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Abstrakt

Studium mezibuněčné komunikace je d̊uležitou oblast́ı biologie. Důmyslně
navržené komunikačńı śıtě lze nalézt v organismech od bakteríı po savce.
Přesto neńı moc známo o zp̊usobu jejich návrhu. Tato práce uvád́ı novou
metodu modelováńı zaměřenou na optimalizaci těchto śıt́ı. Navržená metoda
je použita při optimalizaci tř́ı biologicky odlǐsných př́ıpad̊u jednokrokové ho-
mogenńı komunikačńı śıtě. Je ukázáno, že použit́ı pozitivńı zpětné vazby je
výhodné pro rychlou a přesnou komunikaci. Nastaveńı śıly zpětné vazby je
dále diskutováno. Źıskané výsledky jsou porovnány s př́ıklady použit́ı zpětné
vazby v bakteriálńıch quorum sensing śıt́ıch.

Kĺıčová slova: mezibuněčná komunikace, matematické modelováńı, opti-
malizace, pravidla návrhu, kladná zpětná vazba

Abstract

Intercellular communication is an important field of study in biology. In-
tricately designed communication networks are found in organisms ranging
from bacteria to mammals, yet not much is known about the design behind
them. This work proposes a novel modelling method focused on optimiza-
tion of communication networks. The proposed method is used to optimize
the performance of a one-step communication network, with three biologi-
cally different cases considered. It is shown that designs utilizing positive
feedback yield the best performance, and the feedback setup is discussed. A
biological parallel to the derived results is found in the use of positive feed-
back in bacterial quorum sensing.

Keywords: intercellular communication, mathematical modelling, design
optimization, design rules, positive feedback
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1. Introduction

Complex communication networks are well known in biology, and are found in
many life-forms, ranging from bacteria to higher organisms. These networks
have a very broad range of functions, e.g., cell cycle synchronization, devel-
opmental signaling, and social patterns creation, and employ various commu-
nication molecules, e.g., small organic molecules and peptides. However the
underlying mechanisms, including positive and negative feedback, are often
similar between different organisms, communication functions, and commu-
nication means. Bacterial quorum sensing networks presented in Chapter [2]
are a class of communication networks that were excessively studied from a
biological perspective. These networks are widely used in bacteria for various
tasks, such as biofilm formation, and often utilize positive feedback, yet not
much is known toward their optimal design.

It is often the case that the native communication networks are relatively
complex and therefore models used to simulate them are often complex as
well, and limited to numerical solution only. In this work a method that pro-
duces analytic models of communication networks focused on optimization
is developed. The method is based on several assumptions that limit its ap-
plicability to signalling among co-localized cells. In Chapter [3], the method
is described more thoroughly and a model of homogeneous single marker one
step activation model.

The models derived using the method offer strong options for optimiza-
tion. This is demonstrated on the example model derived in Chapter [3].
Firstly, the definition of network performance is studied and an applicable
metric is proposed. Secondly, three biologically different cases of the model
are considered, and the design rules that yield the optimal performance are
derived. It is shown that using positive feedback in communication is ben-
eficial toward network performance, and the optimal feedback set-up is dis-
cussed. Obtained results are shown to be in agreement with positive feedback
utilization in some quorum sensing networks.
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2. Biological Motivation

2.1 Cell-cell communication

Intercellular communication is a vast area of interest in modern biology.
More or less all organisms, except for viruses, use communication to interact
with other organisms in the surrounding environment. Recently, intercellular
communication has been employed and studied even in genetically modified
organisms. It is of course desired to learn as much as possible about the native
communication systems to exploit that knowledge for synthetic systems.

Unfortunately, it is often difficult to decide why native communication
networks were designed so. The communication systems, especially in higher,
multicellular organisms, are often largely interlinked with other biological
processes inside the cells and other communication systems. Therefore not
many of the systems are completely known, even though the involved net-
works are an important focus of study, and new surprising data emerge every
year. Additionally, even lower life forms, such as bacteria exhibit complex
cell-cell signalling, with a vast range of functions.

2.2 Target recognition

In this work, we focus on target recognition by co-localized cells, a special
subclass of cell-cell communication with a specific purpose. Co-localized cells
are cells attached to a biological entity in close proximity to each other. Cells
then use communication to make a group decision to activate based on the
identity of the entity the are attached to, i.e., target recognition. More specif-
ically, cells want to activate if the entity is the target (on-site activation) and
minimize activation elsewhere (off-site activation). It is presumed that a de-
cision made by a group is in some way better than that made by a single cell.
Cells that recognize the target will be referred to as sensor cells. Target can
be recognized from background by its specific biological surface marker(s).
In a real world scenario, sensor cells will need to recognize the target among
other entities that don’t have the target marker (background). Even though
cells display antibody (fragments) that are complementary to the target spe-
cific marker(s), realistically sensor cells could possibly form bonds, albeit
weak, with background. To minimize the chance of off-site activation, sensor
cell communication network must be carefully designed.

Even though target recognition by sensor cells is widespread , e.g. recog-
nition of pathogens by immune system, and has even spread to genetically
modified systems (iGEM 2015 IOD Band http://2015.igem.org/Team:
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2. Biological Motivation Biofilm formation

Inactive ActiveEmpty Inactive

potential target surface

Communication

Figure 2.1: Communication between colocalized cells

Czech_Republic), in this work we focus on quorum sensing triggered biofilm
formation to study the communication design. Quorum sensing, a class
of bacterial communication networks, are relatively smaller in the number
of communication molecules, proteins, and genes involved, yet some of the
mechanisms that drive them are similar to that of multicellular organisms.
Quorum sensing networks are also well characterized in many of the current
model bacteria. That makes them an excellent example to study from a
network design point-of-view.

2.3 Biofilm formation

Bacteria are often thought of as isolated organisms, yet many species are
highly social and often live in communities. Some bacteria prefer commu-
nity life even in favorable locations, while others revert to social life only
as a response to stress. Inside these communities, bacteria communicate,
exchange DNA and resources, change their environment by expressing ex-
tracellular proteins, etc. Once inside a community, the cell’s behavior often
changes drastically, including gene expression patterns. Furthermore, even
the community may have different states, based on its size and local physical
(flow, temperature), chemical (pH, nutrients), and biological (competitors,
predators) stresses.

One type of these communities is a biofilm. The formation of a biofilm
occurs in several stages. Firstly, a few bacterii attach to the target surface.
If the conditions are right, the number of bound bacterii increases, and once
a threshold is reached, expression of extracellular matrix proteins begins.
This pushes the number of bacterii even higher, till a steady state is reached,
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2. Biological Motivation Quorum sensing

when the natural growth and death to stresses are balanced. Afterwards, the
biofilm survives until external conditions change, and parts of the biofilm may
fall of to form biofilms elsewhere. Note that many of the involved processes
happen at very different time-scales, with diffusion and flow being the fastest
and protein expression being the slowest. This suggests that approximations
such as time-scale separation are used in modelling of such systems. Biofilms
can also be created by different species acting in symbiosis. Even biofilms
created by a single species have cells in different states, corresponding to the
cell’s location inside the biofilm. That is, biofilms are often formed in layers,
where different layers have different expression patterns and behave differ-
ently (e.g. aerobic and anaerobic layers). The expression pattern changes
that are vital to biofilm formation and survival, occur several times during
its development, and are triggered by the quorum sensing communication
networks. Genes expressed in the various community states of a cell are use-
less to a cell that is alone, and incorrect activation of their expression would
be detrimental.

2.4 Quorum sensing

Quorum sensing (QS) is a name for a diverse set of communication networks
found in bacteria. The common characteristic of all QS systems is the ex-
pression, secretion and sensing of communication molecules by all cells to
respond to changes in local cell density and adjust their behavior accord-
ingly [1]. From a control theory point-of-view, quorum sensing system acts
as an internal bacterial estimator of the surrounding cells location and den-
sity. QS systems use two different types of molecules, both of which are
produced intracellularly. The first type are small organic molecules called
acyl homoserine lactoses (AHLs) and are used by Gram-negative bacteria.
Smaller AHL are often highly diffusible which enables them free transfer
trough the cell membrane. Larger AHLs are actively transported outside the
cell by membrane pumps. The second type are smaller (though larger than
AHLs) peptides used by Gram positive bacteria [2]. These are also actively
transported outside by transporters. The detection is also different for each
molecule type. AHLs are mostly transported inside where they bind to cy-
toplasmatic regulator proteins (such as LuxR in Vibrio Fischeri) [3]. The
cytoplasmatic regulator-AHL complex then alters gene transcription pattern.
Some AHLs and peptides bind to membrane receptors that trigger a phospho-
rylation cascade inside, which activates a transcription factor that changes
gene expression pattern. This is somewhat similar to phosphorylation cas-
cades in eukaryotes, such the yeast pheromone pathway. Different signalling
molecule concentrations may lead to different responses. One molecule can
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2. Biological Motivation Quorum sensing

therefore be used to alter gene expression more times, e.g. once the cells
enter logarithmic stage and once they enter stationary phase. Furthermore,
a single species may use more than one QS system to alter expression of
different genes separately or at different cell densities (e.g. Vibrio Fischeri
which employs ain QS system largely linked to colonization and lux system
linked to fluorescence). Note that interspecies QS system also exist and some
species intentionally invade communication channels of other species. An in-
teresting prevalent feature of many QS system is autoinduction. Even though
the communication molecules are expressed constitutively, their expression
is often further increased by sensing of the communication molecule. This
positive feedback loop is found in many of the QS systems which hints at its
importance in communication [4].

Interestingly, the positive feedback strength and utilization varies between
different species and even between different networks in a single species (e.g.
Bacillus subtilis [5]). Additionally, even in networks that have similar func-
tions (such as virulence factor expression or biofilm formation in pathogenic
bacteria), the balance between constitutive expression and positive feedback
expression differs. The purpose of these differences is not yet fully explained.
The networks’ biochemical setups are usually qualitavely known, but quan-
titave information (e.g. reaction rates) is still unknown [6].

This work investigates the use of positive feedback in quorum sensing
triggered biofilm formation through a model of a basic quorum sensing sys-
tem that utilizes positive feedback. Biologically different cases of the model
are optimized to yield the best performance. The optimal set-up is then
studied w.r.t. desired activation properties. An interesting link between the
desired activation density and feedback strength is found. This link is further
examined in Chapter [5] and is used to explain the differences in feedback
strength in pathogenic bacteria.

Page 5 of 48



3. Modelling

3.1 Introduction

Currently, there are many different approaches to modelling of intercellu-
lar communication, as there are many things to be considered, e.g., cell
spatial distribution, producion, diffusion, degradation of the communication
molecules, and many other biological processes inside the cells. On a whole,
a model that considers all of the above mentioned processes would be too
complex to provide any intuition into the network design whatsoever. Hence,
various approximations were proposed to reduce the model complexity and
obtain useful results. Usually, the problem is reduced by assuming simple
spatial and time distributions of the cells, such as a stationary cells. From
the various modelling methods, the most complex are agent based models
that model each cell (agent) independently and the model the the whole
system as a combination of its agents. Such models can include most of
the above mentioned processes [7] [8] however are limited to numerical solu-
tions only. A well known class of such models are cellular automata. Such
models replace agents with a lattice and a set of discrete transition rules.
Even simple rules then enable simulation of complex systems [9] [10] though
numerical only. A different approach is to describe the communication pro-
cesses directly through a set of biochemical and physical equations. Then, a
combination of partial differential equations, that account for diffusion and
degradation, and ordinary differential equations, that account for other bio-
logical processes is used. Such models are often used to show spatial patterns
and social behavior [11] [12]. Such models may in theory be solved analyti-
cally, but in practice are often limited to numerical modeling of an already
existing communication systems. Models are also created by combining the
above mentioned methods creating so-called hybrid models.

In this work, a new method for the modelling of communication between
co-localized cells is developed. The method and the modelled system are
described below.

3.2 General Network Model

3.2.1 Model and Basic Facts

Suppose that there is a population of cells, referred to as sensor cells, that
use communication to activate at a desired spot, referred to as the target,
and never activate anywhere else, referred to as background. The whole
population of sensor cells and their communication network is referred to as
the sensor system. The target may be a rare cell or other biological entity,
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3. Modelling General Network Model
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Figure 3.1: An illustration of possible states of one binding site a in a general
model along with transitions between them.

and is recognizable from other biological material by its characteristic surface
markers. A general sensor system comprises of sensor cells of different types,
denoted by letters, and each cell type X has NX different levels of activation,
denoted by arabic numerals. One of activation levels (typically the last) of
one of the cell types is the overall output of the sensor system. Once a cell
of this type reaches its last activation level a biological change is triggered,
e.g., agglutination, an immune response, etc.

The construction of a model of the sensor system activation is described
below. We assume that the communication between the cells is only lo-
cal, and once a sensor cell is bound (potential target), it can only influence
sensor cells bound nearby. This assumption is substantiated by the often
high degradation rate of native communication molecules, sometimes even
actively increased by expression of enzymes that degrade the communication
molecule by communicating cells [13]. Then, on each point r of the surface
(of the potential target) in time t a cell type X in activation state i may be
bound with probability pX,i(r, t) where

X ∈ {0 ∪ {A,B, · · · }}
i ∈ [1, 2, · · · , NX ]

where 0 denotes the empty state, which has one level of activation (none).
Possible states are shown in Figure [3.1]
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3. Modelling General Network Model

Naturally, it must hold that each point r is in one of these states at any
time t, i.e., the sum of these probabilities is always

∀t, r
∑

X∈A,B,···

NX∑
i=1

pX,i(r, t) = 1

We can then describe the transitions between the states at any point r and at
any time t by a stochastic process continuous in time and discrete in states.
Such a process is described by the Kolmogorov forward equation

dp(r, t)

dt
= F (p(r, t)) p(r, t) (3.1)

where F (p(r, t)) is a general transition function. We assume a homogeneous
medium such that transitions occur with equal probability anywhere, i.e., F
is not a function of r. To simplify the model further, we omit the spatial
information altogether by focusing on binding sites in homogeneous areas
such that p(r, t) = p(t) ∀r. For example, during the formation of a biofilm,
the binding spots on the target far from the edge are roughly equal, and start
from the same state (empty), and can therefore be described by the same
transition function

F (p(r, t)) = F (p(t)) . (3.2)

This does not hold for binding spots near the edge of the target, where
communication occurs differently from beyond the boundary.

Note that the transition rate is dependent on time through p(t). The
sensor system detects the presence of the target, a rare cell. The sensor cells
cannot bind to something that isn’t there, therefore we can assume that the
whole surface of the cell starts in the empty state, mathematically

p(0) = [p0(0), pA,1(0), · · · ]T =
[
1, 0, · · ·

]T
= eT

1 (3.3)

The whole system is therefore described as

dp(t)

dt
= F (p(t))p(t) p(0) = e1 (3.4)

Fundamentally, there are four important types of transitions for each cell
type. These are

Name Transition Rate

Association of X 0→ X1 b+
X(p(t))

Dissociation of Xi Xi → 0 b−X,i(p(t))

Activation of Xi Xi → Xi+1 f+
X,i(p(t))

Deactivation of Xi Xi → Xi−1 f−X,i(p(t))
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3. Modelling General Network Model

To illustrate how the transition rates translate into the transition function
we consider the association transition. This transition leads from an empty
state to type X 1-active state, i.e., for the association of type X, we add

dp0(t)

dt
= · · · − b+

X(p(t))p0(t) · · ·

dpX,1(t)

dt
= · · ·+ b+

X(p(t))p0(t) · · ·

where b+
X(p(t)) is the association rate of type X. The other transitions are

described by similar relations. Note that even though one cell type is assumed
to recognize one marker, different activation states of that type do not need
to have the same dissociation rate to that marker. The dissociation rate
can be tuned by, e.g., the number of antibodies displayed on the sensor cell
surface.

3.2.2 Homogeneous population model

In the simplest case, the sensor system comprises of a single type of sensor
cells. These cells recognize a single marker, however may have different dis-
sociation rates toward that marker. The last activation state N is considered
as the output. The possible states of the surface are then and the system is
then described by the following system of equations

dp0

dt
= −b+p0 +

N+1∑
i=1

b−i pi,

dp1

dt
= +b+p0 − (b−1 + f+

1 )p1 + f−1 p2,

dpi
dt

= +f+
i−1pi−1 − (b−i + f+

i + f−i )pi + f−i+1pi+1,

...

dpN
dt

= +f+
N−1pN−1 − f−NpN − b

−
NpN .

Note that the rates may be dependent on p1, p2, . . . , pN . By laws of proba-
bility, it always holds that

N∑
i=0

pi = 1.

Below, this model will be used as a stepping stone towards a one-step ac-
tivation model in Section [3.3.2], design of which is the main focus of this
work.
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3. Modelling One Step Activation Model

3.3 One Step Activation Model

3.3.1 Problem Definition

The main focus of this work is the design optimization of a homogeneous one
step activation model derived in this section. Biologically, one step activation
is defined as follows

Definition I: One step activation

One step activation is a communication protocol where a sensor cell is ac-
tivated after sensing a signal from another sensor cell, which is produced
independently of previous communication. Only two levels of activity, active
and inactive, are then sufficient.

The surface can therefore be in one of following three states

b+
b1
-

f1
+(p1,p2)

f1
-(p1,p2)

b2
-

Empty

Inactive Active

State Probability
Empty p0(t)
Inactive p1(t)
Active p2(t)

Rate of Notation
association b+(p1, p2)
dissociation 1 b−1
dissociation 2 b−2
activation f+(p1, p2)
deactivation f−(p1, p2)

The general system is described by the following ordinary differential equa-
tions

dp0

dt
= −b+(p1, p2)p0 + b−1 p1 + b−2 p2,

dp1

dt
= +b+(p1, p2)p0 − b−1 p1 − f+(p1, p2)p1 + f−(p1, p2)p2, (3.5)

dp2

dt
= +f+(p1, p2)p1 − f−(p1, p2)p2 − b−2 p2,

The binding has to always be in one of these states, therefore it always holds
that

p0(t) + p1(t) + p2(t) = 1 ∀t ∈ [0;∞].
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3. Modelling One Step Activation Model

3.3.2 Model Reduction

To develop a biologically relevant one step activation model, several assump-
tions are made. These assumptions are

1 Association rate is constant and independent of current state

b+ 6= b+(p, T ) = const.

2 Affinity towards markers doesn’t change with activation

b−2 = b−1
3 Association is much faster than activation

T (t) = T∞ = const.

4 Activation rate is increased linearly by p1 and p2

f+(p1, p2) = a+ + w1p1 + w2p2

5 Deactivation rate is constant and independent of p1 and p2

f− = a− 6= f−(p1, p2) ≥ 0

Below, these assumptions are described in more detail and with biological
justification and context. The impact of each assumption on the model is
discussed.

Assumption 1

Association rate is constant and independent of current state

b+ 6= b+(p1, p2) = const.

Context

To change the association rates of nearby sensor cells, an already bound
sensor cell would either need to influence the production of antibodies in
other nearby sensor cells or directly produce and send them antibodies.
However, antibody related processes occur on a completely different time
scale than intercellular communication. Whereas communication occurs on
a timescale of minutes, production, folding and displaying of antibodies on
snesor cell surface usually takes hours, perhaps even more, and is very costly
for the cells resource wise. Extracellular transport would take even more
time and resources and perhaps even not be possible at all. Controlling the
association rate is therefore non-viable strategy if results are expected in
short time [hours]. Besides, the relation between the association rate and
probabilities p1, p2 would be very difficult to specify.
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3. Modelling One Step Activation Model

Assumption 2

Sensor cell affinity towards markers doesn’t change after activation

b−2 = b−1 = b−

Context

To change its dissociation rate after becoming active, the sensor cell would
need to alter the concentration of antibodies on its surface. As was men-
tioned in Assumption [2], antibody related processes occur on a completely
different time scale than intercellular communication. Whereas communi-
cation occurs on a timescale of minutes, production, folding and displaying
antibodies on a membrane usually takes hours, perhaps even more, and is
very costly for the cells resource wise. Controlling the dissociation rate of
active sensor cells is therefore a non-viable strategy if results are expected
in hours. Besides, the relation between the dissociation rate and antibody
production/concentration would be difficult to specify.

Under these two assumptions, the system is then described by the following
system of three first order differential equations

dp0

dt
= −b+p0 + b−p1 + b−p2, (3.6)

dp1

dt
= +b+p0 − b−p1 − f+(p1, p2)p1 + f−(p1, p2)p2, (3.7)

dp2

dt
= +f+(p1, p2)p1 − f−(p1, p2)p2 − b−p2, (3.8)

A new variable can be defined that reduces the system order by one. Let

T (t) = p1(t) + p2(t) = 1− p0(t) (3.9)

be the probability that either an active or an inactive sensor cell is bound.
Then

T (t)

dt
= b+ − (b− + b+)T (t) with T (0) = 0.

Equation [3.7] is no longer needed as the probability of an inactive sensor cell
p1(t) bound can be computed at any time as p1(t) = T (t)− p2(t). Equation
[3.8] takes the form of

dp2(t)

dt
= + f+(T, p2)(T − p2)− f−(T, p2)p2 − b−p2. (3.10)

The system can therefore be described by the following set of two ordinary
differential equations.

(3.11)
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3. Modelling One Step Activation Model

Assumption 3

Association is much faster than activation, therefore T (t) can be assumed
constant

T (t) = T∞ = const. (3.12)

Context

In difference to binding, which usually occurs on the order of seconds, ac-
tivation is based on communication and transcription/translation systems,
which take from minutes to hours to activate. Additionally, communication
itself is dependent on diffusion of the communication molecule, which itself
takes seconds.

Under this assumption, the originally time dependent variable T (t) is re-
placed by its steady state value T∞

T∞ = lim
t→∞

T (t) =
b+

b+ + b−
. (3.13)

The system then takes the form of one algebraic and one first order differential
equation.

dp2(t)

dt
= + f+(T∞, p2)(T∞ − p2)− f−(T∞, p2)p2 − b−p2. (3.14)

If the activation rate f+(T∞, p2) or the deactivation rate f−(T∞, p2) is a
function of p2 then the differential equation is non-linear in the unknown
value p2(t) and therefore problematic to solve. Below, the time solution of
the general one step model in Equation [3.16] is derived. The steady state
probability of active state

lim
t→∞

p2(t) = p∞ (3.15)

shall be referred to as the steady state activity p∞. Below we shall not
consider probabilities of empty state p0(t) and inactive state p1(t), therefore
we shall refer to p2(t) simply as p(t).

Page 13 of 48



3. Modelling One Step Activation Model

3.3.3 Case Studies Introduction

To specify the problem, we need to specify the activation and deactivation
function.

Assumption 4

Activation rate is affinely dependent on the probabilities of active and in-
active sensor cell

f+(p1, p2) = a+ + w1p1 + w2p2

Context

An affine function serves as a first step towards solving a more complicated
relationship. This represents a cell that reacts linearly to the concentra-
tion of the communication molecule. Note that this may not be the best
way to model as native cells usually employ an all-or-nothing response to
communication molecule concentration. The system is however analytically
unsolvable with such a response.

Initially, a similar assumption, albeit with affine decrease instead of increase,
was placed on the deactivation rate f−(p1, p2). The system was still solv-
able, however unfortunately, the solution took many different forms based
on the optimization and their meaning was difficult to physically interpret.
Therefore we set f−(p1, p2) = a−. Then

dp2(t)

dt
= +(a+ + w1T∞)T∞ − (a+ + a− + b− + 2w1T∞ − w2T∞)p2

− (w2 − w1)p2
2. (3.16)

This differential is quadratic in the unknown value p2(t). Below, three bio-
logically relevant cases of the one step activation problem are defined.

Definition II: Spontaneous activation

Spontaneous activation is defined as activation where no communication
occurs.

w1 = w2 = 0

The activation is then defined only by the basal rate a+. This is the sim-
plest of the cases, both mathematically and biologically. Sensor cells produce
no communication molecule, and bound sensor cells become active indepen-
dently of any communication from their surroundings. Note that the activa-
tion half-time is 1

a+
.
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Definition III: Constitutive activation

Constitutive activation is defined as activation where inactive and active
communication occurs, and both active and inactive sensor cells activate
neighbors with equal propensity.

w1 = w2 = w > 0

The activation is then defined by the basal rate a+ and the communication
rate w. In this case, both active and inactive sensor cells produce a com-
munication molecule with equal rate. This communication molecule is then
sensed by neighboring inactive sensor cells, and their rate of activation is
affinely increased.

Definition IV: Induced activation

Induced activation is defined as activation where inactive and active com-
munication occurs, and active and inactive sensor cells activate neighbors
with different propensity.

w1 ≥ 0 ∧ w2 ≥ 0 ∧ w1 6= w2

The activation is then defined by the basal rate a+, the communication rate
of inactive cells w1 and the communication rate of active cells w2. Similar
to constitutive activation, both active and inactive sensor cells produce a
communication molecule. However, the production rate is different between
active and inactive cells, i.e., activation also changes the production rate of
the molecule. This may be done as a feedback activation of the communi-
cation molecule gene, i.e., w2 can be thought of as feedback activation rate.
The molecule is then sensed by neighboring inactive sensor cells, and their
probability of activation is increased.

3.3.4 System Solution

Consider a general first order quadratic differential equation

dp(t)

dt
= ap(t)2 + bp(t) + c with p(0) (3.17)

Equation [3.17] represents the one step activation model (Equation [3.16]),
derived in previous Section [3.3.2], if

a = −(w2 − w1)

b = −(b− + a+ + 2w1T∞ − w2T∞ + a−)

c = (a+ + w1T∞)T∞
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3. Modelling One Step Activation Model

By solving this quadratic differential equation, we solve the general one step
activation in time. The time solution of this nonlinear equation is different
for a = 0 and for a 6= 0.

Linear Case

The simplest case is when a = 0, which is satisfied if w2 = w1 in Equa-
tion [3.16], which holds for spontaneous and constitutive activation. In this
case the non-linear differential equation [3.17] reduces to the following linear
differential equation

dp

dt
= bp(t) + c.

The time solution of this equation is given as

p(t) = −c
b

(
1− ebt

)
. (3.18)

We see that the solution converges only if b ≤ 0. The steady state value is
then

p∞ = lim
t→∞

p(t) = −c
b
. (3.19)

The time solution may therefore be rewritten as

p(t) = p∞
(
1− ebt

)
. (3.20)

Nonlinear Case

In case a 6= 0, which is satisfied if w2 6= w1, i.e., induced activation in
the general one step activation model, the differential equation stays non-
linear. However, the equation is still solvable through the following state
space transformation. One can define the error from the steady state ε(t) as

ε(t) = p(t)− p∞, (3.21)

where p∞ is the stable steady state given by

ap2
∞ + bp∞ + c = 0→ p∞ = − b

2a
± 1

2a

√
b2 − 4ac (3.22)

For the stable steady state, it must hold that

d

dp
(ap2 + bp+ c)

∣∣∣
p=p∞

= 2ap∞ + b < 0

Since
√
b2 − 4ac ≥ 0, the stable steady state is

p∞ = − b

2a
− 1

2a

√
b2 − 4ac. (3.23)
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It will be useful to also introduce the complementary unstable steady state

p∗∞ = − b

2a
+

1

2a

√
b2 − 4ac. (3.24)

Since ε(t) is p(t) shifted by a term constant in time then by substitution, we
derive

dp(t)

dt
=
dε(t)

dt
= aε(t)2 + (b+ 2ap∞)ε(t) (3.25)

with the initial condition

ε(0) = −p∞.

We have obtained a quadratic differential equation without the constant
term. Such an equation is solvable with the following nonlinear transfor-
mation of the state space

ε(t) =
1

ξ(t)
(3.26)

dε(t)

dt
= − 1

ξ(t)2

dξ(t)

dt
(3.27)

By substitution, we derive

dξ(t)

dt
= −a− (b+ 2ap∞)ξ(t), (3.28)

which reduced the nonlinear equation to a linear equation with initial condi-
tion

ξ(0) =
1

ε(0)
=

1

p(0)− p∞
= − 1

p∞
. (3.29)

We have therefore used exact linearization to obtain a solvable differential
equation, whose solution is

ξ(t) =
a

b′
−
( a
b′
− ξ(0)

)
exp [b′t]. (3.30)

where

b′ =− b− 2ap∞ =
√
b2 − 4ac = a (p∗∞ − p∞) . (3.31)

One can then rewrite Equation [3.30] as

ξ(t) = −p∞ − p
∗
∞ exp [b′t]

(p∞ − p∗∞)p∞
(3.32)
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3. Modelling One Step Activation Model

From Equation [3.32], we can obtain the solution of the original Equation
[3.16]

p(t) = p∞ + ε(t) = p∞ +
1

ξ(t)
=

=

(
1− p∞ − p∗∞

p∞ − p∗∞eb
′t

)
p∞. (3.33)

Thus we obtained the full time solution to the general one step activation
without.
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4. Design optimization

4.1 Problem Definition

Sensor cells can be designed many different ways, with each of the designs
possessing a set of tuneable parameters. The performance of each of these
designs can be measured by a metric and parameter setups that yield the
best performance can be found. However, the performance metric has to
be specified first. Below, two performance metrics are described more thor-
oughly. Firstly, it is the minimization of false positives. It is shown that this
metric provides useful results in mathematically simpler cases, yet provides
unnatural results leading to infinite activation times in more complicated and
biologically interesting cases. Secondly a different metric is proposed, which
uses activation time as the criterion with constraints on both false negatives
and false positives. Application of this metric is then shown on three bi-
ologically relevant cases homogeneous one step activation model derived in
previous Chapter.

4.2 Minimization of False Positives

The activity can be qualitatively measured by the stationary probability of
active sensor cell. It is desired that this probability is close to one on target
and close to zero elsewhere. Medically, the impact of incorrect activation at
one of the background cells, i.e., a false positive, is worse as it can lead to,
e.g., misdiagnosis of cancer, however, non-activation at one of the targeted
cells, i.e., a false negative, is also desired to be minimized.

The system performance can be measured by, e.g., the probability of false
positives and the probability of false negatives. The probabilities are com-
puted as follows. To model the different bond strengths between sensor cells
and targets, and between sensor cells and background, it can be assumed
that the association rate is constant for all bonds while the dissociation rate
is small for bonds between sensor cells and targets and very large for bonds
between sensor cells and background. More rigorously, let the dissociation
rate of sensor cell-target bonds be described by a random variable b−target with

unknown probability distribution p(b̂−target, σ
2
target), and the dissociation rate

of sensor cell-background bonds by a random variable b−background with un-

specified probability distribution p(b̂−background, σ
2
background). Identifying these

distributions is difficult and experimentally tedious. Furthermore, it is likely
the target cells will be present in much smaller concentrations than the back-
ground . Let the apriori probability that a cell is target cell be PT and the
apriori probability that it is background cell be 1−PT . The total probability
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of false negatives FN is then

FN = P (not active|target)P (target)

= (1− P (active|target))PT

=

(
1−

∫ ∞
0

p(active|b−target)p(b
−
target)db

−
target

)
PT .

The probability of activation p(active|b−target) is considered as the steady state
activity p∞, therefore

FN = (1− E
[
p∞(b−target)

]
)PT . (4.1)

And similarly, the probability of false positives can be computed as

FP = P (active|background)P (background)

=

(∫ ∞
0

p(active|b−background)p(b−background)db−background

)
(1− PT )

= E
[
p∞(b−background)|b−background

]
(1− PT ). (4.2)

To evaluate these expected values, knowledge of probability distributions
p(b̂−target, σ

2
target) and p(b̂−background, σ

2
background) is needed. However, identifying

these distributions would be difficult and experimentally tedious and perhaps
not even possible by current available experimental methods. Instead, two
point estimations are made, that reduce the needed knowledge of target and
background dissociation rate distributions to single values. Illustration of
the problem is shown on Figure [4.2].

Compared to background, where antibodies can bind to many different
structures, target cells are covered by a known and well characterized marker,
who mostly keeps its structure and surface concentration. The distribution
of background dissociation rate b−background therefore has a very high variance
and very high difference between its lowest and highest possible value, which
is the direct opposite of the target distribution. Mathematically, variance and
higher moments of p(b̂−target, σ

2
target) are insignificant, therefore E[p∞(b−target)]

can be well approximated by the first term of its Taylor series

E[f(X)] ≈ f(E[X]) +
1

2
f ′′ (E[X])E2[X]

which yields

E[p∞(b−target)] = p∞(E[b−target]) = p∞(b̂−target). (4.3)

For the sake of brevity, b̂−target will be referred to as b−T .
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Unfortunately, similar assumption cannot be made about b−background. How-

ever, one can assume that the function p∞(b−background) is strongly decreasing

in b−background. Therefore, an upper bound can be placed on E[p∞(b−background)]
as

E[p∞(b−background)] ≤ p∞(b−B)(b−background − b
−
background,min), (4.4)

where b−B is the dissociation rate with maximal probability of false activation

b−B = arg max
b−background

p∞(b−background)p(b−background). (4.5)

The value can be approximated from known background entites, chosen as the
mean dissociation rate of the most common background entity or determined
heuristically. Naturally, the value of b−B should always be larger than b−T ,
otherwise the problem is ill posed. Under these assumptions, the probability
of false positives and the probability of false negatives is computed as

FN =(1− p∞(b−T ))PT , (4.6)

FP =p∞(b−B)(1− PT ). (4.7)

We see that both FN and FP are affine in the steady state activity p∞
at target and at background, respectively. Further on, it will be useful to
consider the steady state activity at target p∞(b−T ) instead of chance of false
negatives FN and the steady state activity at background p∞(b−B) instead of
chance of false positives.

Unfortunately p∞(b−T ) and p∞(b−B) are not independent, and it can be
shown that by reducing p∞(b−B) one also decreases p∞(b−T ) therefore increasing
FN and vice versa, which is illustrated on Figure [4.2], suggesting that a
balance has to be found between target and background steady state activity.
The user has to specify how much false positive probability will be given up
for lower false negative probability. Even though these performance metrics
are not independently minimizable, as many of these designs have more than
one free parameter, a constraint can be added such that designs considered
in minimization keep equal steady state activity at target.

p∞(b−T ) =1− FN
PT

= cN . (4.8)

This approach was found to be useful in one class of problems , namely
in problems that lead to linear systems, i.e., spontaneous and constitutive
activation. Unfortunately, this approach provides unrealistic (and therefore
useless) results in mathematically more class of problems, such as induced
activation and dissociation rate changes. An example from each class is given
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Figure 4.1: An example of steady state activity p∞(b−) as a function of b−

and possible distributions of b−target and b−background
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Figure 4.2: Problems of unconstrained minimization of false negatives.
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below.

To simplify the computations in the following chapters, it is useful to
introduce the probability of a bound sensor cell at target as

TT = T∞

∣∣∣
b−=b−T

=
b+

b+ + b−T
,

and the probability of bound sensor cell at background as

TB = T∞

∣∣∣
b−=∆b−T

=
b+

b+ + ∆b−T
,

and ratios between the probability of active and inactive states at target ,
and at background respectively, as

ΓN =
P (active|target)

P (inactive|target)
=

cN
TT − cN

, (4.9)

ΓP =
P (active|background)

P (inactive|background)
=

cP
TB − cP

. (4.10)

Note that for the computations below, ΓN fully replaces cN and ΓP fully
replaces cP . Most of the results obtained below are not expressed in terms
of cP and cN because of their complexity.

4.2.1 Spontaneous Activation

An example of a problem where constrained minimization of false positives
gives useful results is spontaneous activation case. Under spontaneous acti-
vation, Equation [3.16] reduces to a linear first order differential equation

dp(t)

dt
= a+T∞ − (a+ + a− + b−)p(t) p(0) = 0. (4.11)

In constrained minimization of false positives, we are not interested in the
time-related properties of Equation [4.11] and instead focus only on its steady
value, which is given as

p∞ =
a+

a+ + a− + b−
T∞ (4.12)

Spontaneous activation offers two tuneable parameters, which are a+ and a−,
both of which are greater than or equal to zero. As was mentioned previously,
if we were to minimize the probability of false positives, that is the steady
state activity at background

J = p∞(∆b−T ) =
a+

a+ + a− + ∆b−T
TB. (4.13)
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We could, e.g., let a− →∞ and then lima−→∞ J = 0, therefore we would ob-
tain zero rate of false positives. However, this would also result in
lima−→∞ p(b

−
T ) = 0, therefore we would no correct activation on target ei-

ther, i.e., a 100 percent chance of false negatives. We see that minimization
of false positives alone results in increase of false negatives, as was mentioned
above. To solve this, we have to add a constraint on the steady state ac-
tivity at target, such that the compared designs have equal chance of false
negatives

p∞(b−T ) =
a+

a+ + a− + b−T
TT = cN (4.14)

Solving Equation [4.14] for a+

a+ =
cN

TT − cN
a− + b−T = ΓNa

− + b−T . (4.15)

Naturally, it must hold that a+ ≥ 0, which is true for any a− ≥ 0. After
substitution of a+ from Equation [4.15] back into the criterion

J =
ΓN

ΓN + 1

a− + b−T
a− + b−T + ∆−1

ΓN+1
b−T

=

=
ΓN

ΓN + 1

(
1−

∆−1
ΓN+1

b−T

a− + b−T + ∆−1
ΓN+1

b−T

)
. (4.16)

It can be seen that J in Equation [4.16] is a strictly increasing function of
a− for a− ≥ 0, therefore to minimize J , one needs to set a− to its lowest
possible value, which is a− = 0. The optimal solution is therefore

a+ = ΓNb
−
T ,

a− = 0,

J =
ΓN

ΓN + ∆
.

The Figure [4.3] below illustrates the difference in steady state activity curves
for different rates of deactivation. The blue curve corresponds to the optimal
solution, when a− = 0. The orange curve corresponds to non-zero deactiva-
tion a−. Note that there also exist a limiting solution as a− → ∞, which is
given by

lim
a−→∞

p =
ΓN

ΓN + 1

b+

b+ + b−
=
cN
TT

b+

b+ + b−
= cN

b+ + b−T
b+ + b−

.

This limiting solution is purely mathematical as it leads to infinite values of
both a+ and a−, however is shown as the grey dashed line for completeness.
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Figure 4.3: Impact of deactivation rate a− on the steady state activity p∞
as a function of b− for spontaneous activation with a constraint on false
negatives.

4.2.2 Induced Activation

An example of a problem where constrained minimization of false positives
doesn’t give useful results is the induced activation case.

dp(t)

dt
= (a+ + w1T∞)T − (b− + a+ + 2w1T∞ − w2T∞ + a−)p(t)

+ (−w2 + w1)p2(t)

with a constrain on false negatives

0 = (a+ + w1TT )TT − (b−T + a+ + 2w1TT − w2TT + a−)cN

− (w2 − w1)c2
N .

It can be shown that the criterion is strongly increasing in w1 if we take
the constraint into account. The proof is very tedious and was done using
Mathematica software [14]. This means that to minimize false positives,
we need to lower the initial rate of activation to 0+. In turn, the second
activation rate w2 → ∞. Under these conditions limw1→0+ J = 0+. In this
setting, the system takes infinitely long to activate a single sensor cell, but
once it appears, all cells immediately activate to satisfy the constraints. This
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Figure 4.4: Impact of activation rate w1 on the steady state activity p∞ as a
function of b− for induced activation with a constraint on false negatives.

is illustrated in Figure [4.4]. Here we can observe that reducing w1 from 1000
to 10, and from 10 to 0.1 gradually decreases the rate of false positives up to
a limiting curve given as

lim
w1→0+

p∞(b−) = max

[
T +

a− + b−

a− + b−T
(cN − TT ), 0

]
.

Note that in a natural system, the rates of communication would be lim-
ited by their physical bounds, and the optimal solution would lie on the
physical boundary. Even then, we would be trading a very low chance of
false positives for a very long activation time. A similar problem of infinite
activation times in constrained minimization of false positives was encoun-
tered in changes of dissociation rate and heterogeneous networks suggesting
activation time needs to be considered in optimization.

4.3 Optimization of Time Performance

As was shown above, minimization of false positives in the interesting bio-
logical cases without taking time performance into account leads to infinite
activation times. Time performance cannot be neglected and the optimiza-
tion problem must be redefined to include the activation time. An important
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question is again how to measure the time performance? Several different
metrics already exist and are commonplace in control theory. Often, integral
criterions such as ITAE, ITE and ISE are used in controller design. Fur-
thermore, system’s eigenvalues (or linearized system’s eigenvalues, or met-
rics using eigenvalues indirectly, such as linearized system matrix trace, etc.
are used to measure time properties of the controlled system. Several of the
above mentioned metrics were tested. Linearization and eigenvalue approach
did not lead to useful results. Of the integral criterions, ITAE proved to be
solvable even for induced activation, yet after careful analysis, it was shown
the resulting criterion is for some parameter values non convex and the glob-
ally optimal design would be difficult to find. Lastly, simply the activation
time was considered. It proved to be solvable in all cases, and convex for all
relevant parameter values. The sections below explain the choice of criterion,
the solution to the optimization problem and discuss the obtained optimal
designs.

4.3.1 Criterion

The minimized quantity is the time the system requires to reach a given
level of activity pC at target, i.e., b− = b−T from the initial condition p(0) = 0,
given as

p(tcrit) = pC . (4.17)

To compare the different biological cases, equal steady state activity at target
cN , resp. steady state activity at background cP between compared designs
must be enforced, i.e.,

p∞|b−=b−T
= cN , (4.18)

p∞|b−=∆b−T
=cP . (4.19)

The critical level of activity pC can then be measured as a ratio R of the
steady state value cN such that

pC = Rp∞|b−=b−T
= RcN , (4.20)

which reduces Equation [4.17] to

p(tcrit) = RcN . (4.21)

The criterion takes two forms depending on the linearity of the underlying
differential equation.
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Linear Case

In the linear case, the criterion is computed as follows

pC = Rp∞ = p∞(1− ebtcrit),

tcrit =
1

b
log [1−R].

Since b has is smaller than zero, it is more practical to write the criterion as
follows

tcrit = −1

b
log

[
1

1−R

]
. (4.22)

Without proof, we see that the criterion is convex, as b is an affine function
of free parameters. Note that minimization of tcrit is equal to maximizing
−b. Since −b is an affine function of free parameters, we can predict that
the optimal parameter values will lie on the boundary, which is given by the
physical limits on free parameters.

Nonlinear Case

In the non-linear case, the criterion tcrit is computed from

p(tcrit) = (1− p∞ − p∗∞
p∞ − p∗∞ exp [b′tcrit]

)p∞ = pC

as follows

tcrit =
1

b′
log

[
−pC − p

∗
∞

p∞ − pC
p∞
p∗∞

]
=

1

a(p∗∞ − p∞)
log

[
−pC − p

∗
∞

p∞ − pC
p∞
p∗∞

]
.

If the critical activity pC is measured in terms of cN such that

pC = Rp∞|b−=b−T
= RcN

then

tcrit =
1

a(p∗∞ − p∞)
log

[
1

1−R

(
1−Rp∞

p∗∞

)]
. (4.23)

Furthermore, it may be derived that

tcrit =
1

−b− 2ap∞
log

[
1

1−R
(1 +R +R

b

c
p∞)

]
. (4.24)

4.3.2 Case Studies Solution

Below, the optimization problem defined above is solved for three biologically
relevant subcases of general one step activation, defined in Section [3.3.3]. For
each design, the optimal solution is derived and its feasibility is discussed.
The optimal design is then shown in two important plots: a) steady state
activity p2(b−) as a function of b−. b) time response of the system p2(t)
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4.3.3 Spontaneous Activation

Under spontaneous activation, Equation [3.16] reduces to the following linear
differential equation

dp(t)

dt
= a+T∞ − (a+ + a− + b−)p(t) p(0) = 0 (4.25)

the solution of which is

p(t) =
a+T∞

a+ + a− + b−
(
1− exp

[
−(a+ + a− + b−)t

])
. (4.26)

The criterion is derived from Equation [4.22] as

J = tcrit =
1

a+ + a− + b−T
log

[
1

1−R

]
. (4.27)

The problem is constrained by the constraints on false positives and false
negatives

p∞

∣∣∣
b−=b−T

=
a+TT

a+ + a− + b−T
= cN , (4.28)

p∞

∣∣∣
b−=∆b−T

=
a+TB

a+ + a− + ∆b−T
= cP , (4.29)

which may be rewritten as

a+ − ΓNa
− = ΓNb

−
T , (4.30)

a+ − ΓPa
− = ∆ΓP b

−
T . (4.31)

This system of linear equations has the following solution

a+ = ΓNΓP
∆− 1

ΓN − ΓP
b−T , (4.32)

a− =
∆ΓP − ΓN
ΓN − ΓP

b−T . (4.33)

Interestingly, the parameters are linearly dependent on b−T . We see that

is is possible to introduce a dimensionless problem by defining α+ = a+

b−T
and

α− = a−

b−T
. We will see that this holds in the other cases as well.

Once the solution to the constraints is known, there is no free parameter
to optimize, therefore the optimization problem is solved. From this, the
steady state activity can be computed as

p∞(b−) =
ΓNΓP (∆− 1)

ΓNΓP (∆− 1) + ∆ΓP − ΓN + (ΓN − ΓP ) b
−

b−T

b+

b+ + b−
(4.34)

Page 29 of 48



4. Design optimization Optimization of Time Performance

St
ea
dy
st
at
e
ac
ti
vi
ty
p
∞
(b

-
)

Activation
Spontaneous

bT
- bB

-

cP

cN

1

Dissociation rate b-

Figure 4.5: Steady state activity p∞ of the optimal spontaneous activation
as a function of dissociation rate b−.

Which is illustrated in the following Figure [4.5] by the blue curve. As
we can see, spontaneous activation produces a sigmoidal activation curve
across different dissociation rates. The activity at target is fixed at cN and
at background at cP , as was defined by the optimization constraints. The
constraints are however not always achievable. The free parameters a+ and
a− are required to be nonnegative, i.e., a+ ≥ 0 ∧ a− ≥ 0. By investigating
signs of a+ and a− from Equation [4.32] and Equation [4.33] w.r.t. ΓN and
ΓT we find that the constraints are feasible only if

ΓN > ΓP ≥
ΓN
∆
. (4.35)

The first condition can be rewritten in terms of original variables

cP <
TB
TT
cN = cmax

P =
b+ + b−T
b+ + ∆b−T

cN . (4.36)

This constraint says the problem is unfeasible if the ratio of active to total
bound at background is equal to or greater than the same ratio at target.
This is only natural as we require the ratio of active to total bound to be
much smaller at background than at target. Case ΓN = ΓP is physically
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Figure 4.6: Feasibility of the optimization constraints for spontaneous acti-
vation.

irrelevant and therefore not discussed. The second condition may not be
rewritten as

cP ≥
TB

∆TT −∆cN + cN
cN = cminP = (4.37)

=
b+

(b+(cN(∆− 1)−∆) + b−T cN(∆− 1))
cmaxP

and is difficult to physically interpret.
The limits are illustrated in the Figure [4.6]. The dot-dashed line, i.e.,

the curve that corresponds to the lower bound of false positives cminP , is the
solution when a− = 0, The dashed line, which gives the upper bound on false
positives cmaxP , corresponds to the solution when a+ →∞ and a− →∞. Both
of these curves are in agreement with the limiting curves obtained in Section
[4.2.1] in minimization of false positives. The blue curve corresponds to a
solution in the feasible false positive domain. Once we obtained the (optimal)
parameter values, we can compute the minimal value of the criterion J0 from
Equation [4.27] as

J0 = min
a+,a−

J =
1

∆− 1

1

ΓN + 1

1

b−T

ΓN − ΓP
ΓP

log

[
1

1−R

]
. (4.38)
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Figure 4.7: Activity time response p(t) for the optimal spontaneous activa-
tion.

The time response at target is then

p(t) = cN

(
1− exp

[
− ΓN + 1

ΓN − ΓP
ΓP (∆− 1)b−T t

])
. (4.39)

The time response is illustrated in the Figure [4.7] by the blue curve. As
a solution to a first degree linear differential equation, it an exponential,
upward curved from initial condition p(0) = 0 to the steady state condition
p∞ = cN .

4.3.4 Constitutive Activation

Under constitutive activation, the system is described by the following linear
differential equation

dp(t)

dt
= (a+ + wT∞)T∞ − (a+ + a− + b− + wT∞)p(t) (4.40)

the solution of which (from Equation [3.20]) is

p(t) =
a+ + wT∞

a− + b− + wT∞
T∞
(
1− exp

[
−(a+ + a− + b− + wT∞)t

])
. (4.41)
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The criterion is (from Equation[4.22]) defined as

J = tcrit =
1

a+ + a− + b−T + wTT
log

[
1

1−R

]
. (4.42)

The optimization constraints take the form of

p∞

∣∣∣
b−=b−T

=
a+ + wTT

a+ + a− + b−T + wTT
=
cN
TT
, (4.43)

p∞

∣∣∣
b−=∆b−T

=
a+ + wTB

a+ + a− + ∆b−T + wTB
=
cP
TB

. (4.44)

Equation [4.43] and Equation [4.44] are more easily solvable with the use of
variables ΓN and ΓP (see Section [4.2]) as

a+ − ΓNa
− + TTw = ΓNb

−
T , (4.45)

a+ − ΓPa
− + TBw = ∆ΓP b

−
T (4.46)

By solving Equation [4.30] and Equation [4.46], we obtain

a− =
∆ΓP − ΓN
ΓN − ΓP

b−T +
TT − TB
ΓN − ΓP

w, (4.47)

a+ =ΓNΓP
∆− 1

ΓN − ΓP
b−T −

TBΓN − TTΓP
ΓN − ΓP

w. (4.48)

Note that again, one could define a dimensionless parameters ω = w
b−T
, α+ =

a+

b−T
, and α− = a−

b−T
to define a dimensionless problem as we saw in Section

[4.3.3]. By substituting the solution [4.47] and into the criterion Equation
[4.42], we obtain

J1 =
1

ΓN + 1

ΓN − ΓP
(∆− 1)ΓP b

−
T + (TT − TB)w

log

[
1

1−R

]
. (4.49)

Since TT > TB, the criterion J decreases as w increases, therefore, to mini-
mize the criterion, W should be set to its maximal value, which is determined
from the physical constraints. As we saw in previous Section [4.3.3], the fea-
sibility of the problem largely depends on the relationship of ΓN and ΓP . By
analysis of Equation [4.47] and [4.48], we learn that there are five important
cases determined by the relation between the value of ΓN w.r.t. four criti-

cal values
[
∆TT
TB

ΓP ,∆ΓP ,
TT
TB

ΓP ,ΓP

]
. All possible cases are discussed in the

table below.
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Figure 4.8: Steady state activity p∞ as a function of dissociation rate b− for
the four limiting cases of constitutive activation.

Case Limits Comments

1 ΓP ≥ ΓN Unsolvable, physically irrelevant.

2 TT
TB

ΓP > ΓN > ΓP Solvable, w is constrained only by the phys-
ical constraint, not discussed below.

3 ∆ΓP > ΓN > TT
TB

ΓP . Solvable, w ∈ [0, wmax], where wmax is deter-
mined from a+ = 0

4 ∆TT
TB
≥ ΓN > ∆ΓP . Solvable, w ∈ [wmin, wmax], where wmax is

determined from a+ = 0, and wmin from
a− = 0.

5 ΓN > ∆TT
TB

ΓP Unsolvable.

The cases are illustrated in Figure [4.8]. The four limiting curves are
shown. The light blue area represents case 2), the orange area case 3), and
the light purple case 4)

For cases 3) and 4), the optimal value w∗ = wmax is therefore is determined
from a+ = 0 as

wmax =
∆− 1

TBΓN − TTΓP
ΓNΓP b

−
T . (4.50)
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Figure 4.9: Steady state activity p∞(b−) as a function of dissociation rate b−

for the optimal constitutive activation.

After substitution of the optimal value of w∗ = wmax back into the criterion
Equation [4.49], we obtain

J1 = min
a+,a−,w

J =
1

ΓN + 1

1

∆− 1

TBΓN − TTΓP
TTΓP b

−
T

log

[
1

1−R

]
. (4.51)

Equation [4.51] may be rewritten in terms of J0 from Equation [4.38] as

J1 =J0
TBΓN − TTΓP
TT (ΓN − ΓP )

= J0

(
1− ΓN

TT

TT − TB
ΓN − ΓP

)
. (4.52)

5 From Equation, it is plain to see that J1 ≤ J0, and J1 = J0 only if ΓN =
TT
TB

ΓP , therefore constitutive activation is always better than spontaneous.
After the optimal parameter values are known, the design characteristics
may be computed, starting with the steady state activity

p∞(b−) =
ΓNΓP (∆− 1)

∆TTΓP + (TBΓN − TTΓP ) b
−

b−T
+ ΓNΓP (∆− 1)T

(
b+

b+ + b−

)2

The activity is illustrated in the figure below
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Figure 4.10: Activity responses p(t) in time for the optimal spontaneous,
sub-optimal constitutive and optimal constitutive activation.

From Equation [4.41], the time response is

p(t) = cN

(
1− exp

[
−
(

(∆− 1)ΓP
ΓN − ΓP

b−T +
TT − TB
ΓN − ΓP

w

)
(ΓN + 1)t

])
(4.53)

For optimal w∗ = wmax, Equation [4.53] reduces to

p(t) = cN

(
1− exp

[
− TTΓP
TBΓN − TTΓP

(∆− 1)(ΓN + 1)b−T t

])
(4.54)

The time behavior of the system is illustrated in the Figure [4.10] below.

4.3.5 Induced Activation

Under induced activation, the general model in 3.16 doesn’t reduce, i.e.,

dp

dt
= (a+ + w1T∞)T∞ − (a+ + a− + 2w1T∞ − w2T∞ + b−)p

− (w2 − w1)p2. (4.55)

The optimization constraints are given as

(a+ + w1TT )TT − (a+ + a− + b−T + 2w1TT − w2TT )cN − (w2 − w1)c2
N = 0,

(a+ + w1TB)TB − (a+ + a− + b−B + 2w1TB − w2TB)cP − (w2 − w1)c2
P = 0.
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For the purpose of this section, it is useful to introduce the activation
rate difference W = w2 − w1, as a difference between the activation rate of
active and inactive sensor cells. Higher W results in higher use of positive
feedback after activation. To simplify the derivations, we also introduce a
dummy variable

A = a− + b−T

Then the optimization constraints may be rewritten as

a+ = ΓNA− TTw1 − cNW, (4.56)

a+ = (∆− 1)ΓP b
−
T + ΓPA− TBw1 − cPW. (4.57)

The criterion can then be computed from Equation [4.24] as

J =
1

−b− 2acN
log

[
1

1−R
1 +RacN
b+ acN

]
(4.58)

where

c = (a+ + w1TT )TT = (ΓNA− cNW )TT ,

a = −W,

b = −
(
c(b−T )

TT
+ A−WTT

)
= −((ΓN + 1)A−W (TT + cN)),

which results in

J =
1

(ΓN + 1)A− WTT
ΓN+1

log

[
1

1−R

(
1 +R

WcN
ΓN+1

A− WTT
ΓN+1

)]
(4.59)

where A depends on W as

WTT
ΓN + 1

=
1

TB

ΓP + 1

ΓN − ΓP

[
(TT − TB)a+ − TT (∆− 1)ΓP b

−
T + (TBΓN − TTΓP )A

]
.

(4.60)

This criterion is convex, and the proof is given in Appendix [5]. It is easy
to show that the criterion is always increasing in a+, implying that a+ = 0 is
optimal. That is, communication, either from active or inactive cell is always
preferred to spontaneous activation. The criterion is shown in Figure [4.11].
As expected, the criterion is convex in W and has a clear single minimum
W ∈ [0,Wmax]. where Wmax is given from the condition

(ΓN + 1)A− WTT
ΓN + 1

≥ 0 (4.61)
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Figure 4.11: Activation time tcrit (criterion) for induced activation as a func-
tion of the activation rate difference W .

As convex, the criterion is guaranteed to have a single local minimum that
is also global. This optimal point cannot be expressed analytically, however
it can be found numerically. In this work, the optimal point was found using
Mathematica software [14]. Figure [4.12] shows the optimal time responses
of the three studied case for a chosen R. Compared to its counterparts, the
optimal time response of induced activation has an inflection point.

Time responses of induced activation differ greatly for different values of
activation rate difference W . This is summarized in Figure [4.13]. We see
that as W increases, the response rises from below the constitutive activation
response and the activation time decrease, until an optimal W ∗ is reached.
For W > W ∗, the activation time quickly increases. This is in agreement
with the criterion graph in Figure [4.11]. Note the appearance of an inflection
point as W increases.

Naturally, we could study the impact of each of parameters{
b+, b−T ,∆, cP , cN , R

}
on the optimal value of W and the minimal value of

activation time tcrit. These impacts were tested but were often quite pre-
dictable, such as lower rate of false positives cP results in longer activation
times, and higher target/background marker difference ∆ results in shorter
activation times. Biologically, the most interesting is the impact of the de-
sired value R. The optimization problem was defined so that the minimized
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Figure 4.12: Activity time response p(t) for the optimal spontaneous, optimal
constitutive, and optimal induced activation.
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Figure 4.13: Overview of different options for activity time response p(t) of
induced activation for different activation rate difference W .
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activation time is the time to reach percentage R of the steady state activ-
ity cN . Reaching the critical percentage level can trigger a population wide
biological change. Naturally, this critical rate of activity can be different for
different changes, depending on the corresponding risk. Naturally, on one
hand,for biologically costly changes the population needs to be sufficiently
high before triggering the change to ensure no incorrect and detrimental ac-
tivation. On the other hand, some changes are relatively cheap, and can
be made based on a lower rate of activity. In both cases the decisions are
required to be made as quickly as possible. We hypothesize that different
cells use different activation values based on the triggered biological changes
and their corresponding risk.

The impact of R on the solution to the optimization problem is described
below. Results were obtained numerically by Mathematica [14], as the prob-
lem is analytically unsolvable, therefore no formulas are given. The impact
on the activation time is shown in Figure [4.14]. For three different levels
(low, medium, high) of desired activation R, the activation time is plotted
against the communication difference W . Different desired activity results in
different minimal time and different optimal communication rate difference
W ∗(R). The curve that connects all optimal W ∗(R) against the minimal
activation time for different R (increasing from R = 0 at W = 0) is plotted
as the gray line. We see that as R increases, so does the minimal activation
time, slowly at the start but more noticeably after R = 0.2. The curve then
turns strongly upwards for R > 0.8 before reaching Wmax, suggesting that
limR→1W

∗(R) 6= Wmax, i.e, small basal activation rates are required even for
R→ 1.

The most interesting is the impact of R on the optimal activation differ-
ence rate W ∗(R). We see that as R increase, so does W ∗(R), i.e., for higher
R the default rate w1 should be set low and the feedback rate w2 should be
set high. This means that for biological changes with a low trigger thresh-
old, positive feedback is not beneficial, whereas for problems with a higher
threshold, it is needed, and more the higher the threshold.

For example, bacteria Staphylococcus aureus commonly creates skin in-
fections in damp parts of the body, such as armpits. The secretion of viru-
lence factors is largely controlled by agr QS system [15]. The corresponding
constitutive expression rate of the communication molecule is estimated as
1.104 nM h−1 [6]. Bacteria Pseudomonas aeruginosa often invades blood-
stream and uses the las QS system for its virulence factors [16]. The cor-
responding constitutive expression rate of the communication molecule is
estimated as 3.103 nM h−1 [6]. We see that the constitutive expression rate is
smaller for Pseudomonas aeruginosa since it invades a much harsher environ-
ment (blood), therefore it needs relatively high cell densities before deciding
to start infection. Staphylococcus aureus lives in relatively favorable condi-
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Figure 4.14: Impact of different desired value R on the relationship between
activation and the activation rate difference W .

tions, therefore it triggers biofilm formation even at lower cell density and
doesn’t need to use feedback activation as much. Unfortunately feedback
activation rates of these QS systems are not known.

The impact of R on the time response is summarized in the Figure [4.15]
where optimal responses of induced activation for different desired activations
R are shown. Higher R results in a stronger feedback loop, therefore slower
activation at the start but much quicker at the end. For the lower R = 0.2,
the response resembles that of constitutive activation, as feedback is used
only weakly.

4.3.6 False Positives Impact

Above, the designs yielding minimal activation time were presented for three
biologically relevant cases. The designs were compared in steady state ac-
tivity and time response. These designs can be compared from another per-
spective. Consider we keep the constraint cN on false positives equal among
the different designs, but we change the constraint. This is equivalent to re-
solving the optimization problem with a constraint on time and background
steady state activity as the criterion. One can then obtain analytic results
for spontaneous and constitutive activation, however, for induced activa-
tion only numerical results may be obtained. Consider that the background
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Figure 4.15: Overview of different options for activity time response p(t) of
optimal induced activation for desired values R.

steady state activity is cP = cP,1 → ΓP =
cP,1

TT−cP,1
for spontaneous activation

and cP = cP,2 → ΓP =
cP,2

TT−cP,2
for constitutive activation.

Activation Criterion

Spontaneous J0 = 1
ΓN+1

1
∆−1

1
b−T

ΓN−ΓP,1

ΓP,1
log
[

1
1−R

]
Constitutive J1 = 1

ΓN+1
1

∆−1
1
b−T

TBΓN−TT ΓP,2

TT ΓP,2
log
[

1
1−R

]
We then determine ΓP,2 that yields equal time of constitutive and spon-

taneous activation (J0 = J1)

ΓP,2 =
TB
TT

ΓP,1. (4.62)

Interestingly, the relation is independent of ΓN . Equation [4.62] may be
expressed in the original variables cP and cN

cP,2 =
b+(b+ + b−T )cP,1

(b+ − b−T cP,1(∆− 1))(b+ + b−T∆)
=

b+

b+ − b−T cP (∆− 1)
cmaxP .

Again, the relation is independent of cN . Furthermore, it can be derived
that not only the critical time is equal between the designs, but also the time
response.
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Rate of false positives ΓP,3, that yields equivalent activation time for in-
duced activation may be computed by the same principles, yet only numeri-
cally. Note that the response of induced activation is then equal to those of
constitutive/spontaneous activation only in one point.

Under these conditions on false positives, steady state activity curves can
be computed for different activation types. These are illustrated in Figure
[4.16]. We see that the different activation types are ordered as expected,
with spontaneous activation (in blue) resulting in highest number of false
positives and induced activation (in purple) resulting in in lowest rate of
false positives. Note that difference between spontaneous and constitutive
activation (in orange) is larger than the difference between induced and con-
stitutive activation.

Interesting is also the graph of minimal activation time as a function of the
constraint cP on steady state background activity shown in Figure [4.17]. we
again observe that the gap between constitutive and spontaneous activation
is larger than that between induced and constitutive activation. Note that
for higher values of cP , determined by the bounds on solvability, which are
ccom
P : ΓN = TT

TB
∆ΓP for induced and constitutive activation, and cmaxP for

spontaneous activation, the activation time converges to zero. This is because
we do not consider the physical bounds on parameters. In reality, there will
be a nonzero minimal possible activation time, shown as a dashed line.
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Figure 4.16: Steady state activity p∞(b−) for different activation designs with
constraint cP adjusted to equal activation time.
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Figure 4.17: Minimal activation time of different activation designs as a
function of steady state background activity constraint cP .
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5. Discussion

This work introduced a stochastic process based method for modelling of
cell communication between co-localized cells. The need for simulation of
complex communication networks was illustrated by presenting examples of
known communication systems along with mathematical description. Strengths
and weaknesses of the proposed method were stated, with the largest differ-
ence between the proposed method and other methods being ability to pro-
vide analytic results, and largest limitation being a specific, yet broad range
of communication networks.

The potential of the proposed method was illustrated on a derivation of a
model of homogeneous single marker communication network with one step
activation, which represents a QS system. Performance of this network model
was then optimized. Three biologically relevant cases of optimized network
were considered including spontaneous, constitutive and induced activation.
Firstly, it was shown that neglecting time performance provides unrealistic
results. Secondly, constrained optimization including time performance was
used to derive design rules yielding optimal performance for all three cases.

It was shown that spontaneous activation is never preferred over com-
munication. Additionally, it was shown that induced activation generally
provides the best performance of the three considered cases. The impact
of the desired activity on the optimal solution was discussed. It was shown
that for a higher desired activity, a stronger feedback activation is optimal.
From this, a hypothesis was proposed that QS systems triggering a biological
change at threshold concentration should be designed with feedback activa-
tion, the stronger the higher the threshold is. This hypothesis is supported by
the common occurrence of positive feedback in QS systems and further sup-
ported by low rate of feedback activation for biofilm formation of bacteria
living in favorable environments such as Staphylococcus aureus and higher
rate of feedback activation for bacteria living in harsh conditions such as
Pseudomonas aeruginosa.

Future work will focus on generalizing and extending some of the state-
ments introduced in this text, testing the analytic results in more complex
simulation environments, and using synthetic biology to verify obtained re-
sults in experiments.
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A. Proof of criterion convexity

The criterion for activation time optimization is given as Equation [4.59].
One may then define a linear change of variables as follows

κ =
R

1−R
1

ΓN + 1
, κ > 0

Y = (ΓN + 1)A− WTT
ΓN + 1

Z = ΓNA,

which reduces the criterion to

J(Y, Z) =
1

Y
log

[
1 +

κY

Y − Z

]
. (A.1)

By investigating the signs of variables w1, w2 w.r.t. Y and Z, we can derive
that the solution has a physical meaning only if

Y > Z > 0. (A.2)

The hessian of the criterion in Equation [A.1] is

∇2J = 2κ
−2κY + (−2Z + Y (2 + κ)) log

[
1 + κY

Y−Z

]
Y 3(Y − Z)2(Y − Z + Y κ)2

. (A.3)

The sign of hessian is determined by the nominator, as all other terms are
strictly positive. More specifically, the hessian is positive if the nominator is
positive

log

[
1 +

κY

Y − Z

]
≥ 2κY

2(Y − Z)Z + κY
. (A.4)

This can be proved by using inequality

log [1 + x] ≥ 2x

2 + x
∀x ≥ 0 (A.5)

from [17]. If one sets x = κY
Y−Z it is plain to see that the inequality in Equation

[A.4] holds for all feasible Y and Z, therefore the hessian in Equation [A.3]
is positive. A positive hessian implies convexity.
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