkon[VA]
<i>S</i>	Zdánlivý výkon[VAr]
<i>D</i>	Deformační výkon[W]
Ič	Činná složka proudu[A]
I _j	Jalová složka proudu[A]
MATLAB	Software

Úvod

Výkonové měniče připojené k síti patří dnes mezi nejrozšířenější aplikace polovodičových měničů, ať už se jedná o pulsní usměrňovače, paralelní aktivní filtry, kompenzátory jalového výkonu, a jiné. Pro zajištění přísných požadavkům na kvalitu odebíraného proudu ze sítě je často výkonový měnič doplněn LC nebo LCL filtrem, potlačujícím zejména zvlnění způsobené spínací frekvencí měniče.

Hlavním cílem předkládané práce je analýza vlastností třífázového výkonového LCL filtru na základě provedených laboratorních měření, kdy na základě změřených parametrů a změřených frekvenčních charakteristik jsou tyto porovnány s charakteristikami stanovenými pomocí simulací. Práce také posuzuje odlišnosti jednotlivých fází třífázového LCL filtru.

1 Měniče pracující na síti

1.1 Napěťové pulsní usměrňovače

Jedna ze základních součástek výkonové elektroniky, používaná pro přenos velkých výkonů. Úkolem napěťového pulsního usměrňovače je zajistit, aby odebíral zhruba sinusový proud s účiníkem $cos \varphi = 1$. Tedy aby odebíraný sinusový proud byl ve fázi s napětím sítě. Usměrňovač též musí umožnit průchod výkonu v obou směrech. Používají se v jednofázovém nebo třífázovém zapojení.

Princip je založen na vhodném spínání součástek, kterými je řízen odebíraný proud ze sítě tak, aby měl sinusový průběh a byl ve fázi se síťovým napětím. Při zapojení napěťového pulsního usměrňovače dochází k periodickému opakování dvou stavů, vedení do zátěže, a nulové vedení [1],[3].

Obr.1.1 Schéma 1f pulsního usměrňovače

2 Kompenzátory jalového výkonu

Jedná se o obdobnou topologii měniče jako v případě pulzního usměrňovače s tím, že je připojen paralelně ke zdroji sítě či paralelně ke kompenzovanému spotřebiči a je řízen tak, aby docházelo k výměně jalového výkonu mezi kompenzátorem a zátěží tak, aby ze zdroje byl odebírán účiník co nejblíže jedné.

2.1 Hrazená kompenzace

Jako kompenzátory jsou často používány výkonové kondenzátory. Působením vyšších harmonických se zvyšuje proud kondenzátorem. To je způsobeno reaktancí kondenzátoru, která je závislá na frekvenci, a podle vztahu (2.2), s rostoucí frekvencí reaktance kondenzátoru klesá.

$$X_c = \frac{1}{\omega_c} = \frac{1}{2\pi} \tag{2.2}$$

Takovýto proud by mohl lehce překročit maximální povolenou hodnotu proudu kondenzátorem, a zničit jej. Proto se ke kondenzátoru připojuje tlumivka. Vzniká tak sériový rezonanční obvod (1.4)

Obr.1.4 Sériový rezonanční obvod

Ze závislosti impedance na frekvenci (1.5) můžeme vyčíst, že pro frekvence nižší než f_0 má obvod kapacitní charakter. Protože tlumivka podle vztahu (1.6) má při nízkých frekvencích malou induktivní reaktanci.

$$\omega_L = 2\pi f L \tag{1.6}$$

Obr.1.5 Závislost impedance na frekvenci SRO

Naopak, při frekvencích vyšších než F0 kapacitní reaktance kondenzátoru podle vztahu (1.5) zmenšuje až na zanedbatelnou hodnotu. Reaktance tlumivky však naopak roste a obvod má induktivní charakter [2].

2.2 Aktivní výkonové filtry

2.2.1 Paralelní aktivní filtr

Paralelní aktivní filtr je tvořen generátorem proudu, připojeným paralelně k zátěži. Nežádoucí harmonické proudu eliminuje tak, že pouští do sítě proud opačného směru. Paralelní aktivní filtr pracuje na principu odečítání 1. harmonické (základní) složky proudu od celkového neharmonického proudu. Po odečtení dostaneme průběh, který se nazývá zbytkovou křivkou. Zbytková křivka je v řídícím algoritmu zadána jako požadovaná křivka proudu. Řídící algoritmy pak zajistí protlačení zadaného proudu. Napětí ze střídače je rozdílné od napětí sítě, a tím se vytváří kompenzační proud [4], [5].

Obr.1.6 Aktivní výkonový filtr

3 LCL filtr

Měniče pracující na síti vyžadující obvykle LCL filtr, pro vyhlazení proudu, který je způsoben spínáním řídících tranzistorů. Mluvíme tedy o spínací frekvenci. Pro tuto práci uvažujme, že je pro řízení použita pulsně šířková modulace (PWM). Při PWM je spínací frekvence konstantní, obvykle jednotky až desítky kHz. Úkolem filtru je potlačit zvlnění způsobené spínací frekvenci měniče. [6],[7].

Obr.2.1 Zapojení 3fázového LCL filtru s měničem

Na obrázku (2.2) je zobrazen průběh amplitudové charakteristiky LCL filtru. LCL filtr propouští frekvence v dolní části pásma bez tlumení. Tato část se používá pro řízení měniče. Pásmo se navrhuje široké řádově stovky Hz až jednotky kHz. Poté nastává oblast rezonanční frekvence, kterou musí řízení tlumit. Špatné řízení může způsobit nestabilní chování, tzv. kmitání filtru. Oblast zatlumení je frekvenční pásmo, jehož složky se uzavírají přes kondenzátor a neprostupují tak dále na stranu sítě. Filtr je navrhován tak, aby do této oblasti spadala spínací frekvence měniče.

obr.2.2 Frekvenční charakteristika LCL filtru

Na obrázku (2.3) je zjednodušené schéma LCL filtru s měničem, doplněný o průběhy jednotlivými částmi zařízení.

Obr.2.3 Zjednodušené schéma LCL filtru s měničem charakteristickými průběhy

4 Simulace LCL filtru

Přenos je definován jako poměr Laplaceova obrazu výstupní veličiny k obrazu veličiny vstupní. Obvykle se jedná o poměr výstupního napětí k napětí vstupnímu. Z důvodu regulace má největší význam poměr výstupního proudu k vstupnímu napětí.

4.1 Simulace závislosti výstupního napětí na vstupním napětí LCL filtru

Obr.2.4 LCL filtr připojený k síti naprázdno

Z úvahy, že při zapojení naprázdno neteče žádný proud, je vhodné zanedbat členy L_s a R_s . Poté je možné vyjádřit pomocí Laplaceovo operátoru přenos F(p) podle vztahu (4.1).

2016

$$F(p) = \frac{U_s(p)}{U_w(p)} = \frac{pR_wC + 1}{p^2 L_wC + pCR_w + 1}$$
(4.1)

Amplitudová a fázová frekvenční charakteristika získaná z matematického modelu LCL filtru je vidět na obrázku (3.1).

Obr.3.1 Simulovaná frekvenční charakteristika LCL filtru

Z frekvenčních charakteristik na obrázku (3.1) je patrné, že od nulové frekvence, až do oblasti rezonance je přenos Au=1, což znamená, že na výstupní napětí je stejné jako napětí vstupu. V oblasti rezonance se útlum filtru zmenšuje. Tato oblast je pro řízení nežádoucí. V oblasti zatlumení filtr tlumí zhruba 40dB/dekáda. Z regulačního hlediska (pro řízení měničů) je důležitý přenos (3.2), kde I_2 je výstupní proud a U_w je napětí měniče.

$$F_{(p)} = \frac{I_2}{U_w} \tag{4.2}$$

4.2 Simulace závislosti výstupního proudu na vstupním napětí LCL filtr

Na obrázku (3.2) je vyznačen LCL filtr zapojený mezi měničem a sítí.

Obr.3.2 LCL filtr zapojený mezi měničem a sítí.

Pomocí Kirchhoffových zákonů vyjádříme rovnice pro proudy a napětí v obvodu. Rovnice budou vypadát následovně:

$$I_w = I_s + I_c \tag{4.3}$$

$$u_w = R_w I_w + L_w \frac{di_w}{dt} + u_c \tag{4.4}$$

$$u_c = R_s I_s + L_s \frac{di_s}{dt} + u_s \tag{4.5}$$

$$u_c = \frac{1}{C} \int i_c dt \tag{4.6}$$

Použitím Laplaceovy transformace vyjádříme vztahy pomocí Laplaceových obrazů a vyjádříme přenos.

$$I_c(p) = I_w(p) + I_s(p)$$
 (4.7)

$$I_w(p) = (U_w(p) - U_c(p))\frac{1}{pL_w + R_w}$$
(4.8)

$$I_{s}(p) = (U_{c}(p) - U_{s}(p))\frac{1}{pL_{s} + R_{s}}$$
(4.9)

$$U_c(p) = I_c \frac{1}{pC} \tag{4.10}$$

Přenos filtru definujeme jako poměr Laplaceova obrazu výstupní veličiny k obrazu vstupní veličiny. V tomto zapojení je tedy přenos dán poměrem Laplaceových obrazů výstupního proudu $I_S(p)$ a napětí měniče $U_w(p)$. Vztah je následující:

$$F_{LCL}(p) = \frac{I_s(p)}{U_w(p)}$$
(4.11)

Po dosazení do vztahu (3.11) dostane rovnici přenosu LCL filtru.

$$F_{LCL}(p) = \frac{1}{p^3 L_s L_w C + p^2 (R_w L_s + R_s L_w) + p(L_s + L_w + CR_s R_w) + R_s + R_w}$$
(4.12)

Z rovnice (3.12) za pomoci softwaru MATLAB dostaneme frekvenční charakteristiky, ze kterých je patrné, že filtr má konstantní útlum ve frekvenčním pásmu pro frekvence menší než rezonanční frekvence. Za oblastí rezonance začne filtr tlumit se strmostí 60dB/dekáda.

Obr.2.4 Simulovaná frekvenční charakteristika LCL filtru

5 Měření LCL filtru

Pro posouzení vlivu odlišností jednotlivých fází třífázového LCL filtru bylo měření provedeno jednofázově, separátně pro každou fázi filtru. Měření probíhalo na frekvenčním rozsahu 10Hz až 10kHz.

Seznam laboratorních přístrojů použitých při měření uvádí tabulka Tab.1.

<u>1</u> <i>uo</i> .1. Pouzile prisiroje pri mereni LCL jiliru				
Použité přístroje	-			
RLC měřič	Tesla BK 134			
Osiloskop	Tektronix TDS 2014B			
Frekvenční generátor	Tektronix AFG 3021			
zatěžovací rezistor	rozsah 1-17Ω			
vodiče BN-C	-			

Tab 1. David a Maturia and an Xi and I CI film

Pro určení rezonanční frekvence filtru a pro sestavení matematických modelů bylo nutné zjistit parametry jednotlivých tlumivek a kondenzátorů. Tyto parametry byly změřeny RLC metrem TESLA na třech různých frekvencích. Zjištěné parametry jsou obsaženy v tabulce (*Tab.2*).

		f= 100Hz	•		f= 1kHz			f= 10kHz	
prvek	fáze 1	fáze 2	fáze 3	fáze 1	fáze 2	fáze 3	fáze 1	fáze 2	fáze 3
L1 [µH]	475	475	465	453,3	469,1	451,1	437	441	429
L2 [µH]	483	480	480	458,6	470,2	470,8	442	438	440
C [µF]	51,6	51,45	51,5	51,57	51,6	51,47	52	52,7	54,2

Tab.2: naměřené hodnoty L a C pomocí RLC metru při různých frekvencích

Z tabulky (*Tab.2*) je patrné že velikosti indukčnosti tlumivek se měřením liší o 1-6% a kapacit kondenzátorů od 1% do 8%.

5.1 Měření závislosti výstupního napětí LCL filtru na vstupním napětí

Při měření byl filtr zapojen dle obrázku (5-1). Na vstupu LCL filtru byl připojen frekvenční generátor Tektronix. Napěťové sondy osciloskopu byly zařazeny za frekvenční generátor na svorky 1-1 a 1-2 a na výstup filtru, označený svorkami 2-1, 2-2.

Obr.4.1 LCL filtr s výstupem naprázdno

Jelikož osciloskop má vysokou vstupní impedanci, je vhodné uvažovat filtr jako opravdu nezatížený. Z toho důvodu cívkou L2 nebude protékat žádný proud, tudíž se cívka L2 nebude v obvodu uplatňovat. Proto je možné si filtr představit podle obrázku jako jednoduchý LC článek.

Obr.4.2 Zjednodušené schéma LCL filtru s výstupem naprázdno

Rezonanční frekvenci LC článku odvodíme podle z předpokladu, že se v rezonanci rovnají induktivní reaktance tlumivky, a kapacitní reaktance kondenzátoru. Poté platí tzv. Thomsonův vztah (4.1)

$$f_0 = \frac{1}{2\pi\sqrt{LC}} \tag{5.1}$$

Po dosazení do Thompsonova vztahu dostaneme hodnotu rezonanční frekvence

$$f_0 = \frac{1}{2\pi\sqrt{453,3\cdot10^{-6}\cdot51,57\cdot10^{-6}}} = 1040Hz$$
(5.2)

Z amplitudové frekvenční charakteristiky (Obr.4.3) je patrné, že rezonanční frekvence je přibližně 1050Hz, což bylo potvrzeno výpočtem.

LCL filtr účinně tlumí přibližně od 3kHz, kde dosazuje útlumu 17dB. Při frekvenci 10kHz je naměřený útlum 40dB. Takovýto útlum je zajištuje dostatečné zvlnění proudu, generovaného při spínací frekvenci součástek.

Obr.4.3 Amplitudová charakteristika třech fází LCL filtru zapojeného naprázdno

Obr.4.4 Fázová charakteristika třech fází LCL filtru zapojeného naprázdno

Z obrázku (Obr.4.5) je patné že při malé frekvenci (50Hz) je výstupní napětí shodné s napětím vstupním, tudíž platí přenos Au=1. Z obrázku (4.6) je vidět že signály jsou v okolí rezonanční frekvence jsou signály v protifázi, což se shoduje s frekvenční charakteristikou získanou matematickou simulací.

Za oblastní rezonance již vstupní napětí zvětšuje na jmenovitou hodnotu napěti dodávaného generátorem. Naopak, výstupní napětí se zvětšující se induktivní reaktancí klesá a tím roste útlum. Na obrázku (4.7) je vidět průběh při f=10kHz, kdy vstupní harmonické napětí zdroje (modrý průběh) a potlačené výstupní napětí (zelený průběh).

5.2 Měření závislosti výstupního proudu LCL filtru na vstupním napětí

Při měření byl LCL filtr zatížen rezistorem s velikostí odporu 17Ω. Vstupní část filtru je totožná s předchozím měřením, tudíž na vstup filtru je připojen frekvenční generátor. Na výstupu LCL filtru je připojena zátěž. Napěťová sonda osciloskopu je připojena mezi svorky 1-1 a 1-2. Proudová sonda snímá proud tlumivkou L₂.

Obr.4.7 Schéma LCL filtru s rezistorem na výstupu

Na rozdíl od zapojení naprázdno, se již zde uplatňuje cívka L2. Rezonanční frekvence LCL filtru je dána vztahem

1-1

$$f_o = \frac{\sqrt{\frac{L_1 + L_2}{L_1 L_2 C}}}{2\pi}$$
(5.3)

Po dosazení hodnot do vztahu (4.3) dostaneme rezonanční frekvenci LCL filtru.

$$f_o = \frac{\sqrt{\frac{L_1 + L_2}{L_1 L_2 C}}}{2\pi} = \frac{\sqrt{\frac{453,3 \cdot 10^{-6} + 458,6 \cdot 10^{-6}}{453,3 \cdot 10^{-6} \cdot 458,6 \cdot 10^{-6} \cdot 51,57 \cdot 10^{-6}}}{2\pi} = 1430 Hz \quad (5.4)$$

Obr.4.8 Amplitudová charakteristika třech fází LCL filtru zatíženého rezistorem

2016

Obr.4.9 Fázová charakteristika třech fází LCL filtru zatíženého rezistorem

Frekvenční charakteristiky získané měřením odpovídají charakteristikám získaným pomocí matematického modelu. Rezonanční frekvence stanovená měřením odpovídá vypočítané rezonanční frekvenci, kdy při výpočtu byly použity parametry změřené RLC metrem(Tab.2). Z výsledků je patrné, že v oblasti nízkých frekvencí se charakteristiky jednotlivých fází téměř neliší. Naopak v oblasti frekvencí vyšších frekvencí než je rezonanční frekvence, se naměřené průběhy pro jednotlivé fáze a pro některé frekvence liší.

Z měření závislosti výstupního proudu I₂ na vstupním napětí U₁ je patrné, že při frekvencích vyšších než f0 se uplatňuje kapacitní reaktance kondenzátoru, která se zvyšuje s rostoucí frekvencí., což má za následek značné zatlumení výstupního proudu. V pracovní oblasti řízení, tj. pro frekvence menší než f₀ je rozdíl v charakteristikách jednotlivých fází velmi malý, což je důležité pro kvalitní regulaci měničů s třífázovými LCL filtry.

Závěr

Bylo provedeno měření parametrů třífázového výkonového LCL filtru pomocí RLC metru. Na základě těchto parametrů jsme provedli výpočet rezonanční frekvence a sestavili matematické modely jednotlivých fází daného LCL filtru, z nichž jsme stanovili amplitudovou a fázovou frekvenční charakteristiku.

Pomocí frekvenčního generátoru bylo provedeno měření jednotlivých fází filtru za účelem stanovení frekvenčních charakteristik. Ty se stanovovali pro případ U_2/U_{pwm} a zejména pro I_s/U_{pwm} , což je důležité z hlediska regulace výkonových měničů, kde je důležitý výstupní proud. Změřené charakteristiky byly porovnány s nasimulovanými a bylo provedeno vyhodnocení odlišností pro jednotlivé fáze.

Bylo dokázáno, že pomocí měření RLC metrem lze získat charakteristiky s dostatečnou přesností pro návrh, simulaci a návrh řídících algoritmů výkonových měničů. Bylo zjištěno, že fáze se příliš neliší v oblasti za rezonancí, což má pozitivní dopad do řízení a pro přenášení základní frekvence, což je v případě měničů připojených k síti 50 Hz.

Seznam literatury a informačních zdrojů

- [1] VONDRÁŠEK, František. Výkonová elektronika. Sv. III, Měniče s vlastní komutací a bez komutace. 1. vyd. Plzeň: ZČU, 1998. 252 s. ISBN 80-7082-485-9.
- KŮS, Václav. Nízkofrekvenční rušení. 1. vyd. Plzeň: Západočeská univerzita, 2003.
 196 s. ISBN 80-7082-976-1.
- [3] KŮS, Václav. *Elektrické pohony a výkonová elektronika*. 1. vyd. Plzeň: Západočeská univerzita, 2005. 180 s. ISBN 80-7043-422-8.
- [4] KŮS, Václav. *Vliv polovodičových měničů na napájecí soustavu*. 1. vyd. Praha: BEN technická literatura, 2002. 183 s. ISBN 80-7300-062-8.
- [5] LIMBURSKÝ, Jan. Výkonové aktivní filtry. Plzeň, 2012. Bakalářská práce (Bc.). Západočeská univerzita v Plzni, Fakulta elektrotechnická. Vedoucí práce Václav Kůs.
- [6] Fei Liu, Xiaoming Zha, Yan Zhou and Shanxu Duan, "Design and research on parameter of LCL filter in three-phase grid-connected inverter," *Power Electronics and Motion Control Conference, 2009. IPEMC '09. IEEE 6th International*, Wuhan, 2009, pp. 2174-2177. Dostupné z www.ieeexplore.ieee.org
- [7] R. Peña-Alzola, M. Liserre, F. Blaabjerg and T. Kerekes, "Self-commissioning notch filter for active damping in three phase LCL-filter based grid converters," *Power Electronics and Applications (EPE), 2013 15th European Conference on*, Lille, 2013, pp. 1-9. Dostupné z www.ieeexplore.ieee.org

Přílohy

Příloha A – Tabulky naměřených hodnot při měření LCL filtru naprázdno

Tab.1: naměřené hodnoty U1-U2 pro fázi L1						
f[Hz]	U1[mV]	U2[mV]	Au[dB]			
10	4300	4300	0			
30	3990	3990	0			
50	3550	3550	0			
100	2560	2560	0			
200	1260	1260	0			
500	350	620	4,97			
600	200	500	7,96			
700	150	350	7,36			
800	100	330	10,37			
900	90	310	10,74			
1000	75	280	11,44			
1050	100	290	9,25			
1100	110	300	8,71			
1150	115	305	8,47			
1200	125	310	7,89			
1250	150	250	4,44			
1300	200	240	1,58			
1350	210	235	0,98			
1400	250	230	-0,72			
1450	275	225	-1,74			
1500	300	225	-2,50			
1550	320	225	-3,06			
1600	325	220	-3,39			
1650	340	200	-4,61			
1800	355	220	-4,16			
2000	400	200	-6,02			
2500	480	180	-8,52			
3000	500	130	-11,70			
3500	680	100	-16,65			
4000	890	100	-18,99			
5000	1000	90	-20,92			
6000	1140	70	-24,24			
7000	1260	70	-25,11			
8000	1440	60	-27,60			
9000	3200	100	-30,10			
9500	3360	100	-30,53			
9800	3480	100	-30,83			

Tub.2. Hun	ici che nounoi	, 01 02 più la	
f[Hz]	U1[mV]	U2[mV]	Au[dB]
10	4400	4400	0
30	4020	4020	0
50	3560	3560	0
100	2560	2560	0
200	1800	1800	0
500	450	490	0,74
600	300	480	4,08
700	200	300	3,52
800	150	270	5,11
900	60	400	16,48
1000	95	320	10,55
1050	108	270	7,96
1100	112	230	6,25
1150	136	250	5,29
1200	148	230	3,83
1250	212	230	0,71
1300	236	210	-1,01
1350	260	200	-2,28
1400	152	190	1,94
1450	296	180	-4,32
1500	248	180	-2,78
1550	308	190	-4,20
1600	268	180	-3,46
1650	328	180	-5,21
1800	450	130	-10,79
2000	530	110	-13,66
2500	630	95	-16,43
3000	750	85	-18,91
3500	900	75	-21,58
4000	1180	100	-21,44
5000	1380	90	-23,71
6000	1520	90	-24,55
7000	1760	60	-29,35
8000	1960	30	-36,30
9000	4400	40	-40,83
9500	4300	50	-38,69
9800	4400	40	-40,83
10000	4400	40	-40,83

Tab.2: naměřené hodnoty U1-U2 pro fázi L2

Tab.3: naměřené hodnoty U1-U2 pro fázi L3						
f[Hz]	U1[mV]	U2[mV]	Au[dB]			
10	5000	5000	0,0			
30	4500	4500	0,0			
50	3900	3900	0,0			
100	2600	2600	0,0			
200	1400	1400	0,0			
500	600	650	0,7			
600	350	390	0,9			
700	250	350	2,9			
800	180	370	6,3			
900	60	370	15,8			
1000	50	300	15,6			
1050	80	280	10,9			
1100	120	280	7,4			
1150	120	280	7,4			
1200	140	280	6,0			
1250	170	250	3,3			
1300	250	250	0,0			
1350	216	200	-0,7			
1400	216	200	-0,7			
1450	244	200	-1,7			
1500	248	190	-2,3			
1550	288	170	-4,6			
1600	368	190	-5,7			
1650	320	150	-6,6			
1800	380	130	-9,3			
2000	450	110	-12,2			
2500	610	80	-17,6			
3000	860	50	-24,7			
3500	940	50	-25,5			
4000	960	40	-27,6			
5000	1280	30	-32,6			
6000	1560	25	-35,9			
7000	1760	20	-38,9			
0000	1000 LOO	15	-42,0			
9000	4200	40	-40,4			
9200	4400	40	-40,8 _/12 E			
10000	4500	30	-43,5			
1 10000	000-	50	1.1			

Příloha B – Tabulky naměřených hodnot při měření zatíženého LCL filtru

Tab.1: naměřené hodnoty pro fázi L1

140.1. mamer	ene nounory proje		
f[Hz]	U1[mV]	i2[mV]	Au[dB]
10	2480	146	-24,60
30	2450	145	-24,56
50	2420	144	-24,51
100	2300	135	-24,63
200	1900	114	-24,44
500	1520	92	-24,36
600	1470	85	-24,76
700	1370	77	-25,00
800	1300	68	-25,63
900	1220	60	-26,16
1000	1020	52	-25,85
1050	80	28	-9,12
1100	120	28	-12,64
1150	120	28	-12,64
1200	320	58	-14,83
1250	320	53	-15,62
1300	180	53	-10,62
1350	80	32	-7,96
1400	80	30	-8,52
1450	150	28	-14,58
1500	180	27	-16,48
1550	180	25	-17,15
1600	320	21	-23,66
1650	320	19	-24,53
1800	890	18	-33,88
2000	730	13	-34,99
2500	1300	7	-45,38
3000	1680	4	-52,46
3500	1680	4	-52,46
4000	1680	4	-52,46
5000	1280	4	-50,10
6000	2060	3,5	-55,40
7000	2680	2,3	-61,33
8000	2880	1,7	-64,58
9000	3000	1,3	-67,26
9500	4400	0,7	-75,97
9800	4500	0,58	-77,80
10000	3000	0,52	-75,22

Tab.1: naměřené hodnoty pro fázi L2					
f[Hz]	U1[mV]	i2[mV]	Au[dB]		
10	2440	144	-24,58055		
30	2380	144	-24,36429		
50	2380	144	-24,36429		
100	2280	136	-24,48792		
200	1900	115	-24,36112		
500	1460	94,4	-23,79		
600	1200	86	-22,89		
700	1060	76,08	-22,88		
800	1500	70	-26,62		
900	1220	64	-25,60		
1000	400	59	-16,62		
1050	300	54,4	-14,83		
1100	300	54,4	-14,83		
1150	280	47,6	-15,39		
1200	250	41,6	-15,58		
1250	230	36,4	-16,01		
1300	180	32,4	-14,89		
1350	180	30,8	-15,33		
1400	130	29,2	-12,97		
1450	120	27,6	-12,77		
1500	150	26	-15,22		
1550	200	25,2	-17,99		
1600	250	24	-20,35		
1650	250	22	-21,11		
1800	250	22	-21,11		
2000	300	20,4	-23,35		
2500	320	20	-24,08		
3000	370	19,2	-25,70		
3500	480	13,8	-30,83		
4000	2080	4,72	-52,88		
5000	2560	3,2	-58,06		
6000	3040	2,12	-63,13		
7000	3900	1,36	-69,15		
8000	3700	1,76	-66,45		
9000	4000	1,48	-68,64		
9500	4300	1,2	-71,09		
9800	4400	1	-72,87		
10000	4500	1	-73,06		

Tab.1: naměřené hodnoty pro fázi L3				
f[Hz]	U1[mV]	i2[mV]	Au[dB]	
10	2420	146	-24,38925	
30	2420	146	-24,38925	
50	2400	136	-24,93345	
100	2280	115	-25,94474	
200	1860	94,4	-25,89082	
500	1460	86	-24,60	
600	1300	76,08	-24,65	
700	1250	70	-25,04	
800	1000	64	-23,88	
900	840	59	-23,07	
1000	600	54,4	-20,85	
1050	500	54,4	-19,27	
1100	300	47,6	-15,99	
1150	225	41,6	-14,66	
1200	190	36,4	-14,35	
1250	130	32,4	-12,07	
1300	140	30,8	-13,15	
1350	142	29,2	-13,74	
1400	150	27,6	-14,70	
1450	155	26	-15,51	
1500	155	25,2	-15,78	
1550	180	24	-17,50	
1600	200	24	-18,42	
1650	340	24	-23,03	
1800	400	24	-24,44	
2000	800	54,8	-23,29	
2500	950	65,2	-23,27	
3000	1030	27,6	-31,44	
3500	1090	13,8	-37,95	
4000	1180	13,8	-38,64	
5000	1300	3,04	-52,62	
6000	1500	2,04	-57,33	
7000	1900	2,2	-58,73	
8000	2250	1,84	-61,75	
9000	2300	1,6	-63,15	
9500	2350	1,4	-64,50	
9800	2400	1,28	-65,46	