
Západočeská univerzita v Plzni

Fakulta aplikovaných věd

VIZUALIZACE ROZSÁHLÝCH

DIAGRAMŮ KOMPONENT

Ing. Lukáš Holý

disertačńı práce

k źıskáńı akademického titulu doktor

v oboru Informatika a výpočetńı technika

Školitel: Doc. Ing. Přemysl Brada, MSc. Ph.D.

Katedra: Katedra informatiky a výpočetńı techniky

Plzeň, 2014

University of West Bohemia

Faculty of Applied Sciences

LARGE COMPONENT

DIAGRAMS VISUALIZATION

Ing. Lukáš Holý

Doctoral Thesis

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in specialization Computer Science and Engineering

Supervisor: Doc. Ing. Přemysl Brada, MSc. Ph.D.

Department: Department of Computer Science and

Engineering

Pilsen, 2014

Prohlášeńı

Překládám t́ımto k posouzeńı a obhajobě disertačńı práci zpracovanou na závěr
doktorského studia na Fakultě aplikovaných věd Západočeské univerzity v Plzni.

Prohlašuji t́ımto, že tuto práci jsem vypracoval samostatně, s použit́ım odborné
literatury a dostupných pramen̊u uvedených v seznamu, jenž je součást́ı této
práce.

V Plzni dne Ing. Lukáš Holý

i

Abstrakt

Softwarové aplikace se dnes mohou jednoduše skládat ze stovek nebo i tiśıc̊u
komponent a je proto složité porozumět jejich struktuře. Zobrazeńı diagramu
př́ılǐs situaci nepomáhá, jelikož ten většinou obsahuje vizuálńı šum zp̊usobený
velkým množstv́ım komponent a jejich spojeńı. To plat́ı zejména pro ploché
(nehierarchické) komponentové modely.

Tato práce shrnuje současný stav poznáńı v oblasti nástroj̊u a př́ıstup̊u k vi-
zualizaci komponentových diagramů a ukazuje, proč tato oblast stále obsahuje
témata k výzkumu. Následně navrhuje sadu kritéríı pro zhodnoceńı nástroj̊u
pro vizualizaci komponentových diagramů.

Jako odpověd’ na identifikované potřeby a výzvy představujeme nový př́ıstup
k vizualizaci, který zjednodušuje orientaci a navigaci ve složitých diagramech.
Ten je mimo jiné užitečný v procesu reverzńıho inženýrstv́ı. Jedńım z kĺıčových
koncept̊u tohoto př́ıstupu je odstraňováńı velkého množstv́ı spojeńı z diagramu
beze ztráty informace o propojeńı.

Daľśım konceptem je technika zvaná viewport, která je taktéž použitelná v
UML diagramech komponent. Tato technika zjednodušuje práci s komplexńımi
diagramy zvýrazňováńım detail̊u d̊uležitých část́ı diagramu a jejich okoĺı beze
ztráty celkového přehledu. Část naš́ı práce se také zaměřuje na vizualizaci mi-
mofunkčńıch charakteristik v komponentových diagramech.

Abychom byli schopni prokázat, že navržené techniky ulehčuj́ı práci, imple-
mentovali jsme webový nástroj nazvaný CoCAEx. Provedli jsme zhodnoceńı
nástroje formou porovnáńı čas̊u jednotlivých úkol̊u v nástroji CoCAEx a jiném,
běžně v pr̊umyslu použ́ıvaném, nástroji. Z této studie vyplývá, že CoCAEx
pomáhá urychlit proces reverzńıho inženýrstv́ı.

ii

Abstract

Software applications can easily consist of hundreds or thousands of components
and it is thus difficult to understand their structure. Diagram visualization does
not help much because of visual clutter caused by big amount of elements and
connections, especially in the case of flat component models.

This thesis sums up current state of the art tools and approaches in component
diagrams visualization and shows why cannot cope with the challenges brought
by diagrams of large component systems. After that we propose a set of criteria
for the evaluation of tools for component architecture visualization.

As an answer to the identified needs and challenges we present a novel approach
which eases the orientation and navigation in complex diagrams. It is among
other benefits useful in the reverse engineering process. One of the key concepts
of this approach is removing a large part of connections from the diagram while
preserving the information about component interconnections. Another one is
the viewport technique for use in the visualization of UML component diagrams.
This technique eases the work with complex diagrams by highlighting details
of the important parts of the diagram and their related surroundings without
losing the global perspective. Part of our work also focuses on extra-functional
properties visualization in component diagrams.

To be able to prove that techniques proposed in the thesis ease the work with
large component diagrams, we implemented them in the web-based tool called
CoCAEx. We performed the evaluation where we compared time of tasks in
CoCAEx and other commonly used industrial tool. It shows that CoCAEx
helps speed-up the reverse engineering process.

iii

Resumo

Actualmente, as aplicações de software podem ser compostas por centenas ou
milhares de componentes, e por essa razão é dif́ıcil entender a sua estrutura.
A visualização de diagramas não é muito útil porque habitualmente os mes-
mos contêm rúıdo visual causado por uma grande quantidade de componentes
e ligações entre os mesmos. É nomeadamente o caso de modelos planos de
componente (não hierárquicos).

Este trabalho de Doutoramento resume o conhecimento existente na área de
ferramentas e abordagens para a visualização de diagramas de componentes,
evidenciando que nesta área ainda há espaço para investigação. Subsequente-
mente, o trabalho propõe um conjunto de critérios para avaliar ferramentas de
visualização de componentes.

Como a resposta para as necessidades e desafios identificados apresentamos
uma nova abordagem à visualização de componentes que facilita a orientação e
navegação em diagramas complexos. Por outro lado, a abordagem proposta é
também útil no processo da engenharia reversa. Um dos maiores contributos da
abordagem é a remoção de muitas ligações dos diagramas, sem que seja perdida
informação relativa a interligações.

Outro contributo desta tese é a técnica denominada de viewport, aplicada em
diagramas UML de componentes. Esta técnica simplifica o trabalho com dia-
gramas complexos porque realça os detalhes de partes importantes do diagrama
e as suas proximidades, sem que se seja perdida a orientação geral. Uma parte
do nosso trabalho põe também em foco a visualização de caracteŕısticas não-
funcionais em diagramas de componentes.

Para demonstrar que as técnicas propostas facilitam a compreensão, foi de-
senvolvida uma ferramenta web chamada CoCAEx. Avaliámos a ferramenta
através da comparação dos tempos de tarefas individuais utilizando a ferra-
menta CoCAEx versus outra ferramenta vulgarmente utilizada na indústria.
Conclui-se deste estudo que a CoCAEx ajuda a acelerar o processo de engenha-
ria reversa.

iv

Contents

1 Introduction 1

1.1 Introduction to Component Software Modelling 1

1.2 Problem Definition: Diagram Complexity 2

1.3 Goal of the Work . 4

1.4 Structure of the Thesis . 5

2 Component Based Software Development 6

2.1 Component Models and Frameworks 7

2.2 Compositional Forms . 7

2.2.1 Component Deployment 7

2.2.2 Framework Deployment 8

2.2.3 Simple Composition . 8

2.2.4 Heterogeneous Composition 8

2.2.5 Framework Extension (Plug-In) 9

2.2.6 Component (Sub)Assembly 9

2.2.7 Compositional Forms Examples 10

2.3 Contracts . 10

2.4 Extra-functional Properties . 11

3 Software and Graph Visualization 13

3.1 Mental Model Creation . 14

3.2 Information Schemes . 14

3.2.1 Overview and Detail . 14

3.2.2 Pan and Zoom . 15

3.2.3 Focus and Context . 15

3.2.4 Animation . 16

v

3.3 Graph Layouts . 16

3.3.1 Force-directed Layouts . 17

3.3.2 Orthogonal Layouts . 17

3.3.3 Circular Layouts . 18

3.3.4 Tree Layouts . 19

3.3.5 Layered Layouts . 20

3.4 Nodes Visualization . 21

3.5 Edges Visualization . 22

3.5.1 Edge Bundling . 23

3.6 Background Visualization . 25

3.7 Nodes Clustering . 26

3.8 Visual Design Guidelines . 27

3.9 UML Component Diagram Visual Syntax 27

4 Existing Approaches in Component Software Visualization 29

4.1 Problems and Approaches to Component Software Visualization 29

4.1.1 User’s Needs and Requirements 29

4.1.2 Component Visualization Approaches 30

4.1.3 Problems and Approaches Classification 31

4.1.4 Criteria for Evaluating Tools 33

4.2 Tools Implementing Mentioned Approaches 35

4.2.1 Plain UML Tools . 36

4.2.2 Tools for UML Profiles . 37

4.2.3 Specific Component Model Visualization Tools 39

4.2.4 Generic Component Model-aware Visualization Tools . . . 40

4.3 Summary . 41

5 Complex Component Applications Exploration 43

5.1 Designing a New Visualization 43

5.2 Using Large Projection Areas . 45

5.3 General Design Concepts . 46

5.4 Motivation for Clutter Reduction Approach 48

5.5 Techniques for Lowering Visual Clutter 49

5.5.1 Separated Components Area (SeCo) 52

vi

5.5.2 Items . 53

5.5.3 Symbols and Delegates . 53

5.5.4 Interface Clustering . 54

5.5.5 Component Groups . 55

5.5.6 Unconnected Components 56

5.6 Viewport for Component Diagrams 57

5.7 Using the Viewport Technique for Groups of Components 58

5.7.1 A Group as Viewport with Details 60

5.7.2 Group as a Symbol . 60

5.8 Extra-functional Properties Visualization 60

6 The CoCAEx Tool: Experimental Implementation of the Ap-
proach 62

6.1 Techniques Implementation and Demonstration 62

6.1.1 Global Features Implementation 62

6.1.2 SeCo Features Implementation 64

6.1.3 Diagram Area Features Implementation 65

6.1.4 Clusters Features Implementation 66

6.1.5 Unconnected Component Feature Implementation 69

6.1.6 Extra-functional Properties Visualization Implementation 70

6.1.7 Personalization and Publication 72

6.1.8 Application Features Overview 75

6.2 Technologies Selection . 76

6.2.1 JUNG Framework . 79

6.2.2 HTML5 and Java EE . 80

6.3 Component Application Visualizer 81

6.4 CoCAEx Application Internal Data Flow 81

7 Evaluation of the Proposed Approach 83

7.1 Baseline Approach . 83

7.2 User Study . 84

7.2.1 Goal of the Study . 84

7.2.2 Participants . 85

7.2.3 Apparatus . 85

vii

7.2.4 Design . 86

7.2.5 Procedure . 86

7.3 Results and Discussion . 88

7.3.1 Task T1 – Which components use interfaces provided by
CocomeData-Impl? . 89

7.3.2 Task T2 – Which components are not from CoCoME core
(are third party)? . 89

7.3.3 Task T3 – Which packages need CocomeDataImpl from
CocomeData? . 89

7.3.4 Task T4 – Which components do not require or provide
interfaces to any other components (are unconnected)? . . 89

7.3.5 Task T5 – Which components require or provide inter-
faces to any of CashDesk components in CoCoME? 90

7.3.6 Subjective Evaluation . 90

7.3.7 Observation . 92

7.4 Lessons Learned . 94

8 Conclusion 95

8.1 Evaluation of Thesis Goals . 96

8.2 Future Work . 97

8.2.1 Automated Removal of Highly Connected Components . . 98

A Deployment and Availability 108

B List of Published Articles 109

viii

List of Figures

1.1 Higher Level of Detail in Complex Diagram (Azureus Application
in X-Ray Tool) . 3

1.2 Overview of Complex Diagram (Azureus Application in X-Ray
Tool) . 4

2.1 Component Deployment [14] . 8

2.2 Framework Deployment [14] . 8

2.3 Simple Composition [14] . 8

2.4 Heterogeneous Composition [14] 9

2.5 Framework Extension (Plug-In) [14] 9

2.6 Component (Sub)Assembly [14] 9

3.1 Overview and Detail Example 15

3.2 Focus and Context Example [61] 16

3.3 Force- Directed Layout Example [46] 17

3.4 Orthogonal Layout Example [11] 18

3.5 Circular Layout Example [11] 19

3.6 Tree Layout Example [11] . 20

3.7 Layered Layout Example [6] . 21

3.8 The ExtC Graph View using various node representations [27] . 22

3.9 The File City - Various Glyphs for Node Representations [13] . . 22

3.10 The Six Single Cue Directed Edge Representations Used in the
First User Experiment. (a) “arrow”, (b) “light-to-dark”, (c)
“dark-to-light”, (d) “green-to-red”, (e) “curved”, (f) “tapered”
[52] . 23

3.11 US Airlines Graph (235 nodes, 2101 edges) (a) Not Bundled
Graph (b) Bundled Graph [51] 24

ix

3.12 Steps of Animation of Collapsing the “checks” Element (high-
lighted in blue) in (a) Hides All of its Children and Lifts the
Relations Pertaining to the Children to the “checks” Element,
as Shown in (d). [50] . 24

3.13 US Airlines Graph (a) Not Bundled Graph (b) Bundled Graph
[40] . 24

3.14 UML Diagram with 12 AOIs, Various Rendering Modes. [25] . . 25

3.15 Background Maps Used for Displaying Clusters [39] 26

3.16 UML Component Diagram Example 28

4.1 Example of Plain UML2 Component Model 31

4.2 MetricView Metrics Visualization 37

4.3 Save-IDE Visualization . 39

4.4 Softvision Visualization [104] . 41

5.1 Factors Influencing Visualization in Scope of This Work 45

5.2 Nuxeo Before the Reduction . 49

5.3 Nuxeo After the Reduction . 49

5.4 Wide Amount of Lines From One Component 50

5.5 CoCoME Application Visualized with UML [98] 51

5.6 Overall Layout of the Application Window 53

5.7 Example Symbols . 53

5.8 Delegates in the Diagram Area 54

5.9 Item Design When Showing Its Delegates 54

5.10 Clustered Interfaces . 55

5.11 Interface Details . 55

5.12 Group of Components Represented by a Group Symbol 56

5.13 Application Layout with an Example Diagram 56

5.14 Unconnected Components Item Expanded 57

5.15 Viewport for Component Diagrams 58

5.16 Viewport with SeCo . 59

5.17 Exploration of Clustered Interfaces Enriched by EFP 61

5.18 Interfaces Scaling According to Relative EFP Values 61

5.19 EFP Compatibility Visualization 61

6.1 Initial Load of Nuxeo System Loaded into CoCAEx Application . 63

x

6.2 Forming Clusters via Search Feature 64

6.3 Excluded Components Connections Highlighting 64

6.4 Using Symbols and Delegates . 65

6.5 Clustered Interfaces Exploration 65

6.6 Connected Components Highlighting in Diagram Area 66

6.7 Required Interfaces Highlighting 66

6.8 Adding Components from Diagram to SeCo Groups 66

6.9 Forming Clusters with Group Feature 67

6.10 Highlighted Connections of a Group 67

6.11 Highlighting Components Inside of a Group 68

6.12 Showing Core Group as a Symbol 68

6.13 Group Expanded to a List of Components 69

6.14 Unconnected Components in SeCo 69

6.15 EFFCC Tool [73] . 70

6.16 EFP Selection in CoCAEx Tool [73] 71

6.17 Exploration of Clustered Interfaces Enriched by EFP Implemen-
tation [73] . 71

6.18 Interfaces Scaling According to Relative EFP Values Implemen-
tation [73] . 72

6.19 CoCAEx Application Upload Dialog 73

6.20 Uploaded Components to CoCAEx Application 74

6.21 Public Diagram Creation Dialog 74

6.22 Save Icon for Named Diagrams 75

6.23 Copying Public Diagram . 75

6.24 Example of JUNG Applet Showing both Clustering and Layout
(Fruchterman-Reingold) Algorithm 79

6.25 Architecture of ComAV Tool [99] 81

6.26 CoCAEx Architecture . 82

7.1 An Outline and Properties View of IBM Rational Software Ar-
chitect . 84

7.2 CoCoME Application Shown in CoCAEx 86

7.3 Comparison of Average Times Needed to Accomplish the Tasks
in RSA and in CoCAEx . 93

xi

7.4 Minimum and Maximum Times with Marked Medians (black
lines) Needed to Accomplish the Tasks in RSA and in CoCAEx . 93

A.1 Demo and Public Diagrams . 108

xii

Chapter 1

Introduction

This work focuses on the effective visualization of large system component di-
agrams. New methods of the visualization should bring clarity of represented
data and speed up a process of understanding of unknown applications. These
methods should support user interaction with the diagram for better customiza-
tion according to user needs.

1.1 Introduction to Component Software Modelling

Software architects and developers have been using various forms of visualizing
the structure of software applications since the advent of the discipline. In the
last 20 years, the increased adoption of object-oriented programming lead first
to several proposals for adequate modelling notations which were then gradually
consolidated into the current standard – the Unified modelling Language (UML)
[85]. While UML is able to model both the static and dynamic aspects of many
kinds of software, recent development in the field of component-based software
engineering (CBSE) brings new challenges regarding UML usability [80], [82].

The visualization of component-based applications [103] is not a trivial task
due to the rich structures of component interfaces and the differences between
component models. Frameworks like EJB [101], CORBA [84], OSGi [86] and
more can be found in commercial applications and even more component models
– for example SOFA [23], Fractal [78] or CoSi [21] – are the subject of research.

The diversity of component models in terms of the features available on compo-
nent interface is well described in e.g. [31]. On an abstract level, components
have in common two basic properties: the black-box nature and the fact that
the features they need and provide on their interface are well defined [103].

1

Chapter 1 2

Their interface features can cover all known contract levels according to [18]:

• syntactic, e.g. functional interfaces in most models and events in EJB3
[101],

• semantic, e.g. triggers in SaveCCM [44],

• behavioural like protocol in SOFA [87],

• extra-functional property specifications, e.g. in Palladio [15],

• control interfaces like in Fractal [78].

We can also refer to a different classification according to [32] as stated in
Section 2.3. Above mentioned richness indicates that modelling and visualizing
component applications is a challenging task.

1.2 Problem Definition: Diagram Complexity

Software applications become more and more complex [106]. Although there
are lots of tools that help the development and reverse engineering process, they
are still limited in helping human understanding of the application structure
and substantial research is still needed [26].

As stated in [49]:

UML class diagrams furthermore suffer from scalability problems
and should therefore only be used for small/partial software systems,
e.g., a dozen interrelated classes. ... Straightforward visualizations
of a software system hierarchy as well as its function call graph suffer
from visual clutter.

Software components [103] are one of the ways to handle this complexity as
they encapsulate parts of functionality to unified components. Even with the
usage of the components, nowadays applications can easily consist of hundreds
or thousands of them. It is therefore difficult to explore the structure of the
application and create a mental model of the whole system.

One of the ways how to get an insight into a component application structure
can be a diagram, e.g. UML component diagram. When the diagram is large
there are many problems with exploring it. They come from the contradictory
need of providing enough details and showing the complete diagram (application
structure) at the same time.

The main problems are following:

• Diagrams displayed at the desired level of detail become too big to keep
orientation and fit on reasonable displays.

Chapter 1 3

• It is difficult to trace dependencies between distant components,
as shown in Figure 1.1.

• When displaying the whole diagram on standard screens, individual ele-
ments are hard to recognize and often there is visual clutter caused by
dependency visualization. Thus next question is how to reduce visual
clutter [92] caused by the large number of elements and connec-
tions between them. The visual clutter makes tracing of dependencies
difficult and hinders orientation in the diagram, as shown in Figure 1.2.

Figure 1.1: Higher Level of Detail in Complex Diagram (Azureus Application
in X-Ray Tool)

Chapter 1 4

Figure 1.2: Overview of Complex Diagram (Azureus Application in X-Ray Tool)

Although tool support helps reducing time and cost [100], current tools do not
offer features designed for work with such large diagrams effectively [58].

It is possible to divide large diagram into smaller ones. But in this case user
would lose the overview of the whole system and the information about inter-
connections among system parts. Although diagrams of hierarchical component
models [23] usually does not have this problem because they keep the informa-
tion about parts in their hierarchy, there are lots of component models [101],
[86] with flat structure where the described problem occurs. There are also
other software and non-software structures (data models, network architectures,
transport systems, power grids, ...) where we can identify similar problems.

1.3 Goal of the Work

The main goal of the thesis is to:

Bring better and more effective ways of large component software vi-
sualization to reduce the time needed to understand the application
structure.

To fulfil the goal we have to design a new visualization approach, thus we state
two sub-goals and one approach:

• sub-goal: Our main focus will be on techniques that will not modify
the visual representation of UML component diagram rapidly

Chapter 1 5

to shorten the learning curve of potential users. This will allow the tech-
niques as well as the implementation to be adopted easier, which has been
identified as a problem of current tools in [26]. It also means that we will
mainly focus on node-link diagram representation. Node-link diagrams
are widely used in various domains and thus inventing new techniques in
software visualization can be potentially generalized for graphs used in
other domains.

• sub-goal: visualize a sufficient amount of detail to be able to
exactly identify individual components.

• approach: provide ways to hide less important details and show
them on demand.

We will provide an evaluation of discovered techniques. For that purpose we
will provide an implementation of invented techniques.

1.4 Structure of the Thesis

The work is structured as follows. Chapter 2 provides overview of the com-
ponent based software development. Chapter 3 describes topics relevant to
software and graph visualization. Chapter 4 shows evaluation of existing ap-
proaches in component software visualization. Chapter 5 describes the our
approach to large component diagrams visualization, which is called Complex
Component Applications EXploration (CoCAEx). For the ability to evaluate
our approach we implemented it in research tool. It is described in Chapter 6.
For the evaluation purposes we performed a user study. Chapter 7 presents its
results. Finally, Chapter 8 concludes the paper with the summary of findings.
It also provides evaluation of thesis goals and future work.

Chapter 2

Component Based Software
Development

Component based software development (CBSE) should speed up the devel-
opment of new software by reusing the existing components. These can be
developed by third parties. It should also increase the predictability of pro-
duced application. On the other hand there is some overhead in wrapping
functionality into components. User of third party components should check
the changes of used versions. There is also diversity in component models and
frameworks, which slows down the growth of large market. To clarify the term
component, its definitions follow.

Szyperski defined components in [103] as following:

A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is subject to
composition by third parties.

Bachmann [14] states:

Component-based software engineering is concerned with the rapid
assembly of systems from components where: components and
frameworks have certified properties; and these certified properties
provide the basis for predicting the properties of systems built from
components.

Component is [14]:

• subject to third-party composition,

• an opaque implementation of functionality,

• conformant with a component model.

6

Chapter 2 7

From the point of view of this work, it is important that the diagrams of
component-based applications are used in the component based software de-
velopment. These can be used at the initial phase of designing or composing
the application. Furthermore, we can speed up the understanding of an appli-
cation while doing a change in an existing one. The latter is usually a reverse
engineering, an extensions creation or a functionality change process. We pro-
vide more details about this topic in Chapters 3, 4.

2.1 Component Models and Frameworks

Bachmann [14] explains terms component model and framework as:

The component model gives uniformity to components and their
composition. Its use is to define how a component should look like,
how components communicate each other, which resources they use,
etc. The component model ensures the components are compatible
in terms of deployment, the communication, etc. It determines the
rules components must hold to be able to cooperate and it min-
imalists misunderstood assumptions. A component framework is
basically an implementation of a component model. It supports all
mechanisms such as deployment, synchronization, life-cycle, com-
munication of components which are defined in the component
model.

Component models will impose standards and conventions of the following kind
[14]:

• component types,

• interaction schemes,

• resource binding.

2.2 Compositional Forms

There are several ways of composing components to systems. The possible
compositional forms influence the design decisions while designing new com-
ponent diagram visualization approach. The following subsections present the
compositional forms, adopting the classification developed by [14].

2.2.1 Component Deployment

Components (as marked with C in Fig. 2.1) must be deployed into frameworks
(as marked with F in Fig. 2.1) before they can be composed or executed.
The deployment contract(s) (as shown at point 1 in Figure 2.1) describes the

Chapter 2 8

interface that components must implement so that the framework can manage
their resources.

Figure 2.1: Component Deployment [14]

2.2.2 Framework Deployment

Frameworks may be deployed into other frameworks (as marked by F1 and F2
in Fig. 2.2). Contract is analogous to the component deployment contract.

Figure 2.2: Framework Deployment [14]

2.2.3 Simple Composition

Components deployed in the same framework can be composed (as shown in
Fig. 2.3). The composition contract (as shown by mark 1 in Fig. 2.3) expresses
component- and application-specific functionality; the interaction mechanisms
to support this contract are provided by the framework.

Figure 2.3: Simple Composition [14]

2.2.4 Heterogeneous Composition

Support for tiered frameworks implies composition of components across frame-
works, whether across hierarchical (as illustrated in Figure 2.4) or peer frame-

Chapter 2 9

works. In either case bridging contracts are needed in addition to composition
contracts (as shown at point 2 in Figure 2.4) in order for interactions to span
generic component models.

Figure 2.4: Heterogeneous Composition [14]

2.2.5 Framework Extension (Plug-In)

Frameworks may be treated as components, and may be composed with other
components. This form of composition most commonly allows parameterization
of framework behaviour via “plug-ins.” Standard plug-in contracts for service
providers are increasingly common in commercial framework.

Figure 2.5: Framework Extension (Plug-In) [14]

2.2.6 Component (Sub)Assembly

A component-based system is an assembly of components. The ability to pre-
dict the properties of assemblies suggests a similar ability for subassemblies.
Contract is used to compose C1 and subassembly C3, which contains one or
more components. A question that arises is whether C2 is visible outside of C3
and whether it is separately deployed.

Figure 2.6: Component (Sub)Assembly [14]

Chapter 2 10

2.2.7 Compositional Forms Examples

Most common compositional forms are component deployment and simple com-
position, which we can find for example in OSGi1. Component (sub)assembly is
the form represented in hierarchical component models such as SOFA 22. The
idea of a framework deployment form can be found for example in SpringDM3

deployed in OSGi. In this situation we can find the idea of heterogenous com-
position between SpringDM and OSGi components. It is also possible to extend
SpringDM by components running in the OSGi framework (eg. Equinox4).

For purposes of this work we limit us to visualize the interfaces as defined in
UML component diagram.

2.3 Contracts

As mentioned in previous sections, for communication among components inter-
faces are used. There are several languages for interface description according
to [32]:

• modelling languages (such as UML or different ADLs),

• particular specification languages (Interface Definition Languages),

• programming languages (such as interfaces in Java),

• some additions built directly in a programming language.

There can be also different types of interaction [32]:

• port-based where ports are the channels for communication of different
data types and events;

• functions in programming languages defining input and output parame-
ters;

• interfaces or classes in Object Oriented programming languages.

The interfaces provide most of time a basic description of services and thus
there are contracts for better description. Contracts among components should
guarantee good interface connecting and determine “rights and duties” of com-
ponents involved. Contracts can be negotiated by involved sides and can be
also changed in runtime, if all sides agree. They can also expire.

Contract definition according to [103]:

1http://www.osgi.org/
2http://sofa.ow2.org/
3http://www.springsource.org/osgi/
4http://www.eclipse.org/equinox/

Chapter 2 11

A contract (an interface together with its specification) mediates
between independently evolving clients and providers of the services
the interface makes accessible.

Beside levels of contracts mentioned in Introduction, we can also state following
categorization according to [19]:

• Syntactic (or basic) The goal is to make the system work. It is generally
specified with Interface Definition Languages (IDLs), as well as typed
object-based or object-oriented languages. It ensures the components can
be assembled.

• Behavioral The goal is to specify each operation. It is generally specified
with a couple of assertions: a precondition and a postcondition. It ensures
the operations offered and required are not only syntactically compatible
but also semantically.

• Synchronization The goal is to specify the coordination of operations.
It can be specified with an automaton labelled with operations. It ensures
the operations are used in the proper order.

• Quality of Service The goal is to quantify a few features associated to
operations. Performance, availability and quality of result can be specified
and negotiated at that level.

Bachmann [14] distinguishes between component contracts and interaction con-
tracts and defines them as:

• A component contract specifies a pattern of interaction rooted on that
component. The contract specifies the services provided by a component
and the obligations of clients and the environment needed by a component
to provide these services.

• An interaction contract specifies a pattern of interaction among dif-
ferent roles, and the reciprocal obligations of components that fill these
roles.

2.4 Extra-functional Properties

Following section was published in [64].

Despite partial success of CBSE, several issues remain unsolved. One of the
important ones Extra-functional properties (EFPs) in CBSE are believed to
improve compatibility verifications of the components.

EFPs systems have been addressed from several directions and a lot of ap-
proaches have been proposed. For instance, one of the groups proposes inde-
pendent descriptions of EFPs [36, 12, 72, 42, 79]. While this group splits the

Chapter 2 12

EFP description from their application, different group concerns modelling of
the EFPs as a part of a software design [70]. These groups treat EFPs rather
independently while a group of comprehensive component models exists taking
EFPs natively into account [16, 95].

On the one hand, these component models are often still under research. On
the other hand, practically used industrial models such as OSGi or Spring
only slowly adopt systematic EFP support. One of the reasons may be wide
misunderstanding of what EFPs are [41] that eventually leads to only a partial
and non-systematic EFPs adoption in practise. As a suggested solution, general
mechanism consolidating EFPs understanding among different vendors as well
as different applications has been proposed in [62].

For purpose of this thesis we use EFP definition from [64]:

An extra-functional property holds any information, explicitly pro-
vided with a software system, to detail characteristics of the system
apart from the system genuine function to enrich clients with un-
derstanding or usage of the system supported by technical [compu-
tational] means.

From above mentioned description, we can see that visualizing EFP can be
challenging task due to various possibilities of its particular form. We describe
this topic more in Sections 5.8 and 6.1.6.

Chapter 3

Software and Graph
Visualization

Visualization is very effective way of understanding software structure, be-
haviour or evolution. This section describes related software visualization ap-
proaches and techniques, which help increase understanding the software.

For the purpose of this work, we adopt the following definition of software
visualization [109]:

Software visualization is a discipline that makes use of various forms
of imagery to provide insight and understanding and to reduce the
complexity of the existing software system under consideration.

In this thesis, we will mainly focus on node-link graphs. Basically we can see
several visualization elements in such graph visualization such as nodes, edges
and background. Moreover we can apply a graph layout or clustering to help
a user identify related elements faster. On top of that, we can choose one of
the information schemes which will determine the orientation and navigation
techniques. When designing new visualization, it is also important to follow
known guidelines and best practices to support mental model creation. All of
above mentioned topics are covered by respective sections in this Chapter.

We will also focus on the problems, which arise from large sofware visualization.
There is usually large number of various elements in the visualized system and
the visualization is cluttered. It is thus suitable to use techniques for visual
clutter reduction beside standard visualization techniques.

Visual clutter can be reduced by many techniques, such as bundling (see 3.5.1),
sampling [89], clustering (see 3.7) etc. The position of these techniques in the
general taxonomy has been described by Ellis and Dix in [34], we describe
relevant techniques from this taxonomy in above mentioned sections.

13

Chapter 3 14

3.1 Mental Model Creation

While doing a reverse engineering, a user creates a mental model of a sys-
tem from the perception, imagination and comprehension of discourse. Mental
model creation is described deeper in [65].

Specifically to software architectures can be the theory of mental models applied
as described in [48]. He mentions several laws where following are related to
our work:

• Law of maximal ignorance. Don’t learn more than you need to get the
job done.

• Cognitive miser principle. Don’t waste brain power.

• Aesthetic principle. Visualization leads to cleanliness.

Large component diagrams contain lots of elements and visual clutter. Above
mentioned priciples lead us to the approach of diagram simplification. It can be
achieved by hiding details so that a user does not need to waste the brain power
or learn more than actually needed. Hidden details can be shown interactively
on demand. The aesthetic principle can be supported by using suitable layout
that will show a diagram which is easier to explore.

3.2 Information Schemes

When visualizing complex structures we usually face the problem of not having
enough space on the screen to visualize the whole diagram in the desired level
of details. Thus we are forced to use some technique to navigate through such
a large diagram while showing only part of it on the screen. There are several
main approaches while dealing with the complexity problem [30]:

• overview and detail,

• pan and zoom,

• focus and context.

These principles can be combined together to offer a user good understanding
of large diagram.

3.2.1 Overview and Detail

This approach (illustrated in Figure 3.1) is very commonly used in the software
diagram tools as well as other visualizing fields like maps, CAD systems etc.
Its main principle is to provide user two or more views with different level of
details. Most common is using the detailed view for most of the screen area

Chapter 3 15

while the overview area is smaller for ensuring orientation. This approach is
useful in large diagrams, but its scalability for very large diagrams is limited.
It can be partly improved by using more overview levels, but it decreases the
transparency of the whole approach.

Figure 3.1: Overview and Detail Example

3.2.2 Pan and Zoom

This approach is used for providing the ability to view a desired part of the
diagram in desired level of detail. The panning feature usually moves the unde-
laying diagram according to mouse movements. The zooming feature provides
the ability to see the diagram in different levels of size and detail. It is usually
handled by mouse wheel, plus and minus keys or buttons dedicated for mouse
control. This approach shows the focused and contextual information in views,
which are in fact separated by time.

3.2.3 Focus and Context

This approach combines the both focus and context information into one view,
as illustrated in Figure 3.2. Focused area shows detailed information, the con-
text area shows the relevant contextual information and they are seamlessly
integrated into one view. This integration can be achieved by several tech-
niques such as fisheye distortion, using the border for various types of marks
or showing proxy elements for hidden objects. This approach differs from the
overview and detail in showing the detail view right in the diagram where the
less detailed information is shown. In the contextual part can be also shown
information which is out of the focused area. This information cannot be easily
shown by overview and detail or pan and zoom approaches.

Chapter 3 16

Figure 3.2: Focus and Context Example [61]

3.2.4 Animation

Animating the changes between showing different views helps a user to better
understand a diagram that is shown. It can be used for various changes such as
changing zoom level [17] [107], moving between distant nodes in the diagrams
or moving the elements during diagram modifications (e.g., layout changes).
Important factor while using animation is the time an animation takes. Longer
time leads to better understanding of content, but it can slow down work with
a tool. Appropriate values for the animation are suggested between 300 and
1000 milliseconds in [67]. Also the work of [108] about optical flow reduction
can be helpful while designing an animation technique.

3.3 Graph Layouts

The node layout of a visualized diagram can significantly increase understanding
of the application. There are many methods for graph layouts creation such as:

• force-directed,

• orthogonal,

• circular,

• tree,

• layered.

Above mentioned layout methods are briefly described in following paragraphs
that describe their relevance for this thesis.

This overview of layout techniques/algorithms is based on a survey of a rather
disparate set of sources, from technical documentation to dedicated monographs
[33], [2], [28], [47], [88], [43].

Chapter 3 17

3.3.1 Force-directed Layouts

For component diagrams visualization are suitable force-directed graph-drawing
methods, as illustrated in Figure 3.3. In these methods the nodes layout is
computed according to underlying physical model. The iterative algorithm
computes the nodes’ placements until the energy in the whole system is minimal.

Classical force-directed algorithms like [38], [66] are suitable for drawing general
graphs. They are also used in practice [22] for graphs containing hundreds of
vertices. There are also available more efficient force-directed techniques for
even larger graphs (tens of thousands of nodes), such as [45], [110].

Figure 3.3: Force- Directed Layout Example [46]

3.3.2 Orthogonal Layouts

Orthogonal methods are using only horizontal and vertical directions for draw-
ing the edges, as illustrated in Figure 3.4. These layouts are used in domains
that have orthogonal constraints. Using such layout for large component dia-
gram is not suitable, because it can be tedious to trace dependencies in such
one while having a detailed view.

Chapter 3 18

Figure 3.4: Orthogonal Layout Example [11]

3.3.3 Circular Layouts

Circular layouts place the nodes on the circle and the edges connect them inside
or outside a circle, as illustrated in Figure 3.5. The edges can be drawn straight
(inside a circle) or bended (both inside and outside). Also edge bundling tech-
niques (see Section 3.5.1) are suitable to be used for this layout. Nodes place-
ments on a particular position on the circle can be optimized to minimize the
edge crossings.

Chapter 3 19

Figure 3.5: Circular Layout Example [11]

3.3.4 Tree Layouts

Tree layouts are suitable for drawing tree graphs, as illustrated in Figure 3.6.
Usually the root of a tree is drawn in the middle and its children are placed
around it. The component diagrams are mostly not having a tree structure.

Chapter 3 20

Figure 3.6: Tree Layout Example [11]

3.3.5 Layered Layouts

Layered layouts are suitable for acyclic or nearly acyclic graphs, as illustrated
in Figure 3.7. They place the nodes into layers (usually horizontal). Layers are
connected among each other and the nodes in each layer are placed to minimize
lines crossings among layers. Applications can have a layered architecture, so
these layouts can be suitable for their visualization. On the other hand, relying
on a fact that unknown application uses such architecture can lead to problems
with its diagram exploration, in case the application is in fact not layered.

Chapter 3 21

Figure 3.7: Layered Layout Example [6]

3.4 Nodes Visualization

Nodes represent individual software elements, e.g. components. From the vi-
sualization point of view there are several main node factors, which can be
adjusted to express desired metrics or attributes:

• dimensions - such as width, height (or depth in 3D),

• colors - including various colour effects (e.g., trasitions, patterns),

• shape,

• time validity (when showing changes),

• animations - for showing both static and dynamic information.

While using various node dimensions and colors can be in accord with visual
syntax of used model, changing the shape of the node is usually violating it.

The work of Anslow [27] uses basic shapes combined with colors to represent
individual nodes as shown in Figure 3.8.

Chapter 3 22

Figure 3.8: The ExtC Graph View using various node representations [27]

The work of Sazzadul [13] shows the application in 3D as a city, where are
various buildings used for node representation, as shown in Figure 3.9.

Figure 3.9: The File City - Various Glyphs for Node Representations [13]

3.5 Edges Visualization

One of the basic diagram elements are the links among nodes. Holten [52]
came with the alternative representation of edges, which should help reduce
the visual clutter and can thus help users to orient easier. They developed five

Chapter 3 23

representations which combine the shape of the edge as well as the colour.

To evaluate the proposed representations, they performed a user study which
leads to following recommendations:

• Standard arrow representation (part (a) in Figure 3.10) should be avoided,
because the performance of the users is quite low while using it. It is
probably caused by the arrowheads, which cause occlusion problems and
visual clutter.

• The best results was measured while using the tapered representation (f)
in Figure 3.10 for directed graphs.

• For intensity based representation the dark-to-light representation is bet-
ter than light-to-dark.

• Combining used factors (such as curving, changing colors etc.) for repre-
sentation of the edges (multi-cue) does not seem to be better than using
only one factor (single-cue).

Figure 3.10: The Six Single Cue Directed Edge Representations Used in the
First User Experiment. (a) “arrow”, (b) “light-to-dark”, (c) “dark-to-light”,
(d) “green-to-red”, (e) “curved”, (f) “tapered” [52]

For purpose of this work it would be possible to apply above mentioned scientific
knowledge on a component diagram. It usually contains directed edges among
elements, which represent provided and required interfaces. Also the described
intensity of edges can be used for indicating desired component connections
metrics. Such as in case of clustered interfaces described in Section 5.5.4.

3.5.1 Edge Bundling

Visualization of large node-link graphs usually suffer from visual clutter. One of
the possible solutions of this problem can be using of edge bundling techniques

Chapter 3 24

which can reveal high-level edge patterns. The edge bundling can be applied
for both general layouts of graphs and circle layouts. Holten [51] presented self-
organizing approach to edge bundling. They model edges as flexible springs
attracting each other. They also present rendering techniques to emphasize the
bundling.

Figure 3.11: US Airlines Graph (235 nodes, 2101 edges) (a) Not Bundled Graph
(b) Bundled Graph [51]

Holten [50] also presents a technique of visualizing the elements in circle layout
with the possibility to collapse elements. This collapsing and uncollapsing is
fully animated, few steps are shown in Figure 3.12. Collapsing leads to replacing
of all edges leading from all collapsed elements with one edge.

Figure 3.12: Steps of Animation of Collapsing the “checks” Element (high-
lighted in blue) in (a) Hides All of its Children and Lifts the Relations Pertain-
ing to the Children to the “checks” Element, as Shown in (d). [50]

Also the work of Gansner [40] presented a multilevel agglomerative edge
bundling method. It minimizes ink needed to edges representation with re-
specting constraints on the curvature of the resulting splines. They declare
that this method is able to bundle hundreds of thousands of edges in seconds.
For comparison they provide the same graph as Holten [51], shown in Figure
3.13.

Figure 3.13: US Airlines Graph (a) Not Bundled Graph (b) Bundled Graph
[40]

Chapter 3 25

3.6 Background Visualization

The background of visualized node-link diagram can be used for improving
the navigation and understanding of visualized system. The work of Byelas
[25] presented the tool using the areas of interest (AOI) technique in software
diagrams. It investigates correlation of system properties while preserving the
layout of displayed nodes. Several rendering modes of this technique are shown
in Figure 3.14.

Figure 3.14: UML Diagram with 12 AOIs, Various Rendering Modes. [25]

Another work using diagram background is [39]. It describes the use of ge-
ographic maps to highlight clusters and neighbourhoods. Although the work
shows the similarities and recommendations arising from TV shows the idea
could be adapted for the software visualization.

Chapter 3 26

Figure 3.15: Background Maps Used for Displaying Clusters [39]

3.7 Nodes Clustering

Although components usually represent relatively large amount of functionality,
we can still find that a particular feature consists of several components. For
example a system can have several components for covering the security features
of given system. So it is usually possible to find a group of components in a
system, which can be considered as a cluster. So the clustering can be used for
reducing the amount of components in the displayed diagram.

Cluster can be possibly collapsed into one node, as illustrated in Figure 3.12.
Thus the number of nodes in whole diagram would be lowered and the un-
derstanding of the whole diagram becomes easier. The number of nodes in
the whole diagram is lowered although the connections among components are
usually still present and could be shown on demand.

Clusters can either be marked manually, in an automated way [29], [75], [20]
or by a combination of those approaches [76]. The overview of clustering al-
gorithms can be found in [93], [111]. While using manual clustering user se-
lects the nodes belonging to a cluster. When using an automated way, a di-
agram is considered as a graph. In this situation, interconnections (edges)
among nodes are usually the most important for clusters creation. To improve
the automated clustering we can also use available metrics and information
about components. Such information can be e.g., names of the packages (e.g.,
org.package1.subpackage2). It can help form cluster even though the compo-
nents are not connected.

Important factor, while choosing a clustering algorithm for certain implementa-
tion, is the quality of the clustering result for the given domain. There are sev-
eral metrics which can help choose the appropriate clustering algorithm stated
e.g., in [20]. But even after using these metrics it is usually not clear, which al-
gorithms will give the best result for the general type of graph which component

Chapter 3 27

software application diagram can be.

3.8 Visual Design Guidelines

There are many visual design guidelines, but the basic principle might be sum-
marized as the Visual Information Seeking Mantra [96]:

Overview first, zoom and filter, then details-on-demand.

There are also described following tasks in information visualization field in
[96]:

1. Overview: Gain an overview of the entire collection.

2. Zoom: Zoom in on items of interest.

3. Filter: Filter out uninteresting items.

4. Details-on-demand: Select an item or group and get details when
needed.

5. Relate: View relationships among items.

6. History: Keep a history of actions to support undo, replay, and progres-
sive refinement.

7. Extract: Allow extraction of sub-collections and of the query parameters.

3.9 UML Component Diagram Visual Syntax

There are many software architecture modelling tools and visual syntaxes and
their use is very common in practice. As stated in Section 1.3, we mainly focus
on UML component diagram [83] in this thesis. We provide examples of other
approaches in Sections 4.2.3, 4.2.4.

Most commonly used visual language for displaying component applications
structure is UML component diagram. It is generally applicable to most of
the component models or frameworks. It captures a basic form of components
and their interactions, but advanced concepts like contracts are not included.
Visual syntax of its elements is described in Figure 3.16. We can see that it
is basically a node-link graph enriched of hierarchical elements and notes as
independent nodes. There can be multiple directed edges between any two
components (nodes). Any component can be connected any other, which deter-
mines, that UML component diagram is not an acyclic graph. As mentioned in
Section 1.2, most of the component models are not hierarchical, thus the visual
syntax of inner components hierarchy is usually not used. The provided and

Chapter 3 28

required interfaces are basically directed edges, which contain additional infor-
mation. The main difference, compared to usual directed egde visualization by
arrow symbol at end of the edge, is visual syntax showing the direction of an
edge by combination of “lollipop” and “socket” symbols at any position of an
interconnection line. It is usually shown in the middle of a line, which can make
a process of determining the direction of an edge slower in large diagrams. A
diagram can also contain provided or required interfaces that are not connected
to its respective counterparts.

From the above mentioned we can state that for most of the component models
we can consider a UML component diagram as general directed multigraph
containing one type of nodes and one type of directed edges. Both nodes and
edges contain additional textual information. This gives us the opportunity to
apply best practices used in other domains as well as potentially use our new
techniques for other domains.

UML component diagram main features are:

• components,

• provided and required interfaces,

• stereotypes,

• tagged values,

• notes,

• hierarchy of inner components,

• including ports as parent’s component interfaces.

Figure 3.16: UML Component Diagram Example

Chapter 4

Existing Approaches in
Component Software
Visualization

Most of this chapter was published in [59] and was updated by relevant tools.

4.1 Problems and Approaches to Component Soft-
ware Visualization

In the following section, we describe the problems in visualization of component-
based software related to its diversity, as well as different approaches to visu-
alization of such structures. In Section 4.1.4 we suggest the criteria that can
be used for evaluating tools able to visualize such software. These criteria are
thoroughly discussed and evaluated from the views of different CBSE stake-
holders. The application of these criteria is then presented on the example of
IBM Rational Software Architect in Section 4.2.2.

4.1.1 User’s Needs and Requirements

People involved in the component development and maintenance process needs
to visualize the component applications in various ways. Visualization should
help them understand the system, analyse dependencies [71], extract and show
desired properties, etc. These techniques are necessary especially when dealing
with larger systems which consist from many (hundreds or thousands) compo-
nents.

Graphical notation is one of the important aspects of visualizing component
models. Many component models propose their own graphical notation while
other ones assume a generic one like UML; this fragmented landscape can be
seen as similar with the situation before UML became widely established for

29

Chapter 4 30

object-oriented languages. We describe existing approaches including their clas-
sification in the next section.

4.1.2 Component Visualization Approaches

Components are by their nature more complex than classes in terms of their
contractually specified interface features. Their models, visual syntax, support-
ing meta-data and tool functionalities should therefore be also more sophisti-
cated. For example, the study [71] shows that architectural modelling would
benefit from consolidated views, model consistency and defect checking, and its
augmenting by metrics. Additionally, Kollman et al note that obtaining more
abstract representations and providing advanced (semantically rich) model fea-
tures are important for analysts [68].

Several works describe general criteria on analytical visualization tools, e.g.
[105] or [69]; both of these works attempt to structure the criteria into categories
for better orientation. In [90], there are further identified common desirable
features or open issues which can be improved by visualization techniques.
Visual notations can be in general analysed or compared from the semiotic
point of view, like in [97] or in [81], to understand the suitability of chosen
symbols and layouts.

However we are not aware of any other method that would help evaluate com-
ponent architecture visualization tools. Favre et al discussed several issues with
visualization of component-based software in [35]. While Favre covered all areas
of component visualization, namely component models, components and their
assemblies, he addressed only global issues of such visualization and he did not
identify specific visualization tasks, however he provided a solid background
and motivation for future work.

The options in modelling and visualizing component software architectures
specifically are, cf. [77]:

1. component model-specific tool/notation;

2. generic component-aware tool/notation;

3. UML with profiles;

4. plain UML.

Component model-specific visualization means a visual notation (symbols and
their meanings) supported by tools which are able to visualize only one or very
few specific models. The motivation for this approach is the diversity of features
provided by individual component models. The downside is that the specifics
of the given notation can make it difficult for experts from different domains
to read and understand the models. Examples of this approach are SaveCCM
[44] or Palladio [15] component models.

Chapter 4 31

Figure 4.1: Example of Plain UML2 Component Model

Secondly, we can use a universal component-aware visualization tool like Soft-
Vision [104] which is either able to visualize any component model or can be
extended for given component model needs. Related to this category is the
use of UML [83] constrained by or extended with UML profiles which enable to
further specify the semantics of existing model elements and create new ones on
top of the core UML meta-model. Creation of profiles including introduction
of icons for new model elements is supported by some tools, e.g. IBM Rational
Software Architect, and many UML tools are able to use a pre-defined selection
of profiles.

Finally, we can use plain UML, especially its component diagram (see Figure
3.16) and possibly class diagram. It may not capture the desired level of details
necessary for full component modelling but provides a universal notation that
is understood by most software engineers today. Moreover, the tool support is
extensive (e.g. MagicDraw, Enterprise Architect, PowerDesigner or StarUML,
to name just a few). However, this probably most common modelling approach
“. . . lacks support for capturing and exploiting certain architectural concerns
whose importance has been demonstrated through the research and practice of
software architectures” [77] and supports only rudimentary analytical tasks.

4.1.3 Problems and Approaches Classification

In general, the options and benefits of a visualization of a component appli-
cation are affected by: (a) the component model and its features; (b) visual

Chapter 4 32

Functional criteria Category

System
archi-
tect

(SA)

Compon.
devel-
oper
(CD)

Compon.
assem-

bler
(CA)

C00 Basic features N/A mandatory

C01 Richness of component
interface visualization

Data representa-
tion / Static

∗∗∗ ∗∗∗ ∗∗∗

C02 Model extraction Integration / Data
mining

∗∗ ∗∗

C03 Component and archi-
tecture analysis

Data representa-
tion / Static

∗∗∗

C04 Finding matching
variation / extension
points

Data representa-
tion / Static

∗∗∗ ∗ ∗∗∗

C05 Analysis and visualiza-
tion of extra-functional
properties

Data representa-
tion / Static

∗∗∗ ∗∗ ∗

C06 Change analysis Data representa-
tion / Dynamic
and Evolution

∗∗∗ ∗∗ ∗

C07 Analyzing differences
between views

Operations / Com-
parison

∗∗ ∗∗

C08 Traceability analysis Operations /
Searching

∗ ∗ ∗∗

C09 Model querying and
structural analysis

Operations /
Searching

∗∗ ∗∗

C10 Interactive components
clustering

Operations /
Searching

∗∗∗ ∗∗

C11 Custom metrics and
parameters visualiza-
tion

Effectiveness /
Benefits

∗∗ ∗ ∗∗

C12 Diagram scalability
and filtering

Effectiveness /
Scalability

∗∗ ∗∗∗

Table 4.1: Criteria and Roles for Component Visualization

Chapter 4 33

notation’s repertoire; (c) the capabilities of a tool used for visualization. Suit-
able visualization approaches have to be general enough to cover a wide range
of component models while at the same time being able to capture all aspects
of a concrete component model, in order to provide sufficient level of standard-
ization while preserving precious information about the particular component-
based applications. In visualization of component-based software it is therefore
crucial to provide good notation and diagramming functionalities and beneficial
to support more advanced features for architectural analyses, data mining and
visualization in general.

In this chapter, we aim to define a suite of criteria that capture these features
and emphasize the aspects important from CBSE point of view. These crite-
ria should be suitable for the evaluation of visualization tools to indicate their
fitness for advanced visualization of component-based software. Secondly these
criteria can guide developers of current or new tools while considering imple-
mentation of new features, because each applied criterion increases the added
value of the visualization tool.

4.1.4 Criteria for Evaluating Tools

The criteria which we consider important for visualization tools targeted at
component-based development are based on the general visualization rules and
particular CBSE needs identified in the previous section. The criteria are sum-
marized in Table 4.1; the list is structured using the general scheme proposed
by [105] and related to roles specific to CBSE, cf. [103]. Individual criteria are
discussed in detail below.

The importance of each criterion for each role is indicated by stars, the scale is
from none (not applicable) through one star for lowest importance to three stars
for highest importance. Formula 4.1 describes the calculation of final rating sr
of given tool for one role.

sr =

∑n
i=1(wi · ci)

M ·
∑n

i=1(wi)
(4.1)

Here wi stands for the criterion importance and ci represents the coverage of
the feature by the given tool, on the scale from zero for “not present” to M for
full coverage. Symbol n stands for the number of criteria and M equals three.

Criteria Description

We distinguish between basic and advanced criteria. As basic criteria we con-
sider common tools features, which should be fulfilled in any case. As basic
features we consider following:

• pan&zoom,

• diagram overview,

Chapter 4 34

• adjusting the layout of a diagram,

• import&export,

• displaying model structure.

The brief description of advanced criteria follows.

Rich component interface visualization Represents the tool’s ability to
work with all properties and features specified by component model or frame-
work.

Model extraction Describes the tool’s ability to extract model from source
code, deployment form or runtime representation, to a representation suitable
for working with visualizing the gathered data.

Component and architecture analysis This criterion describes to what
degree a tool is able to provide analyses of structures or behaviour of compo-
nents. There are many possible analyses, for instance for internal dependencies
between provided and required interfaces or finding unused required interfaces
or structures. Tools can also be able to check architecture style rules, detect
design patterns or anti-patterns.

Finding matching variation/extension points A variation or extension
point is a vendor defined place for customizing behaviour. The process of finding
such point can be very tedious in complex application. But if the tool is aware
of the data types and structures it is displaying and is able to run basic queries
internally, there is a possibility to offer users a feature which ease this process.

Analysis and visualization of extra-functional properties Extra-
functional properties [60] can be either stored in a file or repository separately
or can be gathered from the code or running system. Tools can also be able
to compose the extra-functional properties of individual components into one
property for the system or subsystem, and compare them in order to determine
which component is better for a given purpose. There are also several ways of
visualizing the gathered data in the diagram or exporting them into another
tool.

Change analysis Represents a tool’s ability to analyse an impact of the change
(e.g. changed interfaces or relations), application consistence and compatibility
of given component with other related components after a change.

Analyzing differences between views Although analysing differences in
textual data is a common task sufficiently solved by tools, differencing two
graphical views is not a very common feature. It enables users to faster under-
stand the changes made in the system.

Traceability analysis Important part of understanding the system is tracing
through its dependencies. Although components should be treated as black
boxes, composing the dependency along a chain of components from the indi-
vidual internal dependencies between provided and required interfaces can be
very useful. It enables users to predict the ripple effects of potential changes or
understand the structure of the system.

Chapter 4 35

Model querying and structural analysis Describes tool’s ability to perform
user specified or built-in operations which are generally needed to find desired
information in the model. It comprises features from basic search to tool’s own
query language where the queries can be specified by user. Advanced features
like structural analysis, model evolution prediction or design patterns and anti-
patterns detection are also related to this criterion.

Interactive components clustering Diagrams of large applications become
difficult to explore. One of the possible ways of improving the diagrams to
be easier to understand is creating clusters of components which semantically
represent a subsystem. Clusters can be minimized into symbols to lower the
visual clutter of the application’s diagram overview. These clusters can be
found or suggested by tools automatically and/or adjusted by user manually.

Custom metrics and parameters visualization This criterion describes
tool’s ability to provide data and related operations, which would lead to visu-
alization of desired metrics and parameters. Important part of this criterion is
also the way in which the tool is able to visualize and customize the gathered
data. There can be several data sources for the metrics and parameters. They
can be stored in a file or repository separated from the diagram representation.
Another way of gathering such data can be tool’s own metrics measuring and
composing capability.

Diagram scalability and filtering In case of large diagrams a tool should
be able to handle the load and offer satisfactory response time. This criterion
evaluates how the tool handles the problem of model complexity. It can be
reduced for instance by multiple levels of displayed details or filtering highly
connected parts suitable for detailed view.

In Table 4.1 we can see that most of the criteria are related with the component
system architect or assembler and fewer are related with component developers.
Component architects and assemblers need to have an overview of the whole
system which can consist from hundreds or thousands of components and thus
they need lot of analytical techniques and tools to ease their work.

4.2 Tools Implementing Mentioned Approaches

This and following subsections describe the capabilities of current state-of-the-
art tools for analysing component applications in view of above mentioned cri-
teria, in the form of a non-exhaustive survey. Primarily it describes the tools
which provide interesting features besides basic component diagramming and
focuses on those which introduce a novel look on component visualization.

In spite of the imperfections of plain UML component model we briefly present
in subsection 4.2.1 selected tools which work with this model as the baseline.
We also consider UML profiles as a separate point of view in subsection 4.2.2
because they provide an opportunity to represent various component models.
Then we discuss visualization tools specific for some component models in sub-

Chapter 4 36

section 4.2.3 which usually provide very good representation for the given model.
Finally, in subsection 4.2.4 we sample tools which are able to represent any com-
ponent model or at least support a high number of models or languages.

We list the fulfilled criteria from Table 4.1 for each of the tools described in
detail. Moreover, we provide overview of criteria fulfillment by tools in Table
4.3.

4.2.1 Plain UML Tools

The UML component diagram describes static application architecture and
belongs to the structural diagrams category. It is able to show the components
themselves, their provided and required interfaces, associated artefacts and also
composition hierarchy by putting (sub-)components inside other components.

There are many tools for drawing plain UML component diagrams, e.g. UMLet1,
Dia2, VioletUML3, Gliffy4, LucidChart5, Creately6.

MetricView

MetricView [1] is a standalone tool which allows users to display custom metrics
directly in the UML model (C11), as shown in Figure 4.2. Metrics visualization
is among others useful for displaying extra-functional properties. This software
has a version called MetricViewEvolution which is able to calculate metrics
(C05), visualize evolution data (C06) and provide more views for UML model
exploration. This tool also implements the area of interest technique [24] for
UML diagrams (C12) which helps to highlight areas of concern in the diagram.

1http://www.umlet.com/
2http://live.gnome.org/Dia
3http://alexdp.free.fr/violetumleditor/page.php
4http://www.gliffy.com/
5https://www.lucidchart.com/
6http://creately.com/

Chapter 4 37

Figure 4.2: MetricView Metrics Visualization

4.2.2 Tools for UML Profiles

For purposes of component application modelling and visualization we can use
UML profiles to describe the specifics of component model(s). Visualization
and analytical features then depend on the profile support of particular tool.

There are many tools which are able to work with UML profiles such as Magic-
Draw7, StarUML8, Borland Together Designer9, Visual Paradigm for UML10 or
IBM Rational Software Architect (described in 4.2.2). Diagrams can usually be
exchanged among such tools using XML Metadata Interchange (XMI), which
should enable UML compliant documents exchange between tools.

Papyrus

Papyrus11 is the component of the Eclipse Model Development Tools. It is
able to work with UML2 exactly according to its definition and supports UML
profiles very well. It it is able to customize its editors, model explorer and create
user defined perspectives (C11, C12) in a way which provides users the look and
feel comparable with domain specific language editors. Papyrus can download
the following UML profiles via its update site: MARTE, SysML, EAST-ADL,
CCM and LwCCM (C05). The learning curve of this tool can be improved by
using tutorials, videos or documentation provided.

7http://www.magicdraw.com/
8http://staruml.sourceforge.net/
9http://www.borland.com/us/products/together/index.aspx

10http://www.visual-paradigm.com/product/vpuml/
11http://www.eclipse.org/modelling/mdt/papyrus/

Chapter 4 38

IBM Rational Software Architect

IBM Rational Software Architect (RSA) is built on the Eclipse platform. We
chose RSA for this case study because it is not just a UML diagramming tool
but rather represents a robust solution that supports model driven development,
analytical work over different views on the same software and a lot more. All
of these features are built on top of the UML meta-model.

RSA offers not only use of UML profiles but it is also possible to design new
ones with it. This means that any component model can be represented with
details limited only by the UML meta-model itself.

RSA supports all basic features needed for reasonable visualization of
component-based software (C00), thus it is possible to use it for these pur-
poses. Richness of contractual levels (C01) is achieved by using UML profiles,
extension mechanism which – together with the option to define custom element
icons – is powerful enough to model and reasonably well visualize most of kinds
of component interface features.

RSA is able to trace dependencies, inheritance or ancestors by using several dif-
ferent features, thus covering the (C08) criteria in its full content. RSA enables
model management for parallel development and architectural re-factoring –
split, combine, compare and merge models and model fragments, thus (C07)
criteria is also fully covered.

For model analysis and model metrics there is a special plug-in, called The
Model Metric Analysis Plug-in which covers the criteria of (C11). This plug-in
enables to create Kiviat diagrams (“spider charts”), perform interactive analysis
of model and asses the results. RSA is able to create data sets (queries) to ex-
tract a defined set of information from UML models. This feature is accessed by
using RSA extended with BIRT project12, which also enables to create reports
and sub-reports. These features cover the criteria (C09).

It may seem that model extraction (C02) is supported, because RSA can
reverse-engineer class diagrams from Java, C++ and .NET source code. How-
ever, this ability does not work on component-based software and component
diagrams. No other criteria are fulfilled.

Evaluation of RSA

Detailed overall value of IBM Rational Software Architect’s component visu-
alization capabilities is calculated by using Formula 4.1 and is summarized in
Table 4.2.

We can conclude that RSA does not fully cover the desiderata of component
application visualization but it still offers features, from which component as-
semblers can benefit the most.

12www.eclipse.org/birt/phoenix/

Chapter 4 39

ci
System

Architect
Component
Developer

Component
Assembler

C01 2 ∗∗∗ ∗∗∗ ∗∗∗
C07 3 ∗∗ ∗∗
C08 3 ∗ ∗ ∗∗
C09 2 ∗∗ ∗∗
C11 2 ∗∗ ∗ ∗∗
sr 12 0,26 0,29 0,41

Table 4.2: Assessment of RSA Using Our Criteria

4.2.3 Specific Component Model Visualization Tools

From the tools available for the many existing component models, we selected
two representatives with direct support for model visualization.

Save-IDE

Save-IDE13 is an Integrated Development Environment (IDE) which can be used
for the development of component-based embedded systems in the SaveCCM
component model. Among others it uses formal specification and analysis of
behaviours for designing systems (C05). It also enables internal component
analysis (C03). Component visualization in IDE is shown in Figure 4.3.

13http://save-ide.sourceforge.net/

Chapter 4 40

Figure 4.3: Save-IDE Visualization

SOftware MOdel eXtractor (SoMoX)

SoMoX14 is a tool for reverse engineering (C02) of the Palladio component
model. Palladio can execute analysis (C05) of software performance, reliability,
and maintenance properties on its component-based applications. It is also able
to extract the components from source code (C10) written in various languages.
Reverse engineering results in the creation of basic and composite components,
component interfaces and service signatures, ports (roles), assembly and dele-
gation connectors and behaviour model. The extracted models enable quality
analysis and help understand analysed system.

Plug-in Dependency Visualization

Plug-in Dependency Visualization15 is a plugin for the Eclipse IDE. It enables
to extract (C02), visualize and analyse the dependencies (C08) among core and
user installed Eclipse plugins, called bundles. The dependency graph helps to
understand the system by providing reasonable cognitive support. The user is
able to select several options of highlighting the bundles. For example, it is pos-
sible to show the shortest dependency path between two selected components.
Example of application visualized by this tool can be seen in Figure 5.4.

4.2.4 Generic Component Model-aware Visualization Tools

There are very few tools in this category, and often there is little information
available about them.

SoftVision

SoftVision is a software visualization framework described in [104] which is able
to interactively explore relations between data structures, as shown in Figure
4.4. It can scale the model to visualize large complex datasets (C12).

This tool enables users to define the structure of the component model used
in a given component based system and thus visualize any component model
(C02). If the user needs differ for each component model, SoftVision provides
elements customization (C11). Thanks to this feature the user is able to cre-
ate applications which suits well for exploration of given architecture. It also
enables to write a custom scenario model which helps users better analyse the
system by creating custom map, edit and filter operations (C09).

14http://www.palladio-simulator.com/tools/add ons/somox/
15http://www.eclipse.org/pde/incubator/dependency-visualization/

Chapter 4 41

#
Metric-
View

Papyrus
IBM
RSA

Save-
IDE

SoMoX PDV SoftVision

C01 ∗
C02 ∗ ∗ ∗ ∗
C03 ∗
C04

C05 ∗ ∗ ∗ ∗
C06 ∗
C07 ∗
C08 ∗ ∗
C09 ∗ ∗
C10 ∗
C11 ∗ ∗ ∗ ∗
C12 ∗ ∗ ∗

Table 4.3: Tools and Criteria Coverage

Figure 4.4: Softvision Visualization [104]

4.3 Summary

In this chapter we described four options in component visualization. We pro-
vided examples for each of these options. Furthermore, we also suggested several
criteria for evaluating tools targeted at component visualization, which can be

Chapter 4 42

applied on existing visualization tools. To summarize the options in modelling
and visualizing component software architectures from various points of view,
we provide Table 4.4. It describes following criteria:

• how well is a visual syntax known for each approach,

• to which degree is approach supported by tools,

• how much is each of the approaches able to capture all component mod-
elling features,

• how much work is needed before a user can start using such approach.

Sec. Approach
Visual
syntax

Tool
support

Compon.
features

fully
captured

Simplicity
of prepara-
tions before

use

4.2.1 Plain UML
component
diagram

** well-
known

***** * *****

4.2.2 UML pro-
files

**** tool
dependent

*** **** **

4.2.3 Specific
component
model

model
dependent

model
depen-
dent

model

dependent

4.2.4 Generic custom *
** tool

dependent
**

Table 4.4: Comparison of Approaches to Component Modelling

Chapter 5

Complex Component
Applications Exploration

Techniques presented in this chapter were published in [56] [57] [53].

5.1 Designing a New Visualization

We established the goal of this work in Section 1.3. After that, we described
already known techniques and related work in Chapter 3. Furthermore we
provided the evaluation of existing approaches in the field in Chapter 4. Above
mentioned allowed us to better understand the problems in the field and gave
us higher confidence while designing new approach. To ensure the result of
our new approach will help reduce mentioned problems and challenges, we used
visual design guidelines described in Section 3.8. These are further elaborated
in Section 5.3. We also considered using the hardware support for improving
the insight into the data shown, as described in Section 5.2.

We identified the current problems in large component visualization (in Section
1.2). Noticeably, standard UML diagrams and their implementations in the
industrial tools can depict only diagrams of certain level of complexity. When
the complexity rises above this level, the diagrams become no longer visually
understandable and start to hinder analytical reasoning. This is mostly problem
of diagrams created during automated reverse engineering processes. In this
section, we would like to design a new visualization approach, which will cover
these problems in a way stated below:

• Diagrams ... become too big to keep orientation... - We can simplify
the diagram to be small enough to keep orientation without losing the
information. We will thus provide a user a way of dividing a diagram
into logical parts. Showing these parts (not their content) can provide a
high-level overview of given system for a user and help him/her get the
initial orientation. Details of the respective parts can be then discovered

43

Chapter 5 44

interactively. The level of interactivity must not create impediments in
exploration. We cover this problem mainly in Section 5.5.5.

• It is difficult to trace dependencies between distant components.
- When tracing dependencies, usually lines, a user is distracted by other
lines or nodes. Moreover, the dependencies are very often between com-
ponents, which are placed in distant places in a diagram. Thus a user
can easily lose the track of given line when scrolling or moving via di-
agram area. We would like to help a user to show the dependencies in
way that he/she does not need to concentrate intensively on such trac-
ing. Thus we provide the concept of showing dependencies without lines,
which is described in Sections 5.5.1, 5.5.2, 5.5.3. Additionaly we provide
an interactive highlighting techniques (described in Section 6.1).

• ... how to reduce visual clutter caused by the large number of
elements and connections between them... - Visual clutter is present
especially in high-level views. We can reduce the number of visualized
elements, but we have to provide a way to show them on demand. We
will focus on such techniques, which offer significant clutter reduction and
do not require high interaction overhead at the same time. One of these
techniques is the interface clustering, mentioned in 5.5.4. Another one
helps reducing clutter by removing the most connected components from
a diagram area (mentioned in Section 5.5.1).

We can see that above mentioned problems and their potential solutions are
highly interconnected, thus we provide an integrated concept of their particular
solutions.

The design of a new approach is also driven by two sub-goals and one approach
defined in Section 1.3:

• sub-goal: ... not to modify the visual representation of UML
component diagram rapidly to shorten the learning curve of
potential users. - Inventing a new visual syntax can help for particular
component model, as mentioned in Section 4.2.3, but for shortening the
learning curve and allowing wide spreading the approach, we will make
only necessary changes to UML component diagram visual syntax.

• sub-goal: Visualize a sufficient amount of detail to be able to
exactly identify individual components. - This should ensure the
practical usability of the whole approach.

• approach: We will provide ways to hide less important details
and show them on demand. - It should help to lower the visual
clutter generally, which is one of the main problems in scalability.

The main approach of this thesis lies in both using known techniques and using
novel invented techniques for reducing complexity of large diagrams, which are

Chapter 5 45

generally node link graphs. There are several relatively independent factors
when visualizing complex software structures. By improving each of them and
combining them together we achieve large increase of the insight into visualized
system. The overall picture of the influencing factors important for the scope
of this work is shown in Figure 5.1.

Figure 5.1: Factors Influencing Visualization in Scope of This Work

Visualization techniques which handle complexity, such as off-screen rendering
[37], can also help understand a diagram, even it is complex. This chapter de-
scribes a novel approach called Complex Component Applications Exploration
(CoCAEx) which attempts to reconcile the above mentioned contradictory re-
quirements and helps explore the dependencies among components in an intu-
itive way.

5.2 Using Large Projection Areas

The main idea of improving the diagram understanding by large projection
areas is the fact that a person is generally able to see larger area than nowadays
standard screen size. Thus the goal of this section is to provide an overview
of current projection possibilities with respect to cost of final solution, which
would increase the comfort of displayed diagram understanding.

Enlarging the projection area can be easily achieved by using projectors, but we
also need to have high resolution to see the details. On the other hand, a very
high resolution on small projection area will not bring additional advantages.
Thus one of the main requirements for the solution is to preserve reasonable
ratio between the pixel size and projection area while covering whole user’s
perspective.

There are possibly following main ways of achieving the large viewing area:

Chapter 5 46

• using high resolution projectors or monitors,

• using several projectors composition,

• using several monitors composition.

These solutions vary in costs, quality and comfort. While using multiple screens
or projectors there is a possibility to use multiple interconnected computers as
signal source. In case we have these interconnected computers we can save the
costs for the graphic adapters necessary while using one computer. On the other
hand, there are further complications while using multiple computers such as
delays or data throughput.

In the composition of projectors we can theoretically achieve very large reso-
lution, but currently offered products can provide hundreds of millions pixels.
While using projectors, it is possible to achieve projection areas without seeing
any visible grid. Current projecting devices for affordable price still do not
exceed the abilities of human’s eyes in resolution criteria. The eye cannot be
simply compared to projection devices by using only resolution metric, because
there are many influencing factors in human’s reception. On the other hand,
we can consider values between hundreds of millions and thousands of millions
of pixels as roughly comparable with human’s abilities.

5.3 General Design Concepts

To assure our new approach will be designed properly, we followed the visual
design guidelines mentioned in Section 3.8. In this section, we describe applica-
tion of such guidelines on particular concepts of the approach. These concepts
are then also covered by the features in our approach in Table 6.1.

1. Overview We will show a diagram of reverse-engineered application as
an overview first.

Important part of perception of the application architecture, when using
a diagram representation, is the used layout. There are many layout
algorithms known (see Section 3.3), they calculate nodes positions based
on connections or given metrics. These are suitable for initial load of
a diagram, thus an automated layout will be used in the initial step to
reduce the visual clutter.

When creating a mental model of an application a user can have various
needs according to which he/she adjusts the layout manually. The manual
part of layout creation can take very long time. That is why a good
support of custom manual layout is important.

2. Zoom and Filter After showing the overview, the diagram will still likely
be cluttered. There are many actions in a reverse engineering process
that can be automated and thus save the time. Considering that we

Chapter 5 47

have a general component diagram with almost no additional information
(just component names, their interface and their interconnections), we
can automate only some actions to guarantee that given automation will
provide reliable information.

We will provide automated filtering techniques to reduce some part of the
clutter out. Zoom features will be available at any time. We will also
design our approach in a way that zoom should not be necessary for the
first clutter reduction. It will primarily help manual refinements after
most of the visual clutter was reduced.

3. Details on demand and Relate When having a large diagram one of
the key problems (as mentioned in Section 1.2) is showing both details
and overview at the same time. If we hide details, we should be able to
show them quickly based on the user needs. We have to deal with large
amount of interconnections (edges) and components (nodes).

This guideline can be applied on showing details about the interconnec-
tions between two components on demand and thus reduce the clutter
caused by number of visualized edges (interconnections). To keep the
information about interconnections available, we will provide set of in-
teraction techniques. Even most of the clutter is reduced it can still be
large enough to trace the dependencies manually. Thus we will provide
better techniques for exploring relationships among components. So the
user does not lose the concentration and does not forget the context.

For the nodes (components) clutter reduction, we would like to apply
the details on demand principle as well. We will use groups that can
serve as one of the main means for enabling a diagram simplification.
They usually identify semantically connected components. A user can use
them to create a macro structure of explored system according his/her
needs. Having them will allow us to reduce the amount of visualized
elements. They are not necessarily equal to functional parts of the system
and thus cannot be done in an automated way. Without using them a
user would likely use moving individual components to particular places
in the diagram area that would have the meaning of the groups.

A group can in the component application diagram represent:

• a particular feature consisting of more components,

• a third-party library used in given system,

• components developed by particular developer or team,

• components which are required for another component (or another
group),

• etc.

4. History We will provide undo action for defining the set of components
that are shown in the diagram. It will be possible to revert the initial
visual clutter filtering.

Chapter 5 48

5. Extract “Once users have obtained the item or set of items they desire,
it would be useful to be able to extract that set and save it ... ” [96]. Our
approach will allow a user to save the diagram and share it to the other
users or mark as publicly available. Saving a custom made layout would
allow a user to faster explore the application in case a reverse engineering
process takes more sessions (e.g. days).

5.4 Motivation for Clutter Reduction Approach

In a lot of situations, there are components in the system which are connected
with large number of other components. If we are able to remove such ones
from the diagram area and make them accessible in a different way, it would
help lower visual clutter.

Table 5.1 shows several systems (Nuxeo1, CoCoME2, OpenWMS3, Eclipse4)
with components having large number of connections. The table lists each sys-
tem per a line with columns denoting the number of components, total num-
ber of both clustered and non-clustered connections among the components
respectively. While non-clustered connections represent UML-like drawing sep-
arately connecting each individual provided-required interface pair, clustered
connections collapse all connections between two components into two sets: all
provided interfaces and all required interfaces.

Several experiments using the proposed technique were performed, based on
the data in the table. In one of them only 7 Nuxeo components have been
removed from the diagram area leading to 241 and 431 lines remaining in the
graph for the clustered and non-clustered versions, respectively. Therefore, the
graphs were reduced of of 69% of lines in the clustered and 65% of lines in
non-clustered version.

These numbers show that using the proposed technique, can achieve significant
visual clutter reduction. Visual effect of the results is shown in Figures 5.2 and
5.3, using circle layout for clarity.

System Components Clustered
Non

Clustered
Clustering

Effect

Nuxeo 202 698 1425 48%

CoCoME 37 125 188 66%

OpenWMS 65 232 642 36%

Eclipse 378 533 1079 49%

Table 5.1: Several Systems with the Number of Components and Connections

1http://www.nuxeo.com/
2http://www.cocome.org/
3http://www.openwms.org/
4http://www.eclipse.org/

Chapter 5 49

Figure 5.2: Nuxeo Before the Reduction

Figure 5.3: Nuxeo After the Reduction

5.5 Techniques for Lowering Visual Clutter

In this section, we describe the problem of the visual clutter first. It also fo-
cuses on the problem with highly connected components and the clutter caused
by their connection visualization. These components highly contribute to the
visual clutter of the displayed area. As an answer to one of the main problems
(“how to reduce visual clutter”) described in Section 5.1, we present a novel

Chapter 5 50

technique that helps reduce the visual clutter in large graphs.

Very often, only a small amount of components is connected to a large number
of other components. It results in a lot of lines going only from few components
as can be seen in Figure 5.4, where is shown part of Eclipse5 structure in Plugin
Dependency Visualization tool6. Such components are often, among developers,
informally called “God Objects”. Having such objects (components), the user
is limited in recognition of other connections in their surrounding area and
trace the connections themselves. Another side effect of these components is
that they fill a lot of space, thus exhausting one of the essential resources in
the visualization which can be used for easing the work with large component
diagrams.

Figure 5.4: Wide Amount of Lines From One Component

Another very common situation is that a user is not able to trace the depen-
dencies among components due to large amount of lines in the whole diagram.
Figure 5.5 shows UML diagram of CoCoME7 application, which has 37 nodes
and 244 connections. We can see that the diagram is cluttered and tracing
dependencies would be difficult.

5Popular IDE, see http://www.eclipse.org/
6http://www.eclipse.org/pde/incubator/dependency-visualization/
7http://www.cocome.org/

Chapter 5 51

Figure 5.5: CoCoME Application Visualized with UML [98]

The key design concept which we apply to reduce visual clutter is to remove
highly connected diagram nodes from the diagram itself and place them in a
separate view linked with the main diagram. This achieves cleaner diagram by
removing the related edges (which cause the clutter). We call the view separated
components area (abbreviated to SeCo). It is placed on the border of a window.

Chapter 5 52

Placing the component in the SeCo essentially marks the component as a “fa-
miliar one”. The user may then concentrate on and continue getting familiar
with the rest of the system. It is an extra area besides the standard diagram
area that displaces the components with the high number of connections (and
thus lines).

After moving components from the main diagram to this area, the lines between
these components and remaining components are elided. Instead of them a
representing visual symbol is used in the diagram area. The same symbol is
shown near the removed component in the SeCo. It reduces the number of lines
in the graph not reducing the information provided. Obviously, components
with a high number of connections are the most beneficial to be moved, because
they reduce the high number of lines from the graph. For instance, a user may
displace a component implementing a logger. Such a component is probably
used by most of components in the system and its displacement reduces the
graph complexity.

We assume both automatic and manual component selection may be used. In
the automatic case, all components with the number of connections overcom-
ing a certain threshold are displaced. In the manual use, a user selects the
components to be moved to SeCo directly in the diagram area.

In the following sections, we describe in detail the individual parts of the whole
visual design used by this technique.

5.5.1 Separated Components Area (SeCo)

SeCo is a part of the application window. It can be placed on left or right side
of the window, because current screens have wide aspect ratio and thus using
these sides will not deform the rest of the viewing area as much as using the top
or bottom side. The wireframe of the application window is shown in Figure
5.6.

Generally, there is also a possibility to show SeCo as a floating element in the
diagram area. A drawback of such solution is that a user can easily forget the
place in a diagram, where the SeCo is located. It would also be an element,
which affects the layout. That is why we chose the fixed version, which we also
find more intuitive and easy-to-use.

The content of the SeCo is described in following subsections.

Chapter 5 53

Figure 5.6: Overall Layout of the Application Window

5.5.2 Items

SeCo consists of a list of items and unconnected components list. Each item
consists of components, interfaces and one corresponding symbol (see Section
5.5.3). Components placed in SeCo have displayed relations with the rest of the
components in the diagram on the border between diagram area and SeCo. The
interfaces are always shown near the border between diagram area and SeCo.

We distinguish between two situations corresponding to an item’s internal lay-
out of components and the representing symbol. In the first situation, when
there is only one component in the item, interfaces are directly connected to
the component and the symbol is behind the component as shown in Figure
5.9. In the second situation, the item consists of more components which form
a group. In this case, the interfaces are directly connected to the symbol and
the components are shown behind the symbol (Figure 5.12). The former sit-
uation stresses the display of the interfaces-component connections while the
latter situation stresses the space saving. Groups are described more in detail
in Section 5.5.5.

5.5.3 Symbols and Delegates

The purpose of symbols is to create clear and easily recognizable key which
uniquely identifies one item within SeCo. Symbol should be small enough to
save space anywhere it is used. The user should be able to choose its own
symbols. We have chosen letters for the demonstration of the idea, but it can
be any other symbol or an icon. Examples of symbols are shown in Figure 5.7.

Figure 5.7: Example Symbols

To solve the difficulty of tracing dependencies (as one of the problems defined

Chapter 5 54

in Section 5.1), we propose following concept. To keep the information about
the connections in the diagram area when lines are removed, we use so called
delegates. They represent the connection between given component and the
corresponding item placed in SeCo. In the diagram, they are shown as small
rectangles neighbouring the displayed components and containing the symbol,
which corresponds to the connected item (see Figure 5.8).

Figure 5.8: Delegates in the Diagram Area

Showing particular delegates in the diagram area can be toggled by clicking on
the symbols in SeCo. The SeCo item indicates the state when delegates are
shown by different colour of symbol’s background as shown in Figure 5.9. The
indication of the state when delegates are shown could be also changed to show
a checkbox, or other graphical element. We chose different background colour
in order to save screen space. So the purpose of the background colour is that
it clearly indicates whether item’s delegates are shown.

Figure 5.9: Item Design When Showing Its Delegates

Using symbols provides an alternative to using a line between two connected
elements. Commonly used approaches of showing such relations are:

• adjacency matrix,

• node-link graph visualization.

5.5.4 Interface Clustering

For each component shown in SeCo, interfaces are clustered into two sets: all
provided interfaces (displayed as “lollipops”) and all required interfaces (dis-
played as “sockets”). This is shown in Figure 5.9. It helps to minimize the space
which these elements fill. Numbers in lollipops represent the value of a metric
associated with the interface group, e.g. simple count, interface complexity,
extra-functional properties. For better design illustration, we chose number of
interfaces as the metric, which is easy to understand and imagine the concept
deeper.

The clustered interfaces are by default not connected to the rest of the diagram
by any lines which reduces the total amount of lines in the diagram area. The
connections (resp. lines) can possibly appear only when interacting with any

Chapter 5 55

of the components involved or the clustered interface itself.

Figure 5.10: Clustered Interfaces

There are two kinds of interaction with clustered interfaces. First is a simple
showing the connections lines and highlighting the components involved after
user hovers with mouse cursor on the clustered interface. Second is a showing
of the details of all interfaces including names, connections and highlighting the
involved components. It is launched by mouse click on the clustered interface.
It is shown in Figure 5.11 for Interface 4. In a case a component from the
diagram area connected to an inspected interface is not visible in the current
diagram area view, it does not make sense to show the connection line. Thus a
proxy component is shown instead. This situation is shown in Figure 5.11 by
the rectangle with rounded corners – Component N.

Figure 5.11: Interface Details

5.5.5 Component Groups

Very often a particular functionality is implemented by several components,
for example the CashDesk subsystem of the CoCoME which is composed of 4
components. In a case this functionality is used by a large number of other
components in the system, it is beneficial to represent them as a group in SeCo.

All components (one or more) from such a group can then be replaced by one
delegate in the diagram. It saves space in the diagram and also helps to create
semantic groups of components. It consequently improves understanding of the
whole system where user may e.g. find cliques of components first. These may
be then grouped and displaced from the graph to continue exploration of the
remaining graph. Thus we can reduce the number of elements in the diagram
area and make a whole diagram smaller which can help solve one of the main
problems defined in Section 5.1.

The group symbols visually differ in component symbols and colours. A group
symbol is larger in the size compared to the case of a single component, to
denote the fact the group shows a large number of components. It shows

Chapter 5 56

two additional categories of clustered interfaces. These categories contain
all provided interfaces not used by any other component in a diagram and
analogically all required interfaces which no other component provides. In the
case of single components it is better to show these interfaces only on demand
and thus save the space. The group is shown in Figure 5.12. Showing not used
interfaces can easily inform the user about potentially missing components and
thus prevent the future deployment problems.

Figure 5.12: Group of Components Represented by a Group Symbol

When showing delegates in the diagram area for a given group or an item,
its symbol appearance changes, see Figure 5.13 (group “V”). We have chosen
different the background colour for demonstrating this item’s state as shown
in Figure 5.13 on group with symbol “V”. This situation is equivalent to the
situation of one component.

Figure 5.13: Application Layout with an Example Diagram

5.5.6 Unconnected Components

For lowering the amount of components displayed in the diagram area, we cre-
ated the Unconnected components item in the SeCo (see Figure 5.13). There
are all components which are not connected to the rest of a system. These com-

Chapter 5 57

ponents are thus not exhausting space in the diagram area. This SeCo item
is collapsed, so the content (list of unconnected components) is not visible, as
shown in Figure 5.14. It can be expanded on demand by clicking the plus icon.
In case of need a user can also move these components to the diagram area
either individually by using a red cross icon next to the name of the selected
component, or all of them by using the same icon next to the Unconnected

components label.

Figure 5.14: Unconnected Components Item Expanded

5.6 Viewport for Component Diagrams

We described the concept of groups in Section 5.5.5, which works with groups
mainly in SeCo. As a group can consist of many components, so there are likely
many connections with the rest of the diagram. While having the concept of
groups we are able to highlight the components connected with a particular
group (resp. any of its components). To be able to view internal dependencies
inside a particular group we introduce the viewport concept. It should help us
to work with the group exploration. The viewport technique should also enable
to explore and understand the dependencies in large diagrams by showing the
context of a selected diagram subset, because tracing the dependencies leading
outside of the screen can be difficult.

The proposed technique called viewport shows the graph (standard UML com-
ponent diagram) zoomed-out to provide the appropriate overview of the com-
plete architecture, with elements displayed without details. Besides that it
shows selected components in detail inside a viewport area plus all their re-
lations with other components in the diagram in an interactive border area
(see Figure 5.15). These relations are for each component clustered into two
sets: all provided interfaces (displayed as ”lollipops”) and all required interfaces
(displayed as ”sockets”).

Chapter 5 58

Figure 5.15: Viewport for Component Diagrams

These interfaces are then connected to clustered proxy components, visually
represented as rectangles with rounded corners. Each rectangle represents one
or more components. Numbers inside the clustered interfaces and proxy com-
ponents represent a desired metric, e.g. the number of elements clustered in a
given symbol. One of the key factors of this approach is the interactivity of
the border area. It is important for user manipulation with clustering of in-
terfaces or components, manual or automatic layout adjustments and selecting
the components to be shown in the viewport.

The interface clustering shall reduce the visual clutter otherwise caused by
large number of relations. The proxy elements should reduce the need for the
disorienting pan&zoom otherwise necessary while exploring dependencies and
provide user relevant information in one place. The viewport can either be
placed on a given position in the diagram (there can be more viewports in a
diagram) or have a fixed position on the screen. For our specific use we prefer
to use first mentioned, because we find it more powerful and flexible.

5.7 Using the Viewport Technique for Groups of
Components

This section presents the usage of the viewport technique for groups (as de-
scribed in Section 5.5.5) and its integration with SeCo technique. A group of
components shown in SeCo can be moved to the diagram area and shown with
the viewport technique. Similarly the viewport form of a group and its content
can be moved from the diagram area to SeCo.

It is possible to show the group in a diagram in following levels of details:

1. with a viewport technique with all details for all components and their
relations in given group,

2. as a symbol belonging to a group only.

These possibilities are described in following sections.

Chapter 5 59

Figure 5.16: Viewport with SeCo

Chapter 5 60

5.7.1 A Group as Viewport with Details

It is possible to move a group from SeCo to the diagram area (by icon indicated
with mark (1.) in Figure 5.16). The group will then disappear from the SeCo
and will be shown only in the diagram area as a viewport.

Each viewport has its own small toolbar, which contains a symbol representing
appropriate group (2.) and icons for important actions. The symbol has similar
meaning as symbols used in SeCo. It is possible to cancel the viewport (4.),
release its components to the diagram area. Viewport itself is then deleted.
Another possibility is to move a viewport to SeCo (3.). It removes the viewport
from the diagram area and shows its contents in the SeCo as a group. Finally,
a user is able to minimize a viewport (6.). It is then represented as a symbol
only, which is described in following section.

5.7.2 Group as a Symbol

It is possible to show a group as a symbol only (marked with (7.) in Figure
5.16). It is very important part of visible elements reduction process as well
as visual clutter reduction. Group symbol represents the whole group and its
content. It means that components included in the group are not visible at the
time the group is collapsed into the symbol.

When a user hovers a mouse over this symbol a small toolbar appears. It
contains icons for following actions:

• showing viewport in full details (8.), which shows viewport in a way de-
scribed in Section 5.7.1,

• moving group from diagram area into SeCo (5.),

• releasing components from given viewport (to the diagram area) and re-
moving the group itself (9.).

5.8 Extra-functional Properties Visualization

As we introduced EFP in Section 2.4, we will now describe its visualization
integration into our visualization approach. To fullfil our sub-goal “not to
modify the visual representation of UML component diagram”, we designed
the EFP visualization in a way that uses existing UML elements.

To improve existing visual representation and speed up the EFP problems reso-
lution for user, we decided to visualize EFP directly in the diagram. The above
mentioned design was modified in a way described below to enable such visual-
ization. From the point of view our approach, EFP is a set of attributes for each
interface. These are then visualized separately on demand and compatibility of
particular pair of components is visually enhanced for EFP awareness.

Chapter 5 61

The particular EFP can be shown by clicking on the clustered interface icon.
A tree containing EFP definitions is then opened. This tree contains available
EFP definitions including their values on both sides (provided and required).
The icons at the beginning of a line marks whether a particular property of given
connection is satisfied (green circle) or not (red circle), as shown in Figure 5.17.

Figure 5.17: Exploration of Clustered Interfaces Enriched by EFP

To enable faster recognition of possible problems in EFP composition, we pro-
vide an EFP compatibility indication inside of clustered interfaces icons. The
compatible component connections are marked by “green tick” icon. Incom-
patible connections are marked by “red cross” icon, as shown in Figure 5.19.

Each connection between components consists of required part icon and pro-
vided part icon. In case two components are compatible a user can be informed
about a degree of their compatibility by interfaces scaling. Both provided and
required part of the interface icon symbol are scaled separately according to
their degree of compatibility between existing EFP values, as shown in Figure
5.18.

Figure 5.18: Interfaces Scaling According to Relative EFP Values

Figure 5.19: EFP Compatibility Visualization

Chapter 6

The CoCAEx Tool:
Experimental Implementation
of the Approach

Techniques’ implementation mentioned in this chapter were published in [54],
[53], [55], [63].

This chapter describes implementation of techniques proposed above. There
are also some differences in the implementation compared to the design. These
are described more in detail in respective sections below. The resulting imple-
mentation availability is described in Appendix A.

6.1 Techniques Implementation and Demonstration

We describe resulting implementation of techniques proposed in Chapter 5 in
the similar structure to provide the demonstration of CoCAEx tool. Addi-
tionally, we provide description of global features. Subsections 5.5.1 - 5.5.4
describing SeCo concept design are covered by implementation in Section 6.1.2.
Sections 5.5.5, 5.6 and 5.7 describing the concept of groups are covered by
implementation in Section 6.1.4. The main window wireframe of CoCAEx ap-
plication is described in Figure 5.6, more detailed implementation description
and demonstration follows.

6.1.1 Global Features Implementation

CoCAEx global features are described in following paragraph that mentions the
marks in Figure 6.1. It provides standard features such as panning and zooming.
There are two modes of manipulating the components with appropriate icons
in the toolbar. First mode is for moving components (A) where the user can
manually adjust the layout of a diagram. Second mode (B) serves for removing
components from the diagram area to SeCo simply by clicking on the desired

62

Chapter 6 63

components that should be removed. Last two icons in the toolbar serve for
the automatic removal of a configured amount of components from a diagram
to SeCo. The tool is currently configured to remove 15% of most connected
components. The icon (C) is used for removing these components and adding
them to SeCo as individual items. The next icon (D) creates one group for all
of them.

Figure 6.1: Initial Load of Nuxeo System Loaded into CoCAEx Application

CoCAEx offers a fulltext search in components’ names. In Figure 6.2, one can
see the search for a part of name “org.nuxeo.ecm”. Thirteen components con-
tain this name as indicated by the number thirteen next to the magnifying glass
icon. Matching components are highlighted by orange colour in the diagram
area. This feature is able to highlight components both in the diagram area
and in SeCo.

Chapter 6 64

Figure 6.2: Forming Clusters via Search Feature

6.1.2 SeCo Features Implementation

If one clicks on the provided interfaces of a component in SeCo, these interfaces
and connected components become highlighted by blue colour. An example
in Figure 6.3 shows the dependency between the Nuxeo Eclipse Runtime com-
ponent’s provided interfaces and the components highlighted by blue colour.
These highlighted components can be either in the diagram area or in SeCo.
Similarly, for interfaces required by components in SeCo, highlighting by red
colour is used. There is also a possibility to click on the component itself and
highlight both required and provided interfaces. In a case when a particular
component is connected to the explored one both by provided and required in-
terfaces, red colour is used for highlighting. This can be improved in the future
to use different colour.

Figure 6.3: Excluded Components Connections Highlighting

For highlighting connections of more than one component Symbols and Del-
egates can be used. For several components from the SeCo area (those with

Chapter 6 65

symbols’ background highlighted by different than default blue colors) there are
delegates shown in the diagram area as shown in Figure 6.4.

Figure 6.4: Using Symbols and Delegates

Each individual component shown in SeCo has its own button to remove it back
to its original position in the diagram area.

6.1.3 Diagram Area Features Implementation

To ease the clarity when inspecting interfaces, the tool offers highlighting of a
connection by a red colour and showing the interfaces involved in the connection,
as shown in the green tooltip in Figure 6.5.

Figure 6.5: Clustered Interfaces Exploration

When a user clicks on a particular component, connected components are high-
lighted both in diagram area and SeCo. The colours correspond to the rules
mentioned earlier as shown in Figure 6.6. Connections leading from/to con-
nected components in the diagram area are also highlighted by corresponding
colour. Components and connections, which are not highlighted, are less visible.
It helps orientation and diagram simplification.

Chapter 6 66

Figure 6.6: Connected Components Highlighting in Diagram Area

There is also a possibility to highlight the components connected only via re-
quired or only via provided interfaces. For this purpose there are respective
symbols shown directly in a component displayed in the diagram area, as shown
in Figure 6.7.

Figure 6.7: Required Interfaces Highlighting

6.1.4 Clusters Features Implementation

For forming clusters the concept of groups can be used. Any component from
the diagram area can be added to an existing item (component or group) in
SeCo. This is achievable by right-click action on a component in the diagram
area, as shown in Figure 6.8.

Figure 6.8: Adding Components from Diagram to SeCo Groups

The group in SeCo is represented by a list of components which it contains and
one symbol (belonging to the whole group), as shown in Figure 6.9. Besides a
symbol, any group can also have a name assigned. This helps create some se-
mantical clusters better than using only symbols that are primarily for showing
elided connection lines.

Chapter 6 67

Figure 6.9: Forming Clusters with Group Feature

Clicking on this area also enables a user to highlight components connected to
any of the components inside of this group, as shown in Figure 6.10 for group
named Core. Connections of any particular component (from the group) can
be also highlighted when a user clicks on its name, as shown in Figure 6.11 for
org.nuxeo.ecm.core.api component.

Figure 6.10: Highlighted Connections of a Group

Chapter 6 68

Figure 6.11: Highlighting Components Inside of a Group

When a logical cluster of components is formed there is a possibility to show the
group which it represents as a Symbol (see Figure 6.12) in the diagram area.
This allows a user to see the connections of this group, with the rest of the
content in the diagram area, without any interaction. Compared to component
visualization, we can see that there are additional icons in the Symbol’s visual
representation in the diagram area.

Figure 6.12: Showing Core Group as a Symbol

First one serves for expanding the group’s graphical representation from a Sym-
bol to a list of components. The list is shown in the diagram area inside a group
box, as shown in Figure 6.13. Individual components inside the expanded list
are equally interactive as when shown separately. It means a user can use high-
lighting of its required and provided interfaces. When list is shown, first icon in
a group is changed to a underscore symbol. After clicking on this symbol the list
is collapsed back to a symbol representation of the group. Second one (the ar-
row icon) moves the group from the diagram area back to the SeCo area. Third
one (red cross icon) removes the group and shows individual components in the
diagram area. The group shown in the diagram area can also use highlighting
of required and provided components.

Chapter 6 69

Figure 6.13: Group Expanded to a List of Components

6.1.5 Unconnected Component Feature Implementation

The Unconnected components item is implemented almost as designed in 5.5.6.
There is a small difference in the look of the icons and there are not shown
provided and required interfaces yet. Individual components can be moved to
the diagram area. The CoCAEx application still remembers which components
are unconnected and in case of need all of them can be moved to the Uncon-
nected components item in SeCo by using the right arrow icon next to the
green label (named Unconnected components in SeCo). When a user clicks
on an unconnected component in the diagram area (exclude mode must be se-
lected), a standard SeCo item is created for this component. One of the main
purposes of this behaviour is that CoCAEx thus allows to create a group even
for unconnected components.

Figure 6.14: Unconnected Components in SeCo

Our preliminary experience with this tool shows that it is able to handle large
diagrams without problems. We also discovered additional requirements for
this tool that should be implemented to ease the work more. We describe these

Chapter 6 70

requirements in Chapter 8.2.

6.1.6 Extra-functional Properties Visualization Implementa-
tion

This section describes the implementation of EFP visualization concepts men-
tioned in 5.8. Having CoCAEx application which enables to visualize diagrams,
allowed us to show additional information in the diagrams. Part of our work
focuses on EFP visualization, which was partially realized by EFFCC [63] tool.
EFFCC is able to present EFP in a form of list of EFP for a component on the
left side and corresponding EFP of the connected component on the right side,
as shown in Figure 6.15.

Figure 6.15: EFFCC Tool [73]

CoCAEx application can receive the data from EFFCC and visualize the EFPs
in a way described below.

There is a selection item in the CoCAEx’s toolbar, where a user can select par-
ticular EFP from available ones, as shown in Figure 6.16. After such selection a
diagram is refreshed. Exploration of clustered interfaces enriched by EFP was
implemented in way shown in Figure 6.17.

Chapter 6 71

Figure 6.16: EFP Selection in CoCAEx Tool [73]

Figure 6.17: Exploration of Clustered Interfaces Enriched by EFP Implemen-
tation [73]

The scale of interface icon diameters is within range defined by
minInterfaceDiameter (min) and maxInterfaceDiameter (max) values (in
pixels, defined in WEB-INF/web.xml file). First mentioned is default value for
interface connections which does not have any EFP defined. This range defines
a full scale of possible sizes. The lowest (l) and highest (h) value of particular
EFP define an existing range of values ([l, h]). Such range is than mapped to
the scale (defined by [min,max]) according to Formula 6.1, so the size to show
is determined (in pixels).

size =
e− l

h− l
· (max−min) +min (6.1)

Where:
e is existing EFP value

Chapter 6 72

In a case there are more EFPs defined in one clustered interface, the application
currently counts an average from them for acquiring e value. To be able to
visualize size that corresponds more precisely to EFP values inside one clustered
interface, we would need to improve the data source (EFFCC). A function
defining a distance metric between given EFP and the closest optimal value
would be needed. Defining such general metric can be difficult considering
the richness of possible EFP values (intervals, numbers, strings, characters,
structured sets, etc.). Generally it would probably lead to a n-dimensional
functions.

Figure 6.18: Interfaces Scaling According to Relative EFP Values Implementa-
tion [73]

6.1.7 Personalization and Publication

The reverse engineering process is generally a process of understanding the work
and concepts created by someone else. A user doing a reverse engineering is
usually able to understand given system to a certain level needed for particular
task. There are also cases when a user wants to understand the whole system.
For instance, for reimplementing it in other programming language. In both of
these cases there is a risk of not understanding or overlooking something. If
we consider that the reverse engineering work is usually done by multiple users
independently in the world (who do not need to know about each other), we
can assume following:

• Sharing a diagram about own system can speed-up the learning curve for
other developers working with such system and does not cost much effort
for the author.

Chapter 6 73

• Diagram of an application shared by its author would likely help others
to shorten the process creating such diagram by their own.

• Diagram of an application shared by another person would probably help
others to shorten the process of creating such diagram (at least slightly).

• Multiple users working with the same system can get to know about each
other. So giving a common web-based reverse engineering platform can
help them find each other.

If the diagram from the authors exists, it is likely the most reliable source of
information. On the other hand, if no diagram exists, users, doing the reverse
engineering, can benefit from a wisdom of the crowd ([102]) and do not need to
start the process from the very beginning. That is why we consider important
to have the publication and sharing features available. It will also allow us to
determine automatically one diagram that will consist of information extracted
from diagrams (of the same application) of individual users.

When using the CoCAEx, the application shows the upload dialog first, as
shown in Figure 6.19. Diagrams can be saved for later use and optionally
marked as public. There are also predefined diagrams for demonstrative pur-
poses.

Figure 6.19: CoCAEx Application Upload Dialog

When uploading components, a user uploads the files to the server. The ap-
plication then parses files of known formats and shows them in the list below
the upload dialog, as shown in Figure 6.20. This list can be adjusted manually
before the visualization is started. This can be done by pressing the Start visu-
alization button. Unsupported data types are listed above the upload dialog.

Chapter 6 74

Figure 6.20: Uploaded Components to CoCAEx Application

The option of showing a Demo diagram shows a simple diagram where the
application features can be quickly demonstrated without any need of uploading
or logging in.

To offer a possibility of continuing the reverse engineering process later, Co-
CAEx offers diagrams saving. To be able to save a diagram a user needs to be
registered. The registration requires name, email, login name and password to
be filled.

When a registered user logs in, the application also allows diagram sharing.
The idea behind the sharing concept is described below.

The upload dialog for users who are logged in is shown in Figure 6.21.

Figure 6.21: Public Diagram Creation Dialog

Chapter 6 75

If a diagram is named, it is possible to save it. It means that positions of all
components in the diagram area are stored in the database for later loading.
Currently the application does not remember state of other features (highlight-
ing, SeCo content, etc.). For named diagrams there is the save (diskette) icon
shown in the toolbar as illustrated in Figure 6.22. If a diagram is not named
it is considered as a temporary work or test of the application and there is no
possibility to save it.

Figure 6.22: Save Icon for Named Diagrams

Each diagram can be marked as public and thus shared to all users, even to the
not registered ones. The public diagrams are read-only for all users, except the
owner. Users, who are logged in, can copy diagrams of other users to continue
working with their own copy, as shown for demouser in Figure 6.23.

Figure 6.23: Copying Public Diagram

6.1.8 Application Features Overview

The application features are described in following list. They can be divided
into four main categories:

I. global features,

(a) removing nodes with the highest degree to the SeCo area,

(b) searching and highlighting components in the diagram,

(c) modes toggling,

(d) component selection refinement,

II. SeCo features,

Chapter 6 76

(a) items creation, sorting, deletion,

(b) unconnected components list,

(c) item’s symbols using,

(d) groups using,

III. diagram area features,

(a) delegates of connected components showing,

(b) scrolling and zooming in diagram area,

(c) automated nodes layout (after first load),

(d) automated nodes layout on demand,

(e) manual layout adjusting,

(f) connected elements highlighting,

(g) visual suppressing unfocused components,

(h) provided and required interfaces highlighting,

(i) clustered interfaces exploration,

(j) group as symbol representation,

(k) group as list representation,

(l) adding components from diagram to SeCo groups,

IV. personalization and publication,

(a) login and registration,

(b) saving diagrams,

(c) sharing diagrams,

(d) demo diagrams.

Coverage of general design concepts (mentioned in Section 5.3) by features is
shown in Table 6.1. Beside mentioned table, all the features should support
reverse engineering process improvement. The set of features related to person-
alization and publication (IV. part mentioned above) should improve long-term
usability and shorten the initial learning curve of CoCAEx. Coverage of main
problems (mentioned in Section 1.2) by features is shown in Table 6.2.

6.2 Technologies Selection

For implementing above described techniques a graph framework can be used,
because the component diagram can be considered as a graph. There are many
available graph visualization frameworks (commercial or free to use). Their list
for Java can be found at [4]. We focused on framework’s ability to interact in a
short time with the user while displaying large amount of elements. The other
important abilities were available documentation, graph layouts, customizabil-
ity and size of the community around framework.

Chapter 6 77

Feature
from list

in Sec. 6.1
Overview

Zoom
and

Filter

Details
on demand

and
Relate

History Extract

I. (a) ∗
I. (b) ∗ ∗
I. (c) ∗
I. (d) ∗
II. (a) ∗ ∗
II. (b) ∗
II. (c) ∗
II. (d) ∗ ∗
III. (a) ∗
III. (b) ∗
III. (c) ∗
III. (d) ∗
III. (e) ∗
III. (f) ∗
III. (g) ∗
III. (h) ∗
III. (i) ∗
III. (j) ∗
III. (k) ∗
III. (l) ∗
IV. (a) ∗
IV. (b) ∗
IV. (c) ∗
IV. (d) ∗

Table 6.1: Feature-Concepts Coverage

Chapter 6 78

Feature
from list

in Sec. 6.1

Too big
to keep

orientation

Trace
“long”

connections

Visual
clutter

reduction

I. (a) ∗ ∗
I. (b) ∗ ∗
I. (c)

I. (d) ∗ ∗
II. (a) ∗ ∗
II. (b) ∗ ∗
II. (c) ∗ ∗ ∗
II. (d) ∗ ∗ ∗
III. (a) ∗ ∗ ∗
III. (b) ∗ ∗
III. (c) ∗ ∗
III. (d) ∗ ∗
III. (e) ∗
III. (f) ∗ ∗
III. (g) ∗ ∗ ∗
III. (h) ∗ ∗
III. (i) ∗ ∗
III. (j) ∗ ∗
III. (k) ∗ ∗
III. (l) ∗ ∗
IV. (a)

IV. (b)

IV. (c) ∗
IV. (d)

Table 6.2: Feature-Problems Coverage

Chapter 6 79

At first we chose JUNG [3], JGraph1 and Zest2 frameworks as suitable for
visualization of large graphs for further comparison. These were chosen because
of our knowledge of Java. Mentioned frameworks are able to work with both
directed and undirected graphs. They also provide GUI for work with the
displayed graph and layout functions. After testing these three frameworks we
decided for JUNG. This framework is described in following section.

6.2.1 JUNG Framework

The JUNG [3] stands for Java Universal Network/Graph Framework. It is
a software library written in Java and compatible with Swing3. It supports
both directed and undirected graphs as well as hypergraphs. It allows users to
annotate graphs, entities, and relations with metadata. It is also possible to
use Java applets as shown in Figure 6.24.

Figure 6.24: Example of JUNG Applet Showing both Clustering and Layout
(Fruchterman-Reingold) Algorithm

We chose the JUNG framework as the most suitable for our needs, because of
good documentation and overall functions. Showing 5000 nodes interconnected
with 5000 edges last 28 seconds in JUNG framework whereas it takes 1180
seconds in JGraph framework.

We implemented a prototype showing the large component diagram. We have
customized the connections lines to be shown as connected interfaces. Although
this framework is very good in graph visualization, we considered the imple-
mentation of described techniques problematic, mainly due to large amount
of specific customizations. Thus we decided not to use any framework and
implement the desired techniques by using basic drawing primitives.

1http://www.jgraph.com/
2http://www.eclipse.org/gef/zest/
3http://docs.oracle.com/javase/6/docs/technotes/guides/swing/

Chapter 6 80

6.2.2 HTML5 and Java EE

Based on the experience with frameworks in Java, we decided not to use one.
We preferred to use only basic drawing elements because they provide fast pro-
totyping of our novel techniques. Considering this decision, it was not essential
to use Java SE and we were able to use web-based technologies as well. At
the beginning we decided for Java SE, mainly because of our knowledge of this
edition of Java language. But in case of using only basic drawing primitives
and elements, we were able to implement such visualization as a web applica-
tion even with our limited knowledge of client side web technologies (mainly
JavaScript4,5). This approach is better for faster and easier sharing of our tech-
niques to broader audience directly on the Internet. It can be also used as a
tool for reverse engineering for anyone without necessity of installation.

As a backend technology we use servlets from Java EE technology, mainly
because of Java implementation of ComAV tool (see Section 6.3). For frontend
we use modern technologies such as HTML5, JavaScript, jQuery6 framework
and CSS3. These technologies are well-known and provide desired features
seamlessly integrated in the web page, whereas JUNG uses applets which cannot
be connected to the rest of the web page so easily as the previously mentioned
technologies. We use canvas and SVG elements from HTML5 to represent the
nodes of the diagram. Although HTML5 technology was not fully supported7

by all main browsers, it provides uploading of multiple files, which is used for
uploading components. Also desired features such as SVG support or Canvas
are likely to be stable in the future.

An important factor for work with large diagrams is an application response
time. The longest delay in the reverse engineering process is the initial upload
and the diagram creation. It is caused by the fact that applications can have
hundreds of megabytes and thus their uploading and processing can take some
time, depending on the network connection speed and computer performance.
With above mentioned technologies, we designed the application to load all
necessary data at the beginning (during initial load) and thus eliminate further
delays during work. We verified that even for application having around one
thousand components, the application works without uncomfortable delays af-
ter initial load. We loaded a diagram containing 914 components, which have
in total 113 MB and took to show 10 seconds8.

4https://developer.mozilla.org/en-US/docs/Web/JavaScript
5http://www.ecmascript.org/
6http://jquery.com/
7Compatibility can be checked at http://caniuse.com/
8System configuration: Intel(R) Core(TM) i5-2300 @ 2.80 Ghz, Windows 7 64-bits, Firefox

browser

Chapter 6 81

6.3 Component Application Visualizer

We implemented most of above mentioned techniques as the web application.
It uses ComAV tool [99] as a data source. ComAV is a versatile an extendible
platform for visualization and reverse engineering of component-based applica-
tions.

It offers the possibility to use multiple component models (currently OSGi,
EJB 3 and SOFA 2 are supported) and different visualization styles. It uses
component-model independent data format to store a reverse engineered struc-
ture of component-based applications and as an input for any visualization
plug-in. Its architecture is illustrated in Figure 6.25.

Figure 6.25: Architecture of ComAV Tool [99]

6.4 CoCAEx Application Internal Data Flow

The CoCAEx tool is able to load and visualize the components reverse-
engineered by the ComAV tool. A user first picks component on a local machine
and uploads them to the server. The ComAV tool creates the model of the ap-
plication and the CoCAEx tool shows the application diagram in the webpage.

Figure 6.26 shows a data flow between ComAV and CoCAEx and CoCAEx’s
client and server parts. While CoCAEx server emits raw component data to
ComAV and receives reverse-engineered models, the CoCAEx client provides
model’s visualization and user interaction. Reverse-engineered models are sent
from the server to a web browser client in JSON format9.

9http://json.org/

Chapter 6 82

Figure 6.26: CoCAEx Architecture

Chapter 7

Evaluation of the Proposed
Approach

This chapter is based on a paper submitted to publication in Journal of Visual
Languages and Computing.

In order to find out to what degree of interactivity is useful or which techniques
used in CoCAEx approach are most beneficial for shortening the time needed
for exploring the structure of complex component-based applications, we per-
formed a controlled user study. This section provides the details of its goal and
mechanics, while the following sections describe and discuss the results.

It discusses the state-of-the-art standard UML tool approach as a baseline and
our new approach described in this thesis. While our approach reduces visual
clutter, this comes at the cost of hiding information about the actual inter-
faces used between the components. We overcome this problem via provided
interactivity.

7.1 Baseline Approach

Typical features for state-of-the-art approaches are scrolling, panning, zooming,
search of filtering. While it makes navigation better than on the paper, it
still relies on the statical nature of a diagram keeping its original pros and
cons. Therefore, one of the state-of-the-art UML tools should be selected to
objectively investigate its usability; this is not an easy task as there are a lot
of tools with large (and not fully comparable) sets of features.

For the evaluation of our approach, from the currently most used tools (such
as Enterprise Architect[5], MagicDraw[7], IBM Rational Software Architect[9],
Visual Paragigm[10]) we chose IBM Rational Software Architect (RSA). The
reason for selecting RSA is that it can be considered as the most advanced,
industry-strength tool with a lot of additional features and widely used by
the biggest software houses. In other words, we decided to choose the most
challenging competitor to compare with CoCAEx.

83

Chapter 7 84

Figure 7.1: An Outline and Properties View of IBM Rational Software Architect

Besides all standard features included in other tools, RSA supports some ad-
vanced ones that allow users to manipulate the diagram, like changing the layout
of nodes, changing the line routing and modifying the look of components and
interfaces. Another added value is in its “properties view” displayed at the
bottom of the screen; see Figure 7.1. This view shows all the details about
components and relations and, most importantly, can be used to navigate to
related components. For example, the “Relationships” tab shows a list of all
elements that use or are used by a given component. This list clearly specifies
which kind of relation is used and which components are related. Each relation
line contains a link which can be used for acquiring more information about the
line.

7.2 User Study

This section provides the details about the goal and mechanics of the performed
user study.

7.2.1 Goal of the Study

This study evaluates whether it is faster to analyse the structure of component-
based applications interactively with the CoCAEx notation and tool rather than
to study the structure with one of the good state-of-the-art UML tool, in par-
ticular RSA. Our null hypothesis is that the user performance is approximately
the same. This knowledge of the effects of the approach is important because
the level of interactivity used in CoCAEx is high and could negatively affect the

Chapter 7 85

user’s performance while he/she collects multiple detailed information, specifi-
cally because a lot of this information is hidden and revealing it requires user
interaction.

In the study we are using two different tools for experiments. Ideally, our
notation as well as standard UML notation would be tested in one tool to use
exactly the same look and feel for both notations as well as the same basic
framework of user interaction. However, this was not possible as CoCAEx
cannot be switched to standard UML notation and our notation is obviously
not implemented in RSA. Integration of one of the notations to the opposite
tool is technically difficult. For that reason, we decided to perform the study
with two tools and mitigate the possible problems caused by their differences
by a careful design of the experiment procedure.

The study simulated the activities performed during one step of architecture
analysis. These activities are focused on collecting knowledge about compo-
nents’ features, dependencies and overall context consisting of related compo-
nents. The concrete set of tasks used in the study, which was based on those
activities, is discussed thoroughly further below.

7.2.2 Participants

Twelve participants were recruited from two different universities. All partici-
pants were young software engineers and all were academics or Ph.D. candidates
(the use of academics and Ph.D. candidates was encouraged by Sensalire et
al. [94]). All were proficient users of computers and had sufficient knowledge of
UML to fully understand the presented diagrams and they had also proficiency
in analysis of component-based structures and applications.

7.2.3 Apparatus

The hardware used in the study consisted of standard PC (Intel Core i5 at 2.8
Ghz with 8GB RAM), 24 inches LCD display (resolution 1920×1080 pixels), PC
keyboard and optical mouse with 2 buttons, running Windows 7. Participants
used RSA (version 8.0.4) and CoCAEx tools (version 0.3) in the study. Both
tools were running smoothly on the selected hardware.

During the study, users were analysing the Common Component Modeling Ex-
ample application (CoCoME) [91] – an information system for supermarket
chains developed originally with the aim of comparing different approaches to
component-based software modelling. The CoCoME application, which repre-
sents a medium-size application, consists of about 40 components divided into
three main parts. First is a cash desk, including barcode scanners, credit card
readers, etc. The second part is a store back office server and a store client.
Finally, the chain part consists of an enterprise server and client applications.
For the purposes of the test we have used our own implementation of CoCoME
(available at [8]) in the OSGi component model [86] – the diagrams in Figures

Chapter 7 86

7.2 and 5.5 visualize the structure of this CoCoME implementation in CoCAEx
and UML, respectively.

Figure 7.2: CoCoME Application Shown in CoCAEx

The UML diagram (in RSA) of the CoCoME application can be seen in Fig-
ure 5.5. There are components containing names, additional details and large
number of non-clustered connections. If we compare this Figure to CoCoME
shown in CoCAEx application (in Figure 7.2), we can see that interface clus-
tering used in CoCAEx reduced the number of connections. Also details of
components hiding saves space in the diagram area.

7.2.4 Design

The study was organized as one factor (with two levels) within-subject design.
The independent variable was the used analytical tool. The order of tools was
counter balanced and the group effect (asymmetrical transfer of skills from tool
one to tool two) was evaluated.

The main measure was speed, measured as a number of seconds needed to
accomplish each task.

7.2.5 Procedure

The test was performed at two locations with the same procedure. At each
location, the experiment was performed in a dedicated room where participants
were not disturbed. Before the experiment was started, participants adjusted

Chapter 7 87

the position of the display and the mouse to feel comfortable.

The moderator of the experiment first explained the user interface of the first
tool. The experiment began with a training session. In the training session
participants were asked to accomplish five tasks very similar to those they will
perform in the actual experiment, but using visualized structure of different
small-size application. During the training session, the moderator helped par-
ticipants to accomplish all tasks if necessary. The goal was to let participants
get familiar with the first approach, get used to the experiment procedure and
minimize any learning effects. Specifically, we focused on minimization of im-
pact of different complexity of tools on the results of the study. Namely, in case
of RSA, we gave hints to users of what features they will need in the study. This
should prevent a situation when the user gets lost in wide amount of features
provided by RSA. The training lasted 15-20 minutes and it ended when the
participant felt confident and familiar with both tools and able to perform all
types of tasks used in this user study.

Training was followed by the experiment session with the first tool. During the
experiment session, participants were asked to proceed as quickly and accurately
as possible. Between each task, participants were allowed to take a short break.
After the sessions with the first tool the same procedure was repeated for the
second tool. The whole study lasted about 1 hour.

Participants accomplished five tasks. These were given to participants as fol-
lows:

T1 – Which components use interfaces provided by CocomeData-
Impl? The task was focused on analysis of the parts of the system which
will be influenced if some particular component is changed.

T2 – Which components are not from CoCoME core (are third
party)? The task was focused on analysis of the system structure, mainly
discovery of the core of the system and usage of the third party compo-
nents in the system.

T3 – Which packages need CocomeDataImpl from CocomeData?
The task was focused on analysis of the relation between two components
in the system.

T4 – Which components do not require or provide interfaces to
any other components (are unconnected)? The task was focused
on analysis of unconnected components that are suspicious, because they
are probably using some non-standard way of communication with other
components.

T5 – Which components require or provide interfaces to any of
CashDesk components in CoCoME? The task was focused on analy-
sis how a particular part (usually feature) of the system is connected with
the rest of the system.

Chapter 7 88

The tasks were defined based on our experience with the structure of
component-based applications and based on hints obtained during interviews
with several software engineers from local software companies. Individual tasks
are typical tasks used iteratively in global task that deals with the question of
what is the structure of application and how are particular components inte-
grated in the CoCoME application. One has to find out what these components
offer and require and uncover their ties to other components, simulating the ac-
tivities performed during one step of the architecture analysis.

Two questionnaires were given to participants during the test. At the beginning
of the test, participants were asked about the experience with UML diagrams
and UML editors. After the data collection, participants completed a question-
naire investigating their subjective judgment about the used approaches.

7.3 Results and Discussion

This section provides detailed results of the study for each approach and their
comparison. As the reader may notice, the results differ greatly depending on
the participant. This was caused by individual perception, and orientation abil-
ities. A lot of attention was paid to preparing all participants thoroughly, see
Section 7.2.5. Task completion times of all participants for each task and basic
statistics of individual tasks are presented in Tables 7.1, 7.2, 7.3, 7.4. Compar-
ison of mean times of individual tasks is in Figure 7.3. Detailed comparison of
average, median, minimal and maximal times is in Figure 7.4.

For statistical analysis of the results we have used the repeated measures
ANOVA (ANalysis Of VAriance) [74]. We report the results in F-statistics no-
tation FX,N = V, p < α where X is number of factors considered in the study,
N is number of participants in between-subject design (note that correction is
applied in our case due to the within-subject design). If value V ≤ 1 then it is
impossible for the means of the tested approaches to be significantly different.
The amount V rising above 1 is an indication of the size of the difference in
the means of the tested approaches. If the null hypothesis is true then p is the
probability of obtaining the observed data. In other words, if the value of p
is lower than confidence level α (α is typically 0.05) then the difference in the
means of the tested approaches are unlikely to occur in the view of the null
hypothesis.

From this follows that we can reject the null hypothesis when V > 1 and
p < 0.05. When V ≤ 1 or p ≥ 0.05 we report that the difference in means of
the tested approaches is not significant (shortened to “ns”), in such case the
null hypothesis cannot be rejected.

In the following subsections we evaluate the null hypothesis separately for each
task. Later, in the summary, we evaluate the null hypothesis for all tasks
together.

Chapter 7 89

7.3.1 Task T1 – Which components use interfaces provided by
CocomeData-Impl?

There was a significant difference in speed between RSA and CoCAEx (F1,11 =
5.758, p < .05). The average speed for RSA was 67s and for CoCAEx 29.75s
(2, 25× faster than RSA). The group effect was not detected.

In both cases, the users searched for the component and then they analysed its
provided interfaces. For RSA, the analysis of provided interfaces took longer
time, while for CoCAEx this information was immediately visible, when the
component was selected.

7.3.2 Task T2 – Which components are not from CoCoME core
(are third party)?

There was no significant difference in speed between RSA and CoCAEx (F1,11 =
2.327, ns). The average speed for RSA was 32.25s (1, 34× faster than CoCAEx)
and for CoCAEx 43.17s.

This was the only task where RSA was faster than CoCAEx, but not signif-
icantly. With CoCAEx, the users were searching for the components in the
graph, which took them additional time to skim through the graph. On the
other hand, with RSA, the users searched for the components in the list in
Outline window, cf. Figure 7.1, which was very quick.

7.3.3 Task T3 – Which packages need CocomeDataImpl from
CocomeData?

There was a significant difference in speed between RSA and the CoCAEx
(F1,11 = 12.954, p < .05). The average speed for RSA was 97.83s and for
CoCAEx 25.17s (3.89× faster than RSA). The group effect was not detected.

In this task CoCAEx allowed fast analysis of imported/exported packages be-
tween two components, which is not immediately visible in the graph, but it
is shown as popup when mouse is over the interconnection between two com-
ponents. In RSA, participants usually used the project tree and compared full
lists of exported/imported packages.

7.3.4 Task T4 – Which components do not require or provide
interfaces to any other components (are unconnected)?

There was a significant difference in speed between RSA and CoCAEx (F1,11 =
14.905, p < .05). The average speed for RSA was 121.83s and for CoCAEx 8.58s
(14.20× faster than RSA). The group effect was not detected.

In this task the difference in performance between RSA and CoCAEx was the
biggest. This was due to the fact that with RSA the participants had to find

Chapter 7 90

Participant T1 T2 T3 T4 T5 All

P1 00:33 00:39 01:34 01:07 03:47 07:40

P2 02:03 00:30 01:45 01:38 04:55 10:51

P3 01:05 00:30 01:18 01:47 03:24 08:04

P4 01:09 00:32 00:28 03:02 03:23 08:34

P5 03:35 00:30 04:59 07:06 04:37 20:47

P6 00:54 00:26 00:21 01:02 03:26 06:09

P7 00:26 00:32 00:27 01:53 03:22 06:40

P8 00:50 00:32 01:57 00:55 03:36 07:50

P9 00:45 00:49 02:15 01:43 03:52 09:24

P10 00:57 00:27 01:31 01:17 03:31 07:43

P11 00:40 00:23 01:34 01:41 04:15 08:33

P12 00:27 00:37 01:25 01:11 03:40 07:20

Table 7.1: Time [min:sec] Measured for Each Participant and Each Task in
RSA

out the unconnected components manually, however CoCAEx allowed semiau-
tomatic extraction and listing of all unconnected components in the panel on
the right.

7.3.5 Task T5 – Which components require or provide inter-
faces to any of CashDesk components in CoCoME?

There was a significant difference in speed between RSA and CoCAEx (F1,11 =
516.403, p < .05). The average speed for RSA was 229s and for CoCAEx 69.08s
(3.31× faster than RSA). The group effect was not detected.

This was the most complex task which focused on searching of multiple
CashDesk components and analysis of interface connections between these com-
ponents and rest of the components in the CoCoME application. With RSA,
this task required searching of CashDesk components in the graph and iteration
through their provided/required interfaces. With CoCAEx, there were two ap-
proaches how to achieve this task, both of them took similar time. In the first
case, the participants analysed CashDesk components’ interfaces in the graph,
similarly as in the Task 1. Alternatively, participants extracted CashDesk com-
ponents to the SeCo area (right sidebar) into one group or individually, and then
highlighted all components connected through required/provided interfaces.

7.3.6 Subjective Evaluation

We also asked participants about the orientation in the visualized structure of
the CoCoME application, the level of comfort while working with the tools, and
any other suggestions.

All participants described the orientation in structure of the CoCoME applica-

Chapter 7 91

Participant T1 T2 T3 T4 T5 All

P1 00:23 00:29 01:00 00:30 01:06 03:28

P2 00:26 00:41 00:31 00:12 02:11 04:01

P3 00:23 00:34 00:28 00:05 01:39 03:09

P4 00:16 00:46 00:11 00:05 00:58 02:16

P5 00:41 01:51 00:32 00:11 01:52 05:07

P6 00:25 00:55 00:15 00:05 00:39 02:19

P7 00:46 00:29 00:22 00:10 00:47 02:34

P8 00:22 00:49 00:23 00:05 00:57 02:36

P9 00:38 00:50 00:26 00:05 00:58 02:57

P10 00:14 00:23 00:21 00:06 00:54 01:58

P11 00:53 00:18 00:13 00:04 00:41 02:09

P12 00:30 00:33 00:20 00:05 01:07 02:35

Table 7.2: Time [min:sec] Measured for Each Participant and Each Task in
CoCAEx.

Measure T1 T2 T3 T4 T5 All

Mean 01:07 00:32 01:38 02:02 03:49 09:08

Median 00:52 00:31 01:32 01:39 03:38 07:57

Min 00:26 00:23 00:21 00:55 03:22 06:09

Max 03:35 00:49 04:59 07:06 04:55 20:47

Std dev. 00:51 00:07 01:10 01:37 00:30 03:42

Table 7.3: Sum of Times for all Tasks and Statistical Measures in RSA.

Measure T1 T2 T3 T4 T5 All

Mean 00:30 00:43 00:25 00:09 01:09 02:56

Median 00:26 00:38 00:23 00:05 00:58 02:36

Min 00:14 00:18 00:11 00:04 00:39 01:58

Max 00:53 01:51 01:00 00:30 02:11 05:07

Std dev. 00:12 00:23 00:12 00:07 00:28 00:52

Table 7.4: Sum of Times for All Tasks and Statistical Measures CoCAEx.

Chapter 7 92

tion visualized in our notation as better. Further, all participants stated that
it was more comfortable to solve all tasks in CoCAEx than in RSA. Four par-
ticipants stated that the visual highlighting of the components related to the
selected component significantly improved their orientation in the structure of
the application. Three participants suggested to allow the selection of more
than one component and visually highlight components related to all selected
components. Two participants would like to use the same approach as used in
CoCAEx for components also for classes and class diagrams.

7.3.7 Observation

The measured times needed to accomplish each task by each participant demon-
strate that the tasks T1, T3, T4 and T5 were accomplished on average signifi-
cantly faster in the CoCAEx tool than in RSA. The only exception is the task
T2, which the participants accomplished on average faster with RSA. Overall
speed comparison showed that the tasks with the CoCAEx tool were accom-
plished on average 3× faster then with RSA; see Figure 7.3. In the majority
of tasks, the maximum values in CoCAEx were lower than the median values
for RSA; see Figure 7.4. These results show that even the slower CoCAEx
users were faster than at least half of the users in RSA for majority of tasks.
The median values are averagely placed at first fifth of the minimum-maximum
range.

The results indicate that the structure of the CoCoME application visualized in
our notation is less cluttered which leads to faster orientation in the structure
of the application. Further, the visual highlighting and interaction features of
components related to the selected component provided by CoCAEx allowed
participants to visually detect the related components much faster.

From these facts, we can conclude that the abilities to interact with the visual-
ized structure of component-based software systems and to provide visual cues
to ease identification of related components is better with CoCAEx. There was
a significant difference in speed between RSA and CoCAEx for summed accom-
plished task times (F1,11 = 46.581, p < .05). Results for individual and summed
accomplished task times allows us to reject the null hypothesis, i.e. that both
tools provide the same speed of analysis of component-based application.

From the subjective point of view the participants perceived the orientation in
our notation as better in comparison to the standard UML notation. They also
subjectively perceived comfort of work in CoCAEx as better in comparison to
RSA. All participants also answered that CoCAEx provides a clearer diagram
that is more readable and understandable. They mentioned two main reasons:
highlighting and simplicity of use.

There is a combination of two factors influencing participants’ performance
in each task, interactivity of tools and visual notation. This fact means that
we cannot exactly separate impact of interactivity and the notation. As a
consequence, we cannot be sure whether better performance in certain tasks

Chapter 7 93

was caused more by the interactivity or by the notation. For instance, we could
think that a task was performed faster due to an interactive feature (e.g. usage
of interface clustering) while in fact a better colour encoding or contrast helped
a user more.

00:00

00:43

01:26

02:10

02:53

03:36

04:19

T1 T2 T3 T4 T5

Ti
m

e
 [

m
m

:s
s]

Task

RSA

Cocaex

Figure 7.3: Comparison of Average Times Needed to Accomplish the Tasks in
RSA and in CoCAEx

00:00

01:26

02:53

04:19

05:46

07:12

T1 T2 T3 T4 T5

Ti
m

e
 [

m
m

:s
s]

Task

RSA

Cocaex

Figure 7.4: Minimum and Maximum Times with Marked Medians (black lines)
Needed to Accomplish the Tasks in RSA and in CoCAEx

Chapter 7 94

7.4 Lessons Learned

In this section we summarize observations regarding to component software
visualization research based on current experience.

As stated in Section 6.2, we originally wanted to use a framework for visu-
alization implementation. But closer look revealed problems connected with
customization of third-party software. There was a time needed to understand
a framework and even simple customizations were more difficult than without
using it. On the other hand, features offered by frameworks were relatively
quickly implemented from a scratch.

While implementing CoCAEx we verified that layout support is needed during
the initial load of the diagram, but it is not beneficial for users to apply it after
each change (e.g., component removal) in a diagram. It confuses a user and
makes creation of mental model difficult.

While performing the user study we discovered that even users are well trained
and able to use all necessary features of particular tool, they tend to use the
features, which are easy to use (such as interactive highlighting), rather than
complex ones.

Chapter 8

Conclusion

In this thesis, we suggested several criteria for evaluating tools targeted at visu-
alization of component-based software. These criteria can be used on existing
visualization tools as we presented on the example of IBM Rational Software
Architect, which was evaluated with quite satisfactory results. On the other
hand, this case shows that even advanced visualization tools currently address
only a few of the needs related to component visualization.

The proposed criteria can thus also serve as a guideline for efforts towards better
visualization of component-based applications. Currently the main problem
behind the lack of such efforts can be due to relatively low usage of components.
However, their importance continues to rise and future visualization tools should
address these topics to a broader extent.

Advanced visualization techniques were described in this thesis. They help re-
duce the amount of lines in UML component diagram of large applications,
by removing the selected components from the diagram area. It uses SeCo
where the selected components are shown and symbolic delegates, which repre-
sent the connections instead of lines. A viewport technique was also described.
This technique is used for showing all the information about interfaces for se-
lected group of components right in the diagram area. The novel integration
of above mentioned techniques was proposed. These techniques map a group
of components to the content of a viewport. Viewport symbols for graphical
representation of groups were also described. These symbols save a space in the
diagram area. Appropriate interactions were proposed for all these techniques.

Above mentioned techniques are, among other benefits, useful in the reverse
engineering process when the user is interactively getting familiar with the
whole diagram. It helps with creating the mental model of the application by
easing the process of clusters creation. This is the reason why these techniques
use a ComAV platform, to perform reverse engineering of applications of various
component models.

We also provided a proof the present component applications contain com-
ponents with dense connections and thus the proposed technique would help
reduce the clutter by moving them to the SeCo.

95

Chapter 8 96

Most of the presented techniques are currently implemented in CoCAEx tool.
The tool is web-based (HTML5, CSS3, JavaScript, jQuery and Java EE tech-
nologies were used) to be easy to use and provide even shorter reverse engineer-
ing process.

We performed a complete user study that compared performance in component
diagram analysis tasks using two different component visualization approaches
– experimental notation and UML. The experimental notation was used within
the CoCAEx tool, which is implemented as a research proof of the concept, while
UML is supported by a lot of commercial tools. Rational Software Architect was
chosen to represent these tools because of its ability to easily study relations,
which was most needed in this experiment.

In the user study, 12 participants were tested in a within-subject test with both
tools. The participants accomplished 5 tasks with each tool. The main measure
was the speed measured as the time needed to accomplish each task. We also
collected subjective evaluation of the tool usage.

The data obtained shows that participants working with the CoCAEx tool are
approximately 3× faster than those using UML in the RSA tool, though the
RSA tool was faster in one task. The CoCAEx tool performed better in the
remaining four tasks. We have discussed the reasons and showed the way of
how different tasks could affect the overall performance.

Results of this user study therefore confirm that advanced visualization with a
high level of interactivity is beneficial for users. What is more, the increased
interaction required to uncover encapsulated information does not introduce
significant slowdown.

The topic of thesis is still good research problem to continue a future work in
this field and can be possibly generalized into other domains.

8.1 Evaluation of Thesis Goals

The main goal of the thesis was (as stated in Section 1.3):

Bring better and more effective ways of large component software vi-
sualization to reduce the time needed to understand the application
structure.

We introduced novel techniques design, provided their implemention and per-
formed the evaluation, which shows that our approach reduced the time of
reverse engineering process.

Two sub-goals and one approach defined in Section 1.3 were satisfied as stated
below:

• sub-goal: ... not to modify the visual representation of UML
component diagram ... - The visual syntax was modified only for

Chapter 8 97

added elements (groups, viewports) and in situations where interactivity
is used (interface clustering, highlighting dependencies). Users recognized
the syntax of components itself clearly, because it was not changed.

• sub-goal: Visualize a sufficient amount of detail to be able to
exactly identify individual components. - Individual component
contains its name in the diagram area as well as in SeCo. Only exceptions
are unconnected components and collapsing a group in diagram area.
In the first case components are considered as less important and thus
hidden. In the latter case is its hiding selected intentionally (by collapsing
a group) by user to hide unwanted details.

• approach: We will provide ways to hide less important details and
show them on demand. - Interactivity is applied for interface cluster-
ing, groups collapsing, unconnected components, tracing dependencies,
etc. As shown in Chapter 7, the interactivity speeds-up the tasks.

8.2 Future Work

The whole concept of used techniques is still evolving, which means that there
are some techniques designed, but not yet implemented. Part of the future
work will thus focus on implementation of such techniques, as described below.

We would like to improve the initial load presentation to be able to show a user
simplified diagram for the first sight. For this purpose we would like to integrate
clustering and automated removal of highly connected components. The former
would allow forming the groups in an automated way and thus reducing the time
now needed to form them. Also the optimal set of components, which should be
removed to SeCo should be identified, based on the ideas presented in 8.2.1. The
latter would reduce a need to select the most connected components manually
based on the personal visual impression. It would also allow us to apply the
layout on the graph, which visual clutter has been already reduced by the most
connected components. Current state of this concept is described in 8.2.1.

Another visualization challenge is clustered interfaces exploration. There can
be hundreds of interfaces hidden in one symbol. Showing them in simple list
requires scrolling, which can confuse a user. Results of such research have large
amount of applications in other domain, because a list element is widely used.

The viewport technique should be also fully implemented in the future, to allow
us evaluate its impact.

There can be more components missing the same required interface. Visualiza-
tion can help find unsatisfied dependencies directly in the diagram and reduce
the clutter caused by their multiple occurrences by using advanced visualization
techniques.

We believe that the presented ideas can be generalized to be used in other
domains, where one suffers from visual clutter caused by the large number of

Chapter 8 98

nodes and connection lines. Some of these are:

• bank transfers graphs,

• social networks graphs,

• server interconnections graphs.

Thus one part of the future work will be to provide examples of these applica-
tions including the technique adaptations.

8.2.1 Automated Removal of Highly Connected Components

It is clear that removing highly connected components helps to reduce a visual
clutter in the diagram area (ignoring now the fact we lose some information).
One of the research challenges in this area is how to find an optimal selection of
components to be moved to SeCo in an automated way (for any given diagram).
We would like to maximize the clutter reduction and minimize the number of
components in SeCo.

In order to assess the degree of diagram clutter reduction, we need to define
a function, which describes effectivity of each selection. Having such function
would enable us to find its global optimum and thus determine or at least
verify, whether we found the right selection. When constructing such function
we should identify influencing factors, which could later be converted into its
parameters.

There are many factors to be considered (some of them are have been pro-
posed in [34]) when we want to formalize this problem. Some of them are even
dependent on each other. The main factors related to our problem are:

1. angle of lines crossings,

2. transparency of particular element,

3. number of components,

4. number of lines,

5. lines length,

6. number of lines crossings,

7. number of lines crossing the nodes.

Calculating an effect of removing a particular selection of components we have
to keep in mind, that it is valid only for current node layout. The node layout
is also highly contributing factor for clutter reduction. For this section, we will
consider a layout as given. Determining precise function for above mentioned
factors is very complex problem. There are several options for solving such

Chapter 8 99

problem. First we can analyse the effect of these factors separately and then
analyse it again when combining them. This would require relatively large
number of user studies. Second, we could establish a set of metrics for visual
clutter that would allow us to perform the effect measurement in an automated
way. Thus we would be able to determine the contribution of individual factors
to the overall clutter, as well as desired (non-trivial) function. The problem
is that such metrics, which are reliable and solid, are not widely established.
Their identification would also be an interesting research challenge suitable for
future work.

By increasing first two factors, the clutter is lowered. On the other for factors
3.-7. the clutter is reduced by their decreasing. For instance, decreasing the
number of components in the diagram area and thus moving them to SeCo
obviously decreases the visual clutter in the diagram area.

Increasing the number of components in SeCo does not increase the visual
clutter much for first few components. But when the number crosses the limit
of visible components in SeCo and a user is forced to use a scrollbar, then
the usability is lowered. We can consider this usability complication as similar
to one a user has when having a diagram cluttered. Considering these effects
caused by number of removed components from SeCo to overall usability of the
whole application, we could establish a function. Implementing such function
could provide us a possibility to find suitable solution for the clutter reduction.

Bibliography

[1] Metricview, 2011. http://swerl.tudelft.nl/twiki/pub/Main/

BENEVOL2006program/ChristianLange.pdf, Accessed: 2014-09-29.

[2] Handbook of graph drawing and visualization, 2012. http://www.cs.brown.

edu/~rt/gdhandbook/, Accessed: 2014-09-29.

[3] Java universal network/graph framework, 2012. http://jung.sourceforge.

net/, Accessed: 2014-09-29.

[4] The stony brook algorithm repository, 2012. http://www.cs.sunysb.edu/

~algorith/implement/Java.shtml, Accessed: 2014-09-29.

[5] Enterprise architect, 2014. Accessed: 2014-09-29.

[6] Klay layered layout, 2014. http://rtsys.informatik.uni-kiel.de/

confluence/display/KIELER/KLay+Layered, Accessed: 2014-09-29.

[7] Magicdraw, 2014. Accessed: 2014-09-29.

[8] CoCoME implementation in OSGi, 2014. Accessed: 2014-09-29.

[9] IBM Rational Software Architect, 2014. Accessed: 2014-09-29.

[10] Visual paragigm, 2014. Accessed: 2014-09-29.

[11] yworks layouts gallery, 2014. http://www.yworks.com/en/products_yfiles_

practicalinfo_gallery.html, Accessed: 2014-09-29.

[12] Jan Øyvind Aagedal. Quality of Service Support in Development of Distributed
Systems. PhD thesis, University of Oslo, 2001.

[13] Sazzadul Alam and Philippe Dugerdil. EvoSpaces Visualization Tool: Exploring
Software Architecture in 3D. In WCRE ’07: Proceedings of the 14th Working
Conference on Reverse Engineering, pages 269–270, Washington, DC, USA, 2007.
IEEE Computer Society.

[14] Felix Bachmann, Len Bass, Charles Buhman, Santiago C. Dorda, Fred Long,
John Robert, Robert Seacord, and Kurt Wallnau. Volume ii: Technical con-
cepts of component-based software engineering, 2nd edition. Technical report,
CMU/SEI - Carnegie Mellon University/Software Engineering Institute, 2000.

[15] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The palladio component
model for model-driven performance prediction. Journal of Systems and Software,
82(1):3 – 22, 2009. Special Issue: Software Performance - Modeling and Analysis.

[16] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The palladio component
model for model-driven performance prediction. Journal of Systems and Software,
82(1):3 – 22, 2009. Special Issue: Software Performance - Modeling and Analysis.

100

http://swerl.tudelft.nl/twiki/pub/Main/BENEVOL2006program/ChristianLange.pdf
http://swerl.tudelft.nl/twiki/pub/Main/BENEVOL2006program/ChristianLange.pdf
http://www.cs.brown.edu/~rt/gdhandbook/
http://www.cs.brown.edu/~rt/gdhandbook/
http://jung.sourceforge.net/
http://jung.sourceforge.net/
http://www.cs.sunysb.edu/~algorith/implement/Java.shtml
http://www.cs.sunysb.edu/~algorith/implement/Java.shtml
http://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/KLay+Layered
http://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/KLay+Layered
http://www.yworks.com/en/products_yfiles_practicalinfo_gallery.html
http://www.yworks.com/en/products_yfiles_practicalinfo_gallery.html

Bibliography 101

[17] Benjamin B. Bederson and Angela Boltman. Does animation help users build
mental maps of spatial information? In Proceedings of the 1999 IEEE Symposium
on Information Visualization, INFOVIS ’99, pages 28–, Washington, DC, USA,
1999. IEEE Computer Society.

[18] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins.
Making components contract aware. Computer, 32(7):38–45, 1999.

[19] Antoine Beugnard, Jean-Marc Jézéquel, and Noël Plouzeau. Contract aware
components, 10 years after. In Javier Cámara, Carlos Canal, and Gwen Salaün,
editors, WCSI, volume 37 of EPTCS, pages 1–11, 2010.

[20] Roberto Almeida Bittencourt and Dalton Dario Serey Guerrero. Comparison of
graph clustering algorithms for recovering software architecture module views.
In Proceedings of the 2009 European Conference on Software Maintenance and
Reengineering, CSMR ’09, pages 251–254, Washington, DC, USA, 2009. IEEE
Computer Society.

[21] Premek Brada. The cosi component model: Reviving the black-box nature of
components. In Proceedings of the 11th International Symposium on Component-
Based Software Engineering, CBSE ’08, pages 318–333, Berlin, Heidelberg, 2008.
Springer-Verlag.

[22] Franz J. Brandenburg, Michael Himsolt, and Christoph Rohrer. An experimental
comparison of force-directed and randomized graph drawing algorithms. pages
76–87. Springer-Verlag, 1996.

[23] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. SOFA 2.0: Balancing ad-
vanced features in a hierarchical component model. In SERA, pages 40–48. IEEE
Computer Society, 2006.

[24] Heorhiy Byelas, Egor Bondarev, and Alexandru Telea. Visualization of areas of
interest in component-based system architectures. In Proceedings of the 32nd
EUROMICRO Conference on Software Engineering and Advanced Applications,
pages 160–169, Washington, DC, USA, 2006. IEEE Computer Society.

[25] Heorhiy Byelas and Alexandru Telea. Visualization of areas of interest in software
architecture diagrams. In Proceedings of the 2006 ACM symposium on Software
visualization, SoftVis ’06, pages 105–114, New York, NY, USA, 2006. ACM.

[26] Pierre Caserta and Olivier Zendra. Visualization of the static aspects of software:
A survey. IEEE Trans. Vis. Comput. Graph., 17(7):913–933, 2011.

[27] K. Cassell, C. Anslow, L. Groves, P. Andreae, and S. Marshall. Visualizing
the refactoring of classes via clustering. In Mark Reynolds, editor, Australasian
Computer Science Conference (ACSC 2011), volume 113 of CRPIT, pages 63–72,
Perth, Australia, 2011. ACS.

[28] Chaomei Chen. Graph drawing algorithms. In Information Visualization, pages
65–87. Springer London, 2006. 10.1007/1-84628-579-8 3.

[29] Yves Chiricota, Fabien Jourdan, and Guy Melançon. Software components cap-
ture using graph clustering. In Proceedings of the 11th IEEE International Work-
shop on Program Comprehension, IWPC ’03, pages 217–. IEEE Computer Soci-
ety, 2003.

[30] Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. A review of
overview+detail, zooming, and focus+context interfaces. ACM Comput. Surv.,
41(1):2:1–2:31, January 2009.

Bibliography 102

[31] Ivica Crnkovic, Michel Chaudron, Severine Sentilles, and Aneta Vulgarakis. A
classification framework for component models. In Proceedings of the 7th Con-
ference on Software Engineering and Practice in Sweden, October 2007.

[32] Ivica Crnkovic;, Severine Sentilles, Aneta Vulgarakis, and Michel R.V. Chaudron.
A classification framework for software component models. IEEE Transactions
on Software Engineering, 37:593–615, 2011.

[33] Tim Dwyer, Bongshin Lee, Danyel Fisher, Kori Inkpen Quinn, Petra Isenberg,
George Robertson, and Chris North. A comparison of user-generated and auto-
matic graph layouts. IEEE Transactions on Visualization and Computer Graph-
ics, 15(6):961–968, November 2009.

[34] G. Ellis and A. Dix. A taxonomy of clutter reduction for information visualisa-
tion. Visualization and Computer Graphics, IEEE Transactions on, 13(6):1216
–1223, nov.-dec. 2007.

[35] Jean-Marie Favre and Humberto Cervantes. Visualization of component-based
software. In Proceedings of the 1st International Workshop on Visualizing Soft-
ware for Understanding and Analysis, pages 51–, Washington, DC, USA, 2002.
IEEE Computer Society.

[36] X. Franch. Systematic formulation of non-functional characteristics of software.
In Proceedings of International Conference on Requirements Engineering (ICRE),
pages 174–181, 1998.

[37] Mathias Frisch and Raimund Dachselt. Off-screen visualization techniques for
class diagrams. In Proceedings of the 5th international symposium on Software
visualization, SOFTVIS ’10, pages 163–172, New York, NY, USA, 2010. ACM.

[38] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-
directed placement. Softw. Pract. Exper., 21(11):1129–1164, November 1991.

[39] Emden Gansner, Yifan Hu, Stephen Kobourov, and Chris Volinsky. Putting
recommendations on the map: visualizing clusters and relations. In Proceedings
of the third ACM conference on Recommender systems, RecSys ’09, pages 345–
348, New York, NY, USA, 2009. ACM.

[40] Emden R. Gansner, Yifan Hu, Stephen C. North, and Carlos Eduardo Schei-
degger. Multilevel agglomerative edge bundling for visualizing large graphs. In
Giuseppe Di Battista, Jean-Daniel Fekete, and Huamin Qu, editors, PacificVis,
pages 187–194. IEEE, 2011.

[41] Martin Glinz. On non-functional requirements. In Requirements Engineering
Conference, pages 21–26, Los Alamitos, CA, USA, 2007. IEEE Computer Society.

[42] Xiaohui Gu, Klara Nahrstedt, Wanghong Yuan, Duangdao Wichadakul, and
Dongyan Xu. An xml-based quality of service enabling language for the web.
Journal of Visual Language and Computing, Special Issue on Multimedia Lan-
guage for the Web, 13:61–95, 2001.

[43] Stefan Hachul and Michael Jünger. Large-graph layout algorithms at work: An
experimental study. Journal of Graph Algorithms and Applications, 11(21):345–
369, 2007.

[44] Hans Hansson, Mikael Akerholm, Ivica Crnkovic, and Martin Tarngren.
SaveCCM - a component model for safety-critical real-time systems. In EU-
ROMICRO, pages 627–635. IEEE Computer Society, 2004.

Bibliography 103

[45] David Harel and Yehuda Koren. A fast multi-scale method for drawing large
graphs (full version). In Journal of Graph Algorithms and Applications, pages
183–196. Springer-Verlag, 2000.

[46] Jeffrey Heer, Michael Bostock, and Vadim Ogievetsky. A tour through the visu-
alization zoo. Commun. ACM, 53(6):59–67, June 2010.

[47] Michael Himsolt. Comparing and evaluating layout algorithms within graphed.
J. Visual Languages and Computing, 6:255–273, 1995.

[48] Ric Holt. Software architecture as a shared mental model. In Proceedings of
International Workshop on Program Comprehension, 2002.

[49] Danny Holten. Visualization of Graphs and Trees for Software Analysis. PhD
thesis, Technische Universiteit Eindhoven, 2009.

[50] Danny Holten, Bas Cornelissen, and Jarke J. van Wijk. Trace visualization using
hierarchical edge bundles and massive sequence views. Visualizing Software for
Understanding and Analysis, International Workshop on, 0:47–54, 2007.

[51] Danny Holten and Jarke J. van Wijk. Force-directed edge bundling for graph
visualization. Comput. Graph. Forum, 28(3):983–990, 2009.

[52] Danny Holten and Jarke J. van Wijk. A user study on visualizing directed edges
in graphs. In Proceedings of the 27th international conference on Human factors
in computing systems, CHI 09, pages 2299–2308, New York, NY, USA, 2009.
ACM.

[53] L. Holy, J. Snajberk, and P. Brada. Lowering visual clutter of clusters in com-
ponent diagrams. In Proceedings of International Conference on Software Engi-
neering Advances, pages 304–307, Red Hook, NY, USA, November 2012. IARIA.

[54] L. Holy, J. Snajberk, and P. Brada. Visual clutter reduction for uml compo-
nent diagrams: A tool presentation. In Visual Languages and Human-Centric
Computing (VL/HCC), 2012 IEEE Symposium on, pages 253–254, Sept 2012.

[55] L. Holy, J. Snajberk, P. Brada, and K. Jezek. A visualization tool for reverse en-
gineering of complex component applications. In Software Maintenance (ICSM),
2013 29th IEEE International Conference on, pages 500–503, Sept 2013.

[56] Lukas Holy and Premek Brada. Viewport for component diagrams. In Marc J.
van Kreveld and Bettina Speckmann, editors, Graph Drawing, volume 7034 of
Lecture Notes in Computer Science, pages 443–444. Springer, 2011.

[57] Lukas Holy, Kamil Jezek, Jaroslav Snajberk, and Premek Brada. Lowering visual
clutter in large component diagrams. In Ebad Banissi, Stefan Bertschi, Camilla
Forsell, Jimmy Johansson, Sarah Kenderdine, Francis T. Marchese, Muhammad
Sarfraz, Liz J. Stuart, Anna Ursyn, Theodor G. Wyeld, Hanane Azzag, Mustapha
Lebbah, and Gilles Venturini, editors, IV, pages 36–41. IEEE Computer Society,
2012.

[58] Lukas Holy, Jaroslav Snajberk, and Premek Brada. Evaluating component archi-
tecture visualization tools - criteria and case study. In GRAPP/IVAPP, pages
737–742, 2012.

[59] Lukas Holy, Jaroslav Snajberk, and Premek Brada. Evaluation Component Ar-
chitecture Visualization Tools. In Proceedings of International Conference on
Information Visualization Theory and Applications. SciTePress, 2012.

Bibliography 104

[60] International Standard Organization (ISO/IEC). Informational technology –
product quality – part 1: Quality model. International Standard ISO/IEC 9126,
June 2001.

[61] T. J. Jankun-Kelly and Kwan-Liu Ma. Moiregraphs: radial focus+context visu-
alization and interaction for graphs with visual nodes. In Information Visual-
ization, 2003. INFOVIS 2003. IEEE Symposium on, pages 59–66, Washington,
DC, USA, Oct 2003. IEEE Computer Society.

[62] Kamil Ježek and Premek Brada. Correct matching of components with extra-
functional properties - a framework applicable to a variety of component mod-
els. In Evaluation of Novel Approaches to Software Engineering (ENASE).
SciTePress, 2011. ISBN: 978-989-8425-65-2.

[63] K. Jezek, L. Holy, and P. Brada. Static component compatibility visualisation for
various component models. In Visual Languages and Human-Centric Computing
(VL/HCC), 2013 IEEE Symposium on, pages 191–192, Sept 2013.

[64] Kamil Jezek, Premek Brada, and Lukas Holy. Enhancing OSGi with Explicit,
Vendor Independent Extra-Functional Properties. In TOOLS (50), volume 7304
of Lecture Notes in Computer Science, pages 108–123. Springer, 2012.

[65] Philip N Johnson-Laird. Mental models : towards a cognitive science of language,
inference, and consciousness / P.N. Johnson-Laird. Harvard University Press,
Cambridge, Mass. :, 1983.

[66] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Inf. Process. Lett., 31(1):7–15, April 1989.

[67] Christian Klein and Benjamin B. Bederson. Benefits of animated scrolling. In
CHI ’05 extended abstracts on Human factors in computing systems, CHI EA
’05, pages 1965–1968, New York, NY, USA, 2005. ACM.

[68] Ralf Kollman, Petri Selonen, Eleni Stroulia, Tarja Systä, and Albert Zündorf. A
study on the current state of the art in tool-supported uml-based static reverse
engineering. In Arie van Deursen and Elizabeth Burd, editors, Proceedings of the
9th Working Conference on Reverse Engineering (WCRE 2002). IEEE Computer
Society, November 2002.

[69] Adrian Kuhn, David Erni, Peter Loretan, and Oscar Nierstrasz. Software cartog-
raphy: thematic software visualization with consistent layout. J. Softw. Maint.
Evol., 22:191–210, April 2010.

[70] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley, 2002.

[71] C. F.J Lange, M. R.V Chaudron, and J. Muskens. In practice: UML software
architecture and design description. IEEE Software, 23(2):40– 46, April 2006.

[72] Kung-Kiu Lau and Vladyslav Ukis. Defining and checking deployment contracts
for software components. In Proceedings of the 9th International Symposium
on Component-Based Software Engineering, volume 4063 of LNCS, pages 1–16,
2006.

[73] Jiri Loudil. Extra-functional properties visualization, 2014.

[74] I.S. MacKenzie. Human-Computer Interaction: An Empirical Research Perspec-
tive. Elsevier Science, 2012.

Bibliography 105

[75] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R. Gansner. Using
automatic clustering to produce high-level system organizations of source code.
In Proceedings of the 6th International Workshop on Program Comprehension,
IWPC ’98, pages 45–, Washington, DC, USA, 1998. IEEE Computer Society.

[76] Fintan McGee and John Dingliana. Visualising small world graphs - agglomera-
tive clustering of small world graphs around nodes of interest. In Paul Richard,
Martin Kraus, Robert S. Laramee, and José Braz, editors, GRAPP/IVAPP,
pages 678–689. SciTePress, 2012.

[77] Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and Jason E. Rob-
bins. Modeling software architectures in the unified modeling language. ACM
Trans. Softw. Eng. Methodol., 11(1):2–57, January 2002.

[78] Philippe Merle and Jean-Bernard Stefani. A formal specification of the Fractal
component model in Alloy. Research Report RR-6721, INRIA, 2008.

[79] Mubarak Mohammad and Vasu S. Alagar. TADL - an architecture description
language for trustworthy component-based systems. In ECSA ’08: Proceedings of
the 2nd European conference on Software Architecture, pages 290–297. Springer,
2008.

[80] Daniel Moody and Jos van Hillegersberg. Evaluating the visual syntax of uml:
An analysis of the cognitive effectiveness of the uml family of diagrams. In
Dragan Gasevic, Ralf Lammel, and Eric Van Wyk, editors, Software Language
Engineering, volume 5452 of Lecture Notes in Computer Science, pages 16–34.
Springer Berlin Heidelberg, 2009.

[81] Daniel Moody and Jos van Hillegersberg. Evaluating the visual syntax of UML:
An analysis of the cognitive effectiveness of the UML family of diagrams. In
Dragan Gasevic, Ralf Lammel, and Eric Van Wyk, editors, Software Language
Engineering, volume 5452 of Lecture Notes in Computer Science, pages 16–34.
Springer Berlin / Heidelberg, 2009.

[82] S. Morris and G. Spanoudakis. Uml: an evaluation of the visual syntax of the
language. In System Sciences, 2001. Proceedings of the 34th Annual Hawaii
International Conference on, pages 10 pp.–, Washington, DC, USA, Jan 2001.
IEEE Computer Society.

[83] Object Management Group. UML Superstructure Specification, 2009.

[84] OMG. CORBA components. OMG Specification formal/02-12-06, Object man-
agement Group 2006, 2006.

[85] OMG. UML 2.4 specification. OMG document ptc/2010-11-14, Object Manage-
ment Group 2011, 03 2011.

[86] OSGi Alliance. OSGi service platform v4.2. Core specification, OSGi Alliance
2009, 2009.

[87] Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software com-
ponents. IEEE Trans. Software Eng, 28(11):1056–1076, 2002.

[88] Helen C. Purchase, Matthew McGill, Linda Colpoys, and David Carrington.
Graph drawing aesthetics and the comprehension of uml class diagrams: an em-
pirical study. In Proceedings of the 2001 Asia-Pacific symposium on Information
visualisation - Volume 9, APVis ’01, pages 129–137, Darlinghurst, Australia,
Australia, 2001. Australian Computer Society, Inc.

[89] D. Rafiei. Effectively visualizing large networks through sampling. In Visualiza-
tion, 2005. VIS 05. IEEE, pages 375 – 382, oct. 2005.

Bibliography 106

[90] Ratneshwer and A. K. Tripathi. Dependence analysis of software component.
SIGSOFT Softw. Eng. Notes, 35:1–9, July 2010.

[91] Andreas Rausch, Ralf Reussner, Raffaela Mirandola, and Frantisek Plasil. The
Common Component Modeling Example: Comparing Software Component Mod-
els. Springer Publishing Company, Incorporated, 1st edition, 2008.

[92] Ruth Rosenholtz, Yuanzhen Li, and Lisa Nakano. Measuring visual clutter.
Journal of Vision, 7(2), August 2007.

[93] S.E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.

[94] M. Sensalire, P. Ogao, and A. Telea. Evaluation of software visualization tools:
Lessons learned. In Visualizing Software for Understanding and Analysis, 2009.
VISSOFT 2009. 5th IEEE International Workshop on, pages 19 –26, 2009.

[95] Séverine Sentilles, Petr Stepan, Jan Carlson, and Ivica Crnkovic. Integration of
extra-functional properties in component models. 12th International Symposium
on Component Based Software Engineering (CBSE 2009), LNCS 5582, June
2009.

[96] Ben Shneiderman. The eyes have it: A task by data type taxonomy for infor-
mation visualizations. In Proceedings of the 1996 IEEE Symposium on Visual
Languages, VL ’96, pages 336–, Washington, DC, USA, 1996. IEEE Computer
Society.

[97] Keng Siau and Yuhong Tian. A semiotic analysis of unified modeling language
graphical notations. Requirements Engineering, 14:15–26, 2009. 10.1007/s00766-
008-0071-7.

[98] Jaroslav Snajberk, Lukas Holy, and Premek Brada. AIVA vs UML: Comparison
of Component Application Visualizations in a Case-Study. In Proceedings of 16th
International Conference on Information Visualization, 2012.

[99] Jaroslav Snajberk, Lukas Holy, and Premek Brada. Comav - a component ap-
plication visualisation tool. In Proceedings of International Conference on Infor-
mation Visualization Theory and Applications. SciTePress, 2012.

[100] M. A D Storey, K. Wong, and H.A Muller. How do program understanding tools
affect how programmers understand programs? In Reverse Engineering, 1997.
Proceedings of the Fourth Working Conference on, pages 12–21, Oct 1997.

[101] Sun Microsystems. Enterprise JavaBeans(TM), version 3.0. EJB Core, Sun
Microsystems, 2006, 2006.

[102] James Surowiecki. The Wisdom of Crowds. Anchor, 2005.

[103] Clemenz Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley / ACM Press, 3rd edition, 2002.

[104] Alexandru Telea and Lucian Voinea. A Framework for Interactive Visualization
of Component-Based Software. In Proceedings of the 30th EUROMICRO Con-
ference, pages 567–574, Washington, DC, USA, 2004. IEEE Computer Society.

[105] Alexandru Telea, Lucian Voinea, and Hans Sassenburg. Visual tools for software
architecture understanding: A stakeholder perspective. IEEE Softw., 27:46–53,
November 2010.

[106] Scott Tilley. Documenting software systems with views vi: Lessons learned from
15 years of research & practice. In Proceedings of the 27th ACM International
Conference on Design of Communication, SIGDOC ’09, pages 239–244, New
York, NY, USA, 2009. ACM.

Bibliography 107

[107] Barbara Tversky, Julie Bauer Morrison, and Mireille Betrancourt. Animation:
can it facilitate? Int. J. Hum.-Comput. Stud., 57(4):247–262, October 2002.

[108] J. VANWIJK and W NUIJ. Amodel for smooth viewing and navigation of large
2d information spaces. In IEEE Trans. Visual. Comput. Graph. 10, 4,, page
447–458. IEEE, 2004.

[109] Anneliese von Mayrhauser and A. Marie Vans. Program comprehension during
software maintenance and evolution. Computer, 28:44–55, August 1995.

[110] Chris Walshaw. A multilevel algorithm for force-directed graph drawing. In
Proceedings of the 8th International Symposium on Graph Drawing, GD ’00,
pages 171–182, London, UK, UK, 2001. Springer-Verlag.

[111] Jingwei Wu, Ahmed E. Hassan, and Richard C. Holt. Comparison of clustering
algorithms in the context of software evolution. In Proceedings of the 21st IEEE
International Conference on Software Maintenance, ICSM ’05, pages 525–535,
Washington, DC, USA, 2005. IEEE Computer Society.

Appendix A

Deployment and Availability

The CoCAEx application is available online1 for testing. For the demonstration
purposes a demo diagram or a public diagrams can be used, as shown in Figure
A.1.

Figure A.1: Demo and Public Diagrams

There is also a possibility to use the corpus of test data files2 to be uploaded
to the CoCAEx server. The corpus needs to be extracted and components (.jar
files) uploaded.

In the first step, we select the extracted bundles and upload them to the server
via upload dialog. To do that we select Browse..., then we select all bundles and
click Open button (or adequate one for different languages). Files are selected
and we press Upload button. Files are uploaded to the server (which can take
a while). After that, we start visualization by clicking the Start visualization
button and the reverse-engineered diagram will be shown.

All necessary information and screencasts are described on the information
webpage3.

1http://relisa-dev.kiv.zcu.cz:8083/efpcocaex/
2http://relisa-dev.kiv.zcu.cz/data/cocaex/demo_data.zip
3http://relisa.kiv.zcu.cz/areas/large-diagrams-visualization.html

108

http://relisa-dev.kiv.zcu.cz:8083/efpcocaex/
http://relisa-dev.kiv.zcu.cz/data/cocaex/demo_data.zip
http://relisa.kiv.zcu.cz/areas/large-diagrams-visualization.html

Appendix B

List of Published Articles

The following papers were submitted to be published in journals:

1. Holý, L., Malý, I., Čmoĺık, L., Ježek, K., and Brada P.: An Interactive
UML-like Visualization for Large Software Diagrams, Research
Journal of Applied Sciences, Engineering and Technology, Elsevier (Sco-
pus), 11(4) October 2015

The following papers are essential for my work.

1. Holý, L. and Brada P.: Viewport for component diagrams, Proceed-
ings of the 19th International Conference on Graph Drawing, Eindhoven,
The Netherlands, Springer, 2011

2. Holý, L., Šnajberk, J. and Brada P.: Evaluating Component Ar-
chitecture Visualization Tools, Proceedings of International Confer-
ence on Information Visualization Theory and Application, Rome, Italy,
SciTePress, 2012

3. Holý, L., Ježek, K., Šnajberk, J. and Brada P.: Lowering Visual Clut-
ter in Large Component Diagrams, Proceedings of International
Conference on Information Visualization, Montpellier, France, IEEE
Computer Society, 2012

4. Holý, L., Šnajberk, J. and Brada P.: Visual clutter reduction for
UML component diagrams: A tool presentation, Proceedings of
IEEE Symposium on Visual Languages and Human-Centric Computing,
Innsbruck, Austria, IEEE Computer Society, 2012

5. Holý, L., Šnajberk, J. and Brada P.: Lowering Visual Clutter of
Clusters in Component Diagrams, Proceedings of International Con-
ference on Software Engineering Advances, Lisbon, Portugal, IARIA, 2012

6. Holý, L., Šnajberk, J., Brada P. and Ježek, K.: A Visualiza-
tion Tool for Reverse-engineering of Complex Component

109

Appendix B 110

Applications, Proceedings of the 29th IEEE International Confer-
ence on Software Maintenance, Eindhoven, The Netherlands, IEEE
Computer Society, 2013

The following papers were published in conference proceedings, paper An
Advanced Interactive Visualization Approach for Component-Based
Software: A User Study recieved a Best Paper Award:

1. Šnajberk, J., Holý, L. and Brada P.: AIVA vs UML: Comparison of
Component Application Visualizations in a Case-Study, Proceed-
ings of International Conference on Information Visualization, Montpel-
lier, France, IEEE Computer Society, 2012

2. Šnajberk, J., Holý, L., Ježek, K. and Brada P.: An Advanced Inter-
active Visualization Approach for Component-Based Software:
A User Study, Proceedings of International Conference on Software
Engineering Advances, Lisbon, Portugal, IARIA, 2012

3. Šnajberk, J., Holý, L. and Brada P.: Visualization of Component-
Based Applications Structure using AIVA, Proceedings of Euro-
pean Conference on Software Maintenance and Reengineering, Genova,
Italy, IEEE Computer Society, 2013

4. Ježek, K., Brada P. and Holý, L.: Enhancing OSGi with Explicit,
Vendor Independent Extra-functional Properties, Proceedings of
the 50th International Conference on Objects, Models, Components, Pat-
terns, Prague, Czech Republic, Springer, 2012

5. Ježek, K., Holý, L. and Brada P. : Dependency Injection Refined
by Extrafunctional Properties, Proceedings of IEEE Symposium on
Visual Languages and Human-Centric Computing, Innsbruck, Austria,
IEEE Computer Society, 2012

6. Ježek, K., Holý, L. and Brada P. : Supplying Compiler’s Static Com-
patibility Checks by the Analysis of Third-party Libraries, Pro-
ceedings of European Conference on Software Maintenance and Reengi-
neering, Genova, Italy, IEEE Computer Society, 2013

7. Ježek, K., Holý, L. and Brada P. : Static component compatibility
visualisation for various component models, Proceedings of IEEE
Symposium on Visual Languages and Human-Centric Computing, San
Jose, USA, IEEE Computer Society, 2013

8. Ježek, K., Holý, L., Slezáček, A., and Brada P. : Software Components
Compatibility Verification Based on Static Byte-Code Analysis,
Proceedings of the 39th EUROMICRO Conference on Software Engineer-
ing and Advanced Applications, Santander, Spain, IEEE Computer Soci-
ety, 2013

	Introduction
	Introduction to Component Software Modelling
	Problem Definition: Diagram Complexity
	Goal of the Work
	Structure of the Thesis

	Component Based Software Development
	Component Models and Frameworks
	Compositional Forms
	Component Deployment
	Framework Deployment
	Simple Composition
	Heterogeneous Composition
	Framework Extension (Plug-In)
	Component (Sub)Assembly
	Compositional Forms Examples

	Contracts
	Extra-functional Properties

	Software and Graph Visualization
	Mental Model Creation
	Information Schemes
	Overview and Detail
	Pan and Zoom
	Focus and Context
	Animation

	Graph Layouts
	Force-directed Layouts
	Orthogonal Layouts
	Circular Layouts
	Tree Layouts
	Layered Layouts

	Nodes Visualization
	Edges Visualization
	Edge Bundling

	Background Visualization
	Nodes Clustering
	Visual Design Guidelines
	UML Component Diagram Visual Syntax

	Existing Approaches in Component Software Visualization
	Problems and Approaches to Component Software Visualization
	User's Needs and Requirements
	Component Visualization Approaches
	Problems and Approaches Classification
	Criteria for Evaluating Tools

	Tools Implementing Mentioned Approaches
	Plain UML Tools
	Tools for UML Profiles
	Specific Component Model Visualization Tools
	Generic Component Model-aware Visualization Tools

	Summary

	Complex Component Applications Exploration
	Designing a New Visualization
	Using Large Projection Areas
	General Design Concepts
	Motivation for Clutter Reduction Approach
	Techniques for Lowering Visual Clutter
	Separated Components Area (SeCo)
	Items
	Symbols and Delegates
	Interface Clustering
	Component Groups
	Unconnected Components

	Viewport for Component Diagrams
	Using the Viewport Technique for Groups of Components
	A Group as Viewport with Details
	Group as a Symbol

	Extra-functional Properties Visualization

	The CoCAEx Tool: Experimental Implementation of the Approach
	Techniques Implementation and Demonstration
	Global Features Implementation
	SeCo Features Implementation
	Diagram Area Features Implementation
	Clusters Features Implementation
	Unconnected Component Feature Implementation
	Extra-functional Properties Visualization Implementation
	Personalization and Publication
	Application Features Overview

	Technologies Selection
	JUNG Framework
	HTML5 and Java EE

	Component Application Visualizer
	CoCAEx Application Internal Data Flow

	Evaluation of the Proposed Approach
	Baseline Approach
	User Study
	Goal of the Study
	Participants
	Apparatus
	Design
	Procedure

	Results and Discussion
	Task T1 – Which components use interfaces provided by CocomeData-Impl?
	Task T2 – Which components are not from CoCoME core (are third party)?
	Task T3 – Which packages need CocomeDataImpl from CocomeData?
	Task T4 – Which components do not require or provide interfaces to any other components (are unconnected)?
	Task T5 – Which components require or provide interfaces to any of CashDesk components in CoCoME?
	Subjective Evaluation
	Observation

	Lessons Learned

	Conclusion
	Evaluation of Thesis Goals
	Future Work
	Automated Removal of Highly Connected Components

	Deployment and Availability
	List of Published Articles

