Bakalářská práce

Realizace jednoduchého BCI na bázi snímače Mindwave Mobile

Plzeň 2015

Václav Kraft
Prohlášení

Prohlášuji, že jsem bakalářskou práci vypracoval samostatně a výhradně s použitím citovaných pramenů.

V Plzni dne 24. června 2015

Václav Kraft
Bakalářská práce se skládá ze dvou částí. První pojednává o teoretických poznatcích vědních oborů neurologie a neuroinformatiky, vlastnostech snímače EEG MindWave Mobile a parametrech mikropočítače na bázi ARM procesorů. Druhá část práce popisuje návrh a následnou implementaci rozhraní mezi mozkem a počítačem (BCI). Toto rozhraní využívá již zmíněného snímače EEG a mikropočítače. Důležité části programu budou dostatečně vysvětleny a použití konkrétních konstrukcí řádně zdůvodněno.

The bachelor thesis consists of two parts. The first discusses a theoretical facts of scientific disciplines of neurology and neuroinformatics, properties MindWave Mobile EEG sensors and single-board computer (SBC) parameters based on ARM processors. The second part describes the design and implementation of an interface between the brain and the computer (BCI). This interface uses EEG sensors and single-board computer. Important parts of the program are adequately explained and the use of concrete structures duly justified.
Obsah

1 Úvod

2 Mozková aktivita - snímání, využití 2
 2.1 Mozková aktivita 2
 2.2 Elektroencefalografie 3
 2.2.1 EEG snímače 4
 2.2.2 Analýza EEG 5
 2.2.3 Artefakty 5

3 EEG snímač MindWave Mobile 6
 3.1 Výrobce .. 6
 3.2 Popis zařízení 6
 3.3 Specifikace 8
 3.4 ThinkGear TGAM1 ASIC modul 8

4 Vlastnosti mikropočítačů na bázi ARM-procesorů 10
 4.1 ARM-procesor 10
 4.2 Olinuxino A20 micro 4GB 11
 4.2.1 Popis .. 11
 4.2.2 Specifikace 12
 4.2.3 Shrnutí .. 13
 4.3 CubieTruck Cubieboard 3 13
 4.3.1 Popis .. 13
 4.3.2 Specifikace 14
 4.3.3 Shrnutí .. 15
 4.4 Raspberry PI 2 B 15
 4.4.1 Popis .. 15
 4.4.2 Specifikace 17
 4.4.3 Shrnutí .. 17
 4.5 Využití mikropočítačů 18
5 Návrh rozhraní mozek-počítač
 5.1 Popis rozhraní .. 19
 5.2 Sphero 2.0 .. 20
 5.3 Ovladač .. 21
 5.4 Software ... 21
 5.5 Způsob ovládání rychlosti robotické koule 22

6 Implementace ... 23
 6.1 Popis programu .. 23
 6.2 Diagram tříd ... 24
 6.3 Popis třídy Sphero ... 24
 6.3.1 Řídící pakety ... 25
 6.3.2 Metody pro ovládání Sphero 2.0 26
 6.4 Popis třídy Mindwave ... 27
 6.4.1 Otevření emulovaného sériového portu 27
 6.4.2 Třída ThinkGearStreamParser 28
 6.4.3 Signály a sloty ... 28
 6.5 Popis třídy Controller .. 29
 6.5.1 Otevření souboru ovladače 29
 6.5.2 Získání nové události ovladače 30
 6.5.3 Metoda run() .. 30
 6.6 Popis třídy RollSphero ... 30
 6.7 Grafické uživatelské rozhraní 31

7 Testování BCI ... 32
 7.1 Testovací scénář .. 32
 7.2 Výstup testování .. 33
 7.3 Analýza nasbíraných dat .. 34

8 Zátěžové testování mikropočítače vytvořeným BCI 36

9 Diskuze dosažených výsledků 38

10 Závěr ... 39
1 Úvod

Neuroinformatika je vědní obor, který spojuje poznatky pro zpracování a analýzu dat z oborů neurověd a informatiky. Prostřednictvím tohoto spojení je možné lépe poznávat a následně využívat funkce mozku. Tato problematika je natolik zajímavá, že jsem zvolil jako téma své bakalářské práce řešení problému implementace rozhraní mezi mozkem a počítačem.

Práce se dělí na teoretickou a praktickou část. V následující 2. kapitole krátce definuji základní pojmy z oboru neurologie, neuroinformatiky a vysvětluji klíčovou techniku pro snímaní mozkové aktivity (elektroencefalografie - dále EEG). Dále (3. kapitola) jsou popsány vlastnosti EEG snímače MinidWave Mobile a jeho součástí. Shrnutí technických parametrů a dalších atributů zařízení Olinuxino A20, CubieTruck Cubieboard 3 a Raspberry PI 2 B obsahuje 4. kapitola Vlastnosti mikropočítačů na bázi ARM-procesoru.

2 Mozková aktivita - snímání, využití

2.1 Mozková aktivita

- Frontální lalok
 Nachází se v oblasti čela (z lat. frons = čelo). Zde se nachází centrum emocí, psychické aktivity nebo kreativity. Má se za to, že tato část mozku participuje na logickém uvažování a řešení strukturovaných úloh. [9]

- Parietální lalok
 Najdeme jej v horní části lebky (za čelním lalokem), bývá označován též jako temenní lalok. Slouží pro zpracování nervových impulsů smyslového vnímání, tedy například hmatu, čichu, chuti, teploty, bolesti.

- Temporální lalok
 Rovněž lalok spávkový se podílí na paměťových a jazykových funkcích. Zpracovává také sluchové podněty.

- Okcipitální lalok
 Je umístěn v zadní části mozku. Českým názvem je týlní lalok. Je zodpovědný za rozpoznávání objektů a zpracování vizuálních podnětů (centrum vidění).

[9]
2.2 Elektroencefalografie

Elektroencefalografie je metoda, pomocí které je možno měřit změny elektrických potenciálů různých částí mozku, nebo i mozku jako celku. Změny potenciálů jsou způsobeny mozkovou aktivitou nebo biologickými artefakty. Měřená osoba je obvykle v klidovém režimu a na hlavě má upevněné elektrody. Získaný záznam je označován jako elektroencefalogram (EEG). Elektrické napětí na povrchu lebky se pohybuje od 5 do 200 µV a jejich frekvence se pohybuje od 1 do 70 Hz. Běžně rozlišujeme 4 základní typy encefalografičkých vln:

- **Alfa**: frekvence 8-12 Hz, amplituda do 50 µV. Rytmus charakteristický pro tělesný i duševní klid. Tento druh vln je blokován, má-li člověk otevřené oči.

- **Beta**: frekvence 12-30 Hz, amplituda 5-10 µV. Může vykazovat zvýšenou amplitudu během ospravedlňování. Dále se dělí na:
 - **SRM**: frekvence 12-15 Hz. Klidná bída.
 - **Beta1**: frekvence 15-18 Hz. Pozornost, soustředění, jednání, běžná práce.
 - **Beta2**: frekvence 18-30 Hz. Stres, podráždění, úlek, úzkost, souvislost s trémem.

- **Theta**: frekvence 4-7 Hz, amplituda nad 50 µV. U dětí je výskyt těchto vln zcela běžný, u dospělých jedinců patologický, vyskytuje se během spánku nebo poruše soustředění.

- **Delta**: frekvence 0,5-4 Hz, amplituda do 100 µV. Hluboký spánek. V běžném stavu je výskyt patologický.

- **Gama**: frekvence nad 30 Hz, amplituda do 5 µV. Hluboká meditace, extrémní koncentrace.
2.2.1 EEG snímače

Hlavními součástmi EEG zařízení jsou:

- elektrody
- předzesilovač
- zesilovač
- filtr
- registrační zařízení

Elektrody jsou prvním elementem, který zajišťuje převod elektrické aktivity z mozku do zesilovačů EEG přístroje. Nejčastěji se elektrody zhotovují z čistého stříbra (potažené vrstvou chloridu stříbritého). Dále pak ze speciálních nerezových ocelí a jiných slitin (obsahujících např. cín). Primárně je rozdělujeme na povrchové a podkožní elektrody. Během využití podkožních elektrody, které se vpichují pod pokojku, vzniká riziko infekce a krvácení, proto se užívají jen ve speciálních případech a běžně se využívá pouze povrchových elektrody. Povrchové elektrody jsou nejčastěji kruhového tvaru a před umístěním na tělo je vhodné mechanické odstranění zdrojového kůže a odmašťení. Takhle plovoucí elektrody dále potřebují aplikaci vodivého médií - nejčastěji nějakého vodivého krému nebo gelu.

Ze vstupujícího signálu je pomocí dolní a horní propustě převedeno k registraci jen frekvenční pásma, které EEG zajímá, klasicky 0,5 – 70 Hz, navíc
Mozková aktivita - snímaní, využití

Elektroencefalografie

je filtrována rušivá síťová frekvence 50 Hz. V EEG přístrojích lze hodnoty filtru nastavit stupňovitě, a to buď individuálně pro jednotlivý kanál, nebo současně pro všechny kanály dohromady. Horní propust' zabraňuje přenosu frekvence pod 0,5 Hz (tedy i stejnosměrného proudu), je řazen před zesilovačem. Dolní propust' znemožňuje přenos frekvencí rychlejších nad požadované pásmo, je řazen za zesilovačem. Umístění horní a dolní propustě vůči zesilovači je dáno vztahem kombinace odporu a kondenzátoru k frekvenci signálu, a tedy její filtraci. Strmě propustě údavá, jak je frekvenční pásmo ohraničeno (čím větší strmost, tím kvalitnější propust').

2.2.2 Analýza EEG

V dnešní době problematiku analýzy EEG signálu ovládají z velké části počítače. Rychlý rozvoj metod počítačového zpracování EEG umožňuje skutečnost, že tyto nové metody mohou být realizovány aplikacím softwarem, tj. programy, které se na stávající techniku dají většinou snadno implementovat.

EEG signál musí být před vstupem do vlastního počítače digitalizován, tj. převězen do číselné podoby. Digitalizace se provádí analogově/digitálním převodníkem. Spojitý – analogový signál, jakým je EEG potenciál, se převede na řadu čísel, které pro počítač představují údaje, jež dokáže velmi rychle podle sestaveného programu zpracovat. EEG signály je možno již v průběhu snímaní a převodu zpracovávat, většinou se však signál ukládá do paměťových medií (na hard disk) a teprve po skončení snímání se provede matematické zpracování.

2.2.3 Artefakty

3 EEG snímač MindWave Mobile

MindWave Mobile je mobilní zařízení z dílny společnosti NeuroSky, které umožňuje snímat mozkovou aktivitu uživatele snímaním elektrických potenciálů mozku.

3.1 Výrobce

Když společnost vydala zařízení pro koncové uživatele, jako například MindSet a MindWave, vývoj aplikací pro tato zařízení se vyznačoval přede vším jednoduchostí.

3.2 Popis zařízení

1Mezi snímač a povrch hlavy není nutné nanášet vodivý gel.
Plastová konstrukce je tvořena nastavitelným kruhovým pásem, otočným ramenem se snímací elektrodou a úchytou referenční elektrody, která vy- chází z hlavní části zařízení obsahující modul pro zpracování signálu a baterii.
3.3 Specifikace

<table>
<thead>
<tr>
<th>MindWave Mobile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výrobce</td>
</tr>
<tr>
<td>Uvedení na trh²</td>
</tr>
<tr>
<td>Cena[USD]³</td>
</tr>
<tr>
<td>Váha</td>
</tr>
<tr>
<td>Napájení</td>
</tr>
<tr>
<td>Výdrž</td>
</tr>
<tr>
<td>Komunikace</td>
</tr>
<tr>
<td>Maximální výkon</td>
</tr>
<tr>
<td>Radio frekvenční rozsah</td>
</tr>
<tr>
<td>Radio frekvenční prenosová rychlost</td>
</tr>
<tr>
<td>Dosah vysílače</td>
</tr>
<tr>
<td>Modulační rychlost</td>
</tr>
<tr>
<td>Maximální rozsah vstupního EEG signálu</td>
</tr>
<tr>
<td>Modul pro zpracování signálu</td>
</tr>
</tbody>
</table>

Tabulka 3.1: Tabulka základních parametrů zařízení MindWave Mobile. [2]

3.4 ThinkGear TGAM1 ASIC modul

Vedle elektrod je nejdůležitější součástí celého zařízení ThingGear TGAM1 ASIC modul, který naměřené hodnoty biologického původu zpracovává do použitelných datových toků. Největší překážka spočívá v rozlišování mozkové aktivity od šumu, který pochází z okolních elektrických zařízení, svalové aktivity atd. viz Artefakty. Toto rušení se digitálně filtruje. Surová mozková aktivita je zesílena a zpracována do chtěných výstupů. Algoritmy emocionálních stavů, tzv. eSence uložené v paměti čipu, vzešly jak z laboratoří NeuroSky Inc., tak z výzkumných institucí a vysokých škol. TGAM1, kterého je součástí i TGAT ASIC, má rozměry 2,79 cm x 1,52 cm x 0,25 cm, váhu 130 mg a komunikuje prostřednictvím UART rozhraním v nastavitelných modulačních rychlostech. A to v 1200, 9600 nebo 57600 [Baud]. [8]
Typy výstupních dat ThinkGear čipu (zdroj [2]):

- Hrubá naměřená data (128 Hz nebo 512 Hz, záleží na typu hardwaru)
- úroveň kvality snímané mozkové aktivity
- úroveň pozornosti a meditace
- EEG rytmy delta, theta, alpha, beta, gamma
4 Vlastnosti mikropočítačů na bázi ARM-procesorů

4.1 ARM-procesor

Technologie ARM (Advanced RISC Machine) procesorů, jak už sám název napovídá, je typická tím, že využívá instrukční sadu RISC (Reduced Instruction Set Computers). Mezi největší přednostmi ARM patří nízká energetická náročnost, a to zejména v dnešní době, kdy cena hardwaru klesá, zatímco náklady na elektřinu stoupají. Další výhodou je možnost integrace různých dalších komponent přímo do těla této součástky. Zpravidla to bývá operační paměť, grafické jádro, síťový čip, vstupní/výstupní rozhraní nebo třeba modul pro komunikaci v mobilní síti. Výrobce tak navrhuje jeden samostatný čip, který se obecně nazývá System-on-Chip a v konstrukci zařízení tak získá prostor například pro větší akumulátor. V současnosti se můžeme s integrovanými obvody obsahujícími jádro procesoru ARM setkat v celé řadě různých elektronických zařízení, například: různé výkonné smartphony, tablety, kapesní herní konzole, netbooky, a co je možné na první pohled po někud překvapivé, různé typy serverů určených zejména pro nasazení do dnes populárních zálohovacích systémů – cloud. [13]

Procesory ARM mají ze sebou dlouhý vývoj. Na úplném počátku stála britská společnost BBC, která na počátku 80. let chtěla zkonstruovat počítač vhodný pro výuku ve školách, ale i pro nový právě vznikající trh s domácími 8bitovými počítači. Vzpomíně se ukázalo, že BBC nemá prostředky pro návrh a následnou masivní sériovou výrobu počítače, který by mohl konkurovat

Dnes ARM Holding na vývoji AMR-procesorů nepracuje. Drží si ale duševní vlastnictví této architektury, tedy patenty, které propínává jiným výrobcům jako je Samsung, Marvell Xscale, Qualcomm, Texas Instruments a NXP. Dnes tvoří rodina procesorů ARM kolem 90 % všech 32bitových RISC procesorů. [12]

4.2 Olinuxino A20 micro 4GB

4.2.1 Popis

Jedná se o jednodeskový počítač, tedy mikropočítač, jehož výrobcem je OLI-MEX Ltd. z Bulharska. Vývojem těchto zařízení se firma zabývá od roku 2012 a vzešla z něj řada iMX233, A13, A10 a A20. Výkonem se vyrovnává konkurenci, ale velkou výhodou pro vývojáře je skutečnost, že veškerý software i hardware je „open-source“. Svoje úpravy, případně vylepšení tak může odborná veřejnost postavit na již výrobcem vytvořených návrzích a konstrukcích.
4.2.2 Specifikace

<table>
<thead>
<tr>
<th>Specifikace</th>
<th>Olinuxino A20 micro 4GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výrobce</td>
<td>Olimex Ltd.</td>
</tr>
<tr>
<td>Uvedení na trh</td>
<td>informace nebyla nenalezena</td>
</tr>
<tr>
<td>Cena [USD]</td>
<td>$88.95</td>
</tr>
<tr>
<td>Procesor</td>
<td>Allwinner A20 dual core Cortex-A7</td>
</tr>
<tr>
<td></td>
<td>s nativním taktováním na 1 GHz</td>
</tr>
<tr>
<td>Grafické jádro</td>
<td>dvou-jádrový Mali 400</td>
</tr>
<tr>
<td>Operační paměť'</td>
<td>1 GB DDR3</td>
</tr>
<tr>
<td>Interní paměť'</td>
<td>4 GB NAND FLASH</td>
</tr>
<tr>
<td>Slot na paměťové karty</td>
<td>microSD</td>
</tr>
<tr>
<td>Ethernet</td>
<td>100 Mb</td>
</tr>
<tr>
<td>Wifi modul</td>
<td>není součástí</td>
</tr>
<tr>
<td>Bluetooth modul</td>
<td>není součástí</td>
</tr>
<tr>
<td>USB</td>
<td>2 x USB 2.0</td>
</tr>
<tr>
<td>HDMI</td>
<td>součástí</td>
</tr>
<tr>
<td>VGA</td>
<td>součástí</td>
</tr>
<tr>
<td>Napájení</td>
<td>6 až 16 V</td>
</tr>
</tbody>
</table>

Tabulka 4.1: Tabulka základních parametrů zařízení Olinuxino A20 micro 4GB. [4]
Další důležité vlastnosti:

- Audio výstup, vstup pro mikrofon
- 10 tlačítek s ANDROID funkcionalitou a RESET tlačítko
- SATA konektor
- LCD konektor kompatibilní s rozměry 4,3", 7,0"a 10,1"
- 3 x GPIO konektor s 40 piny, 2 x UEXT konektor s 10 piny

4.2.3 Shrnutí

Absence WiFi a Bluetooth je neuspokojivá. U zařízení, která se dodávají s nativním operačním systémem pro mobilní zařízení Android, se předpokládá integrace těchto technologií přímo do základové desky. Výrobce nás tak nutí do dalších investic a obsazení některého z USB portu.

4.3 CubieTruck Cubeboard 3

4.3.1 Popis

Výrobce Cubietruck pocházející z Číny vyvinul svůj první prototyp jednodoskového počítače v roce 2012. Cubeboard 3 o velikosti 11cm x 8cm je svým
Vlastnosti mikropočítačů na bázi ARM-procesorů CubieTruck Cubieboard 3

výkonem srovnatelný s Olinuxinem A20 micro 4 GB, je však bohatší ve své výbavě (viz Tabulka 4.2). Dalo by se tak říci, že se jedná, až na některé odlišnosti, o jeho prémiovou verzi.

[Obrázek 4.2: Cubietruck Cubieboard 3 [1]]

4.3.2 Specifikace

<table>
<thead>
<tr>
<th>Cubietruck Cubieboard 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výrobce</td>
</tr>
<tr>
<td>Uvedení na trh(^1)</td>
</tr>
<tr>
<td>Cena(USD)(^2)</td>
</tr>
<tr>
<td>Procesor</td>
</tr>
<tr>
<td>Gráfiční jádro</td>
</tr>
<tr>
<td>Operační paměť’</td>
</tr>
<tr>
<td>Interní paměť’</td>
</tr>
<tr>
<td>Ethernet</td>
</tr>
<tr>
<td>Wifi modul</td>
</tr>
<tr>
<td>Bluetooth modul</td>
</tr>
<tr>
<td>USB</td>
</tr>
<tr>
<td>HDMI</td>
</tr>
<tr>
<td>VGA</td>
</tr>
<tr>
<td>Napájení</td>
</tr>
</tbody>
</table>

Tabulka 4.2: Tabulka základních parametrů zařízení Cubieboard 3 [1]
Další důležité vlastnosti (zdroj [1]):

- 3,5 mm audio výstup
- 3 tlačítko
- SATA konektor
- 54 pinů zahrnující I2S, I2C, SPI, CVBS, 2 x LRADC, UART, PS2, 2 x PWM, TS/CSI, IRDA, 4 x TVIN

4.3.3 Shrnutí

Svou bohatou výbavou (vstupy, bezdrátové adaptéry, ethernet) Cubieboard 3 působí jako univerzální zařízení s kapitálním počtem případů užití. Nicméně pro konkrétní aplikace je vhodnější výběr zařízení se specifickými vlastnostmi. Absence přebytečných periférií také v tomto případě snižuje náklady.

4.4 Raspberry PI 2 B

4.4.1 Popis

Raspberry PI 2 B je mikropočítač s deskou velikostí zhruba platební karty a to 8,5 x 5,6 cm. Vyyvíjí ho britská nadace Raspberry Pi Foundation s týmem

Vlastnosti mikropočítačů na bázi ARM-procesorů

Raspberry PI 2 B

4.4.2 Specifikace

<table>
<thead>
<tr>
<th>Specifikace</th>
<th>Raspberry PI 2 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výrobce</td>
<td>Raspberry Pi Foundation</td>
</tr>
<tr>
<td>Uvedení na trh</td>
<td>2015</td>
</tr>
<tr>
<td>Cena[USD]</td>
<td>$35.00</td>
</tr>
<tr>
<td>Procesor</td>
<td>Broadcom BCM2836 quad-core ARM Cortex-A7</td>
</tr>
<tr>
<td>Grafické jádro</td>
<td>dvoujádrové VideoCore IV 250 MHz</td>
</tr>
<tr>
<td>Operační paměť</td>
<td>1 GB LPDDR2, 480 MHz</td>
</tr>
<tr>
<td>Interní paměť</td>
<td>není</td>
</tr>
<tr>
<td>Slot na paměťové karty</td>
<td>microSD</td>
</tr>
<tr>
<td>Ethernet</td>
<td>100 Mb</td>
</tr>
<tr>
<td>Wifi modul</td>
<td>neobsahuje</td>
</tr>
<tr>
<td>Bluetooth modul</td>
<td>neobsahuje</td>
</tr>
<tr>
<td>USB</td>
<td>4 x USB 2.0</td>
</tr>
<tr>
<td>HDMI</td>
<td>součástí</td>
</tr>
<tr>
<td>VGA</td>
<td>není</td>
</tr>
<tr>
<td>Napájení</td>
<td>5 V/micro USB</td>
</tr>
</tbody>
</table>

Další důležité vlastnosti (zdroj [6]):

- 3,5 mm audio výstup
- zachována kompatibilita s předchozí verzi
- 2 x 20pinový GPIO, CSI/DSI rozšíření pro kameru a dotykový displej

4.4.3 Shrnutí

Velmi zajímavým parametrem je čtyřjádrový ARM procesor. Ze tří srovnávaných mikropočítačů má takto výkonný procesor pouze toto zařízení. Přestože Raspberry PI 2 B nedisponuje tolika GPIO piny, SATA konektorem, a další výbavou jako předchozí modely, myslím si, že vzhledem ke své ceně (v přepočtu přibližně 900 Kč) a výkonu, je nejrozumnější volbou. Samozřejmě záleží na konkrétních úlohách. Kdyby výrobce operační paměť navýšil na 2 GB, nemělo by zařízení na trhu konkurrence. Další výhodou je i fakt, že jedná
o jeden z nejpopulárnějších mikropočítačů. To znamená největší nabídku pří-
davného hardwaru a již zpracovaných úloh vývojářskou komunitou.

Nabídka odladěných operačních systémů je ve srovnání s konkurencí hojná. Instalace je velice snadná díky „utilitě“ Noobs. Po vybrání podporovaného
OS sama stále a nainstaluje veškeré potřebné soubory přímo v zařízení. Así nejrozšířenější distribucí je Raspberry (kompatibilní Debian Wheezy).
Dále pak varie Ubuntu, Fedory a další. Působivější je však to, že při vývoji
tvůrci spolupracovali se společností Microsoft a slibují podporu Windows 10
(IoT) zcela zdarma v rámci vývojářského programu. Tím se od konkurence
zcela liší. Pro zpracování obrazu je k dispozici ISP (Image Signal Pipeline)
pro připojení až 20 MPix kamer. [14]

4.5 Využití mikropočítačů

Server linux.com vyhlásil 8. května 2014 anketu pojednávající o oblíbenosti
konkrétních mikropočítačů a jejich nasazení. Svých čtenářů se ptal na tři
preferovaná zařízení, druh nasazení a důvod jeho výběru. Ankety se po 10
dnech zúčastnilo 777 respondentů. První dvě místa s přehledem obsadila za-
řízení Raspberry PI 1 B, předchůdce výše popsaného, a BeagleBone Black
s procesorem ARM Cortex-A8 32-Bit. Důvodem je silný komunitní ekosys-
tém. Třetí místo patřilo mikropočítači Ondroid-U3 obliben svým výkonem
za přijatelnou cenu. Za čtyřjádrový procesor Exynos4412 byla cena 59 do-
larů příjemněm zajímavá. Čtvrté místo obsadil CubieTruck Cubieboard 3
a páté Banana PI vydaný jako první konkurent Raspberry PI 1. Olinu-
xino A20 pak zaujalo až osmou příčku. [10] Nejčastější nasazení je domácí
automatizace. To znamená například regulaci teploty nebo osvětlení v jed-
notlivých místnostech domu, kamerové systémy či domácí NAS server. Další
příčku obsadilo vzdělávání, za ním pak zastoupení některých funkcionalit ser-
veru či jiných síťových prvků. Univerzita v Southamptonu dokonce zveřejnila
návod pro sestavení výkonného superpočítače z téměř libovolného množství
Raspberry PI 1 B. Nasazení do oboru robotiky, kde mikropočítač zastupuje
řídící jednotku pro řízení serv a čidel, je také velmi oblibené. Potenciál těchto
zařízení je velký a své uplatnění tak nalézá v mnoha oborech. S vývojem vý-
konnějších a méně energeticky náročnějších komponent jejich obliba zajisté
poroste. [10]
5 Návrh rozhraní mozek-počítač

Po konzultaci s vedoucím této bakalářské práce Ing. Pavlem Mautnerem, Ph.D., jsem se rozhodl o realizaci BCI (brain-computer interface), kde uživatel pomocí své mozkové aktivity zčásti ovládá pohyb robotické koule zvané Sphero 2.0, popsané níže. Mozkovou aktivitu sníma zařízení MindWave Mobile popsaný v teoretické části této práce. Dalším prvkem pro řízení koule je bezdrátový ovladač. Různé jednotky, která propojí všechna zmíněná zařízení v jeden celek, zastupuje mikropočítač.

5.1 Popis rozhraní

Navržené rozhraní je určeno pouze pro jednoho uživatele, který se snaží pomocí dvou zařízení uvést do pohybu robotickou kouli. MindWave Mobile umožňuje kromě snímání hrubých dat mozkové aktivity i detekci úrovňí kli dového stavu (zvýšení výskytu mozkové aktivity od 8 do 12 Hz) a pozornosti (mozkové aktivita od 12 do 15 Hz). Právě jedna z těchto dvou metrik bude použita pro určování rychlosti robotické koule. To znamená, že například při nízké úrovni pozornosti uživatele se bude koule pohybovat pomalu a čím bude pozornost vyšší, tím bude rychlost stoupat. Směr a další funkce budou řízeny ovladačem. Ideální by bylo pohyb koule ovládat výhradně mozkovou aktivitou. To však není možné ze dvou základních důvodů. Rozhraní je limi továno jednak čelenkou MindWave Mobile, která data sníma pouze jednou elektrodou, a jednak omezeným rozsahem této bakalářské práce. Návrh rozhraní umožňující detekci směru v 360 stupňovém úhlu by si žádal vyšší teoretické znalosti a volbu sofistikovanějšího snímacího zařízení. Roli mikropočítače bude zastupovat prakticky libovolné zařízení této kategorie s operačním systémem Linux. Rozhraní bude testováno na mikropočítačích dostupných v neuroinformatické laboratoři. Tímto způsobem definuji další technická specifik pro zajištění funkčnosti. Obrázek 5.1 zobrazuje jednoduché schéma navrženého rozhraní.
5.2 Sphero 2.0

Obrázek 5.1: Diagram návrhu rozhraní

Obrázek 5.2: Sphero 2.0 [7]

Obrázek 5.3: Náhled do konstrukce [7]
5.3 Ovladač

5.4 Software

Pro implementaci navrženého rozhraní jsem zvolil programovací jazyk C++ s využitím multiplatformních volně dostupných knihoven Qt. Volbu odlučuje možnost přímé manipulace s obsahem operační paměti a objektového programování. Knihoven Qt bude využito pro implementaci grafického uživatelského rozhraní, práci se sériovými porty a pro další dílčí operace, například práci s řetězcem.

Při návrhu programu byla shledána potřeba pracovat s více vlákny. Mezi mikropočítačem a ostatními zařízeními bude probíhat komunikace v jeden okamžik. Tato nutnost vytváří další podmínku pro zvolený programovací jazyk, kterou je podpora konstrukcí pro operace nad sdílenými zdroji programu. Sdíleným zdrojem může být například robotická koule *Sphero 2.0*.

5.5 Způsob ovládání rychlosti robotické koule

Program rozhraní mezi mozkem a počítačem je navržen tak, aby rychlost robotické koule bylo možné určovat jak úrovní soustředění, tak i úrovní klidového stavu. Po konzultaci se zadavatelem této bakalářské práce jsem došel k závěru, že bude vhodné využívat pro tuto aplikaci pouze úroveň koncentrace. V situaci, kdy uživatel bude chtít s robotickou koulí překonat nějakou překážku či zvýšit rychlost na maximum, je logičtější využít úroveň soustředění. Uvedení robotické koule do pohybu v klidovém stavu uživatele je mnohem obtížnější. Souvisí to také s tím, že klidový stav lze nejlépe navodit zavřením očí, čímž dojde k přerušení vizuální kontroly pohyblivého objektu.
6 Implementace

6.1 Popis programu

Funkce rozhraní bude zašit’ovat jeden program vytvořený v programovacím jazyce C++. Tyto funkce se dají rozdělit do tří základních skupin. Sběr dat uživatele (mozková aktivita a události ovladače), logika programu, grafické uživatelské rozhraní a odesílání řídících paketů robotické kouli Shero 2.0. Logikou programu mám na mysl definici chování robotické koule vyvolané podměty uživatele a operace k tomu potřebné. V následujícím zjednodušeném diagramu interakcí jsou naznačeny třídy, které implementují sběr dat a logiku programu. Grafické uživatelské rozhraní je pro primární funkce vedlejší.

Obrázek 6.1: Zjednodušený diagram interakcí tříd programu
6.2 Diagram tříd

Stručný komentář k diagramu zní takto: Třída main spustí grafické uživatelské prostředí (Main Window) a třídu Composer, která poté vytvoří instanci Controller (objekt ovladače) jako nové vlákno programu. Následně spustí třídu Mindwave představující objekt pro členku snímačící elektrické potenciály mozku. Instance třídy pro ovládání Sphero 2.0 je vytvořena v třídě Composer, ale má vazbu i s třídou RollSphero. Přesné vysvětlení všech vazeb a nejdůležitějších metod následuje v dalších podkapitolách.

6.3 Popis třídy Sphero

Tato třída představuje objekt, který implementuje konstrukci a následné odesílání řídících paketů určené robotické kouli. Ve třídě vlastnící instanci tohoto objektu pak programátor volá jednotlivé funkce, například pro změnu barvy, viz dále. Třída je navržena tak, aby ji bylo snadné přenést do jiného projektu. Nemá tedy žádné vazby na jiné části kódu. Příprava instance před samotným ovládáním robotické koule vypadá následovně:
Implementace Popis třídy Sphero

```cpp
int Sphero::connect_sphero(char *fdP) {
    fd = open(fdP, O_RDWR | O_NOCTTY | O_SYNC);
    if (fd == -1) {
        printf("Unable to open sphero: %s\n", fdP);
        return 1;
    }
    return 0;
}
```

Jedním parametrem metody je řetězec, který představuje cestu z kořenového adresáře operačního systému k emulovanému sériovému portu protokolu RFCOMM. Na tomto portu je připojeno Sphero 2.0, viz příloha B Uživatelská příručka. Pomocí systémového volání open se tento port (soubor) otevře s nutnými příznaky. Následnou podmínkou metoda otestuje úspěšnost této procedury. Dalším krokom pro správnou konfiguraci emulovaného sériového portu je spuštění metody init(). Zde se nastavuje celkem 21 příznaků, kterými se optimalizuje tzv. „Raw mode”, to znamená, že příchozí data nejsou sestavována do řádků.

6.3.1 Řídící pakety

Řídící pakety slouží pro přenos každé instrukce prostřednictvím technologie bluetooth. Popis konstrukce každého paketu pro specifický příkaz je popsán v dokumentu komunikačního API společnosti Orbotix Inc. [5] Na 56stranách jsou shrnuty všechny možnosti využití potenciálu tohoto zařízení. Struktura řídících paketů je následující:

SOP1 - Začátek paketu. Vždy nastaveno na 0xFF.

SOP2 - Specifikace vlastností zprávy. Například nutnost potvrzení, či synchronita/asynchronita zprávy.

DID - Identifikační číslo zařízení.

SEQ - Část se sekvenčním číslem potřebná pro synchronizaci zpráv, tedy potvrzením této zprávy.

DLEN - Délka datové části.
Implementace Popis třídy Sphero

<data> - Specifická data pro konkrétní příkaz. U příkladu pro změnu barvy robotické koule by to byla hodnota RGB v hexadecimálním tvaru.

CHK - Kontrolní součet paketů zajišťující konzistenci dat.


```cpp
1 int Sphero::send_to_sphero(int fd, byte msg[], int size){
2     sem->acquire(1);
3     write(fd, msg, size);
4     sem->release(1);
5     return 0;
6 }
```

Uvedená metoda je privátní s třemi parametry. Cílový soubor pro zápis (emulovaný sériový port), zpráva a velikost této zprávy.

6.3.2 Metody pro ovládání Sphero 2.0

int set_head(int newX, int newY) : z dat získaných z ovladačem tato metoda vypočítá vektor směru pohybu požadovaný uživatelem v souřadnicovém systému dvou os. Ten je pak reprezentován úhlem k ose x, který je následně odeslán robotické kouli. Návrhová hodnota slouží pro detekci neočekávané chyby podobně jako u následujících metod.

int set_speed(int value) : Z mozkové aktivity uživatele je odvozena rychlost pohybu na intervalu $<0,128>$, která je touto metodou přiřazena soukromé proměnné této instance.

int roll(int value) : Metoda sestavuje příkaz k pohybu robotické koule s parametry směru a rychlosti pohybu. Tyto hodnoty jsou získány pomocí předchozích metod.

int set_frontPos() : Pro přirozené ovládání je nutné vycentrovat robotickou kouli. To znamená stanovit, v jakém směru je robotická koule vůči...
uživateli. Po natočení zadní části robotické koule přímo proti uživateli se uloží aktuální úhel. Tímto způsobem je pak zaručeno, že například při pohybu ovládacího prvku doprava se robotická koule otočí taktéž doprava.

\texttt{int set_stabilization(int boolean)} : 	extit{Sphero 2.0} disponuje mechanismem, který umí udržovat zařízení při pohybu stabilní a v rovnovážné poloze. Parametrem metody programátor zapne nebo vypne tuto funkci.

\texttt{int set_color(int red, int green, int blue)} : V konstrukci 	extit{Sphero 2.0} je obsažena sada tří LED diod a v kombinaci s průsvitným obalem koule lze docíлит barevného efektu. Barva je prvkem modelu RGB. Vstupními parametry se určí intenzita jednotlivých složek na intervalu <0,255>.

\texttt{int set_back_led(int bright)} : Orientace robotické koule je určována postranní LED diodou modré barvy. Vstupní parametr určuje jas, jakým má dioda svítit.

6.4 Popis třídy Mindwave

V této třídě jsou implementovány metody, kterými programátor získá data poskytnuta 	extit{EEG} snímačem 	extit{MindWave Mobile}. V třetí kapitole této práce je zmíněn modul ThinkGear TGAM1 ASIC, čip uvnitř zařízení, který naměřené hodnoty biologického původu zpracovává do použitelných datových toků a následně je odesílá přes bezdrátovou technologii bluetooth. Pro zpracování těchto dat na straně přijímací výrobce poskytuje zdrojový soubor s názvem ThinkGearStreamParser. Ten přijatá data „parsuje“ podle výrobce stano-veného protokolu komunikace. Třída Mindwave otevírá emulovaný sériový port s připojeným zařízením a následně zprostředkovává získaná hrubá („neparsovaná“) data tříde ThinkGearStreamParser tak, aby pomocí konstrukce signál/slot knihovny Qt výsledná data opět získala a uchovávala aktuální hodnoty pro další použití.

6.4.1 Otevření emulovaného sériového portu

Při implementaci této části programu byl využit stejný přístup jako u komunikace se zařízením \textit{Sphero 2.0}. Použití systémového volání \texttt{open()} s příslušnými příznaky přenosu však přineslo komplikaci. Ze získaných dat bylo
možné číst pouze hrubá data naměřených elektrických potenciálů. Pro účely této práce bylo nutné využívat eSence data, kterými jsou hodnoty úrovně koncentrace a klidového stavu (meditace). Rozhodl jsem se tedy pro využití QSerialPort knihovny Qt. Ta zmíněný problém odstranila.

1 port = new QSerialPort(mindP);
2 if (port->open(QIODevice::ReadOnly)) {
3 port->setBaudRate(QSerialPort::Baud57600);
4 port->setDataBits(QSerialPort::Data8);
5 port->setStopBits(QSerialPort::OneStop);
6 port->setParity(QSerialPort::NoParity);
7 printf("Port opened\n");
8 } else printf("Failed to open\n ");

Parametrem mindP se předá cesta k emulovanému sériovému portu. Poté se tento port otevře v režimu čtení a nastaví se příslušné příznaky přenosu.

6.4.2 Třída ThinkgGearStreamParser

1 parser=new ThinkGearStreamParser(PARSER_TYPE_PACKETS);

6.4.3 Signály a sloty

Tyto konstrukce propojí jednotlivé objekty (jejich metody). První objekt spustí za předem definovaných okolností metodou signalizační (signál) metodu druhého objektu (slot). Objekty jsou tedy propojeny vazbou, která přechází čekání na určité události například v cyklu.
Implementace

Popis třídy Controller

1. connect(port, SIGNAL(readyRead()), this, SLOT(onDataAvailable()));
2. connect(parser, SIGNAL(attentionSig(int)), this, SLOT(onAttentionAvailable(int)));
3. connect(parser, SIGNAL(meditationSig(int)), this, SLOT(onMeditationAvailable(int)));
4. connect(parser, SIGNAL(noiseSig(int)), this, SLOT(onNoiseSig(int)));

První řádek způsobí signalizaci instanci ThinkgGearStreamParser v případě, že jsou dostupná nová data pro zpracování. Zbylé tři řádky signalizují skutečnost, že vstupní data jsou již zpracována. Hodnoty koncentrace, klidového stavu a kvality naměřených dat jsou uloženy do soukromých proměnných objektu MindWave. Přístupná jiným třídám jsou pak pomocí metod s prefixem „get“.

6.5 Popis třídy Controller

6.5.1 Otevření souboru ovladače

Po připojení bluetooth adaptéru ovladače se ve složce /dev/input/by_id/ vytvoří soubor odkazu na připojené zařízení. Systémovým voláním v režimu čtení se tento soubor otevře.

1. joystick = open(joyP, O_RDONLY);
2. if (joystick == −1) {
3. printf("Unable to open: %s\n", joyP);
4. //close(fd);
5. return 1;
6. } else {
7. printf("joystick init done\n");
8. }
6.5.2 Získání nové události ovladače

Události vyvolané stisknutím tlačítka se v programu získávají strukturou input_event knihovny linux/input.h. Ta funguje tak, že po použití systémového volání read, které čte ze souboru odkazu na zařízení, samostatně rozdělí vstupní data do přehledné struktury, a to na typ události, kódové označení události a na její hodnotu. Tak lze jednoduše a jednoznačně určit, jaké tlačítko bylo právě stisknuto, případně v jakém úhlu byl knípl natočen. Nevýhodou je však případ souvislého stisku tlačítka. Ovladač vyvolá pouze událost poslední změny. To znamená, že ve chvíli, kdy uživatel drží tlačítko stále v jedné poloze, nová událost se vyvolá až při změně stavu. V situaci, kdy jeden řídící paket vyvolá pohyb Sphera 2.0 jen po krátké dráze, stává se tato vlastnost ovladače problémem. Po analýze této komplikace jsem došel k závěru, že bude nutné vytvořit další vlákno programu (třída RollSphero), které bude popsaný děj kompenzovat. Programové řešení je jednoduché, avšak vhodnější by bylo vytváření nové události periodicky, například po každé vteřině.

6.5.3 Metoda run()

Metoda je vykonávána samostatným vláknom programu. Obsahuje kromě vytvoření potřebných instancí (Sphero a RollSphero) nekonečný cyklus, který v každém kroku získá novou událost ovladače a podle typu této události rozhodne o reakci na tuto událost, případně předá parametr události příslušným metodám. Příkladem je například změna směru Sphera 2.0, kdy se natočením kníplu ovladače vyvolá událost s parametry souřadnice polohy kníplu v souřadnicovém systému x, y. Tyto hodnoty jsou předány třídě Sphero, kde je následně vypočítán směrový vektor a jeho úhel vůči ose x.

6.6 Popis třídy RollSphero

Instance třídy je vlastněna třídou Controller a po jejím vytvoření pracuje ve vlastním vláknu programu. V předchozí podkapitole je naznačen důvod její existence. Pokud chceme zaručit souvislý pohyb robotické koule, je nutné, aby řídící paket pro pohyb („skok“) Sphera byl odesílán opakovaně, v našem případě po 50 milisekundách. Optimální hodnota je odvozena z průběžného testování programu.
Rychlost robotické koule je v této třídě odvozena hodnotou koncentrace získanou ze snímací čelenky MindWave Mobile a z konstanty obtížnosti. Optimální hodnota konstanty je získaná z testování, kterým se tato práce věnuje v další kapitole (7. kap. Testování BCI). Řídící paket pro pohyb je pak odeslán pod podmínkou, že je právě stisknuto tlačítko na ovladači, kterým uživatel dává najevo svůj požadavek pro pohyb. Tato podmínka je tu z toho důvodu, aby robotickou kouli bylo možné zastavit nezávisle na úrovni koncentrace.

6.7 Grafické uživatelské rozhraní

7 Testování BCI

Po dokončení implementace dle návrhu rozhraní bylo nutné nechat otestovat tento program uživateli. Výběr testovacích subjektů je náhodný, minimální počet subjektu je deset. Před samotným testováním byl sestaven testovací protokol, který obsahuje základní informace o rozhraní a seznam testovacích úkolů, který musí subjekt plnit v přesném pořadí. Jednotlivé úkoly byly voleny tak, aby byla otestována každá funkce. Počet testovacích subjektu je dle mých dosavadních zkušeností s tímto rozhraním dosti důležitý, a níže komentované výsledky toto potvrzují (viz podkapitola 7.3 Analýza nasbíraných dat).

7.1 Testovací scénář

Testovací scénář obsahoval celkem 8 úkolů. 4 úkoly s označením „A“ sloužily k otestování funkcí spojených s ovladačem a robotickou koulí. 3 úkoly s označením „B“ testovaly funkce snímací čelenky a grafického uživatelského rozhraní. Poslední úkol s označením ”C1“ dovoloval testovacímu subjektu nakládat s ovládacími prvky a robotickou koulí dle vlastního uvážení, což může odhalit i chyby mimo rozsah sedmi předchozích úkolů.

A1 - Levým kníplem na „gamepadu“ zkuste rotovat robotickou koulí kolem své osy.

A2 - Pomocí rotace najděte modré svítící bod na konstrukci robotické koule. Následně tento bod vycentrujte přímo proti sobě.

A3 - Stiskněte tlačítko na ovladači s označením „X“ (tlačítko pro centrování koule). Zkontrolujte, zda na robotické kouli proběhla světelná signálizace.

B1 - Na monitoru se zobrazuje graf snímané koncentrace. Zkuste se dostat nad hranici 50%.

B2 - Stiskněte na přední pravé straně ovladače spodní tlačítko a následně zvyšte svoji koncentraci. Sledujte pohyb robotické koule.

A4 - Otočte se o 90 stupňů a zkuste robotickou kouli vycentrovat pomocí tlačítka „X“.
B3 - Zkuste si sejmout z hlavy čeleknu MindWave Mobile a sledujte reakci aplikace. Poté čeleknu opět nasadte a otestujte funkce.

C1 - V okruhu 10 metrů od mikropočítače libovolně testujte ovladatelnost robotické koule.

V popisu úkolů se vyskytují nepřesné výrazy jako například „knipl“ či „vycentrovat“. Testovacím subjektům bude v případě nutnosti výraz upřesněn. Na konci testovacího protokolu má subjekt možnost se vyjádřit k průběhu celého testu a zmínit, jaká vidí pozitiva či negativa tohoto rozhraní.

7.2 Výstup testování

Data z testovacích formulářů jsou v této podkapitole řazena tak, že jednotlivým úkolům jsou připsány takové reakce, které jsou důležité pro analýzu testování. Kladné reakce (úkol byl splněn bez potíží) se v tomto výpisu neuvádějí.

A1

Subjekt č. 1 - „Chvíli mi trvalo pochopit, jakým způsobem se ovládá ovládá.“

A2

Subjekt č. 2 - „Musela jsem si úkol přečíst vícekrát. Poté bez problému.“

Subjekt č. 1 - „Ovládá působil citlivěji.“

Subjekt č. 9 - „Koordinace směru někdy nepřesná.“

Subjekt č. 10 - „Modře svítící bod jsem z počátku téměř nemohla najít. Poté už bez problému.“

B2

Subjekt č. 6 - „Koordinace úkolů dohromady byla občas náročná.“

Subjekt č. 7 - „Koule se rozjede až po nějaké době.“

Subjekt č. 9 - „Pohyb je při vetší koncentraci rychlejší, ale udržet ji je téměř nemožné.“
Testování BCI

Analýza nasbíraných dat

A4

Subjekt č. 2 - „S tímto úkolem nebyl problém, až na zadání.“

C1

Subjekt č. 1 - „Při pohybu koule jsem stiskl tlačítko pro centrování a koule přestala reagovat.“

Subjekt č. 5 - „Při soustředění koule nabírá rychlost pomalu. Zejména z klidového stavu.“

Subjekt č. 7 - „Ovládání robotické koule mi moc nešlo.“

Závěrečná vyjádření všech subjektů byla převážně pozitivní a s ovládáním robotické koule neměl nikdo markantní potíže. Při průběhu testů byl problém upvennění členky na hlavu téměř u všech subjektů. S rozložením ovládacích prvků na ovladači byl nespokojený pouze testovací subjekt č. 7, kterému by vyhovovalo ovládání směru pravou rukou. Digitální kopie vyplněných testovacích scénářů jsou dostupné na přiloženém DVD.

7.3 Analýza nasbíraných dat

Špatná srozumitelnost otázek byla z části způsobená špatnou terminologii pro popis ovládacích prvků a z části nedostatečným vysvětlením některých úkonů. Konkrétní ovládání prvky se měly označit například barevnými nálepkami, což by výrazně porozumění otázce podpořilo. Nicméně subjektům jsem některé úkony v případě nutnosti konkretizoval verbálně.

Malé zrychlení z klidového stavu bylo způsobené v některých případech tím, že testovací subjekt nedokázal delší dobu udržet konstantní hodnotu zvýšené pozornosti. Robotická koule s gumovým ochranným obalem pak měla potíže s uvedením do pohybu kvůli členitým povrchu obalu.

Zátěžové testování mikropočítače vytvořeným BCI

Zátěžovým testováním mikropočítače je myšleno získání maximálních, minimálních a průměrných hodnot vytížení CPU a RAM při plném využívání všech funkcí vytvořeného BCI. Z výsledků lze pak rozhodnout, zda bude možné v budoucnu použít pro běh více spuštěných rozhraní pouze jeden mikropočítač. Jako velmi praktické a finančně nenáročné se jeví řešení, kdy by více uživatelů mohlo obsloužit pouze jedno výpočetní zařízení. Propojením ovládacích prvků a snímacího zařízení pomocí technologie bluetooth je tato myšlenka limitována pouze výpočetní a paměťovou kapacitou zařízení. Proto je vhodné, snažit se o co nejnižší hardwarové požadavky programu rozhraní.

Zátěžový test proběhl na zařízení CubieTruck Cubieboard 3. Toho zařízení disponuje dvoujádrovým ARM procesorem Cortex-A7 s taktováním na 1 GHz a 2 GB DD3 operační pamětí o frekvenci 480 Hz. Použitým operačním systémem je Linux Debian s verzí jádra 3.4.103+. Po spuštění programu se monitorovalo aktuální vytížení zařízení s frekvencí 1 Hz po dobu 5 minut.

Maximální vytížení CPU - 3,3 %
Minimální vytížení CPU - 2,2 %
Průměrné vytížení CPU - 2.3605 %
Maximální vytížení RAM - 12,2880 MiB
Minimální vytížení RAM - 12,2880 MiB
Průměrné vytížení RAM - 12,2880 MiB

Z celkem 300 uložených záznamů bylo možné dojít k těmto hodnotám. Jak je vidět, vytížení procesoru bylo sice lehce kolísavé, ale i maximální hodnota získaná v počátku měření, tedy při spuštění procesu, se držela velmi nízko. Alokovaná operační paměť RAM byla za celou dobu měření konstantní. V ideálním případě by mohla být ještě nižší, avšak i tato hodnota je připustná. Z měření lze dojít k závěru, že pro spuštění několika rozhraní souběžně lze nasadit jeden mikropočítač.
Ovšem dalším ještě nezmíněným aspektem tohoto problému je počet jader procesoru. Program se dělí na celkem 4 vlákna. To znamená, že i přes relativně nízkou výpočetní a paměťovou náročnost jsme limitováni právě počtem jader. To se však týká jen případu vysokého počtu spuštěných rozhraní.
9 Diskuze dosažených výsledků

Rozhraní mezi mozkem a počítačem bylo úspěšně implementováno. Nicméně všechna moje očekávání se mi splnilo nepodařilo. V této kapitole stručně popišu tři základní nesplněné body v plánu implementace.

Po dokončení implementace programu jsem se zaměřil na tvorbu skriptu v jazyce bash. Skript měl sloužit jako nástroj, který obstaráva automatické připojení bluetooth zařízení k mikropočítači a následné spuštění programu s příslušnými parametry. Skript však měl dvě zásadní vady. Nemohl jsem zaručit jeho přenositelnost i na jiné zařízení s linuxovou distribucí, protože předpokladem pro chod byl nainstalovaný program RFCOMM. Dále připojování bluetooth zařízení nebylo dostatečně spolehlivé. Z časových důvodů jsem vývoj skriptu ukončil.

Posledním nedostatkem řešení praktické části práce shledávám neúplné využití potenciálu robotické koule Sphero 2.0. V dokumentu s popisem Orbotix Communication API jsou definovány funkce a nastavitelné vlastnosti robotické koule, které by mohly ovládání uživateli zatraktivnit. Bohužel je nebylo možné z časových důvodů využít. Pomocí řídících paketů lze například nastavit rychlost rotace. Další funkce, která by mohla být široké využití, je detekce kolizí. Robotická koule by tak při nárazu odeslala informaci, s kterou by se pak dále pracovalo.
10 Závěr

Vlastnosti snímače *MindWave Mobile* jsem v teoretické části dle zadání popsal a též jsem charakterizoval základní termíny oboru neuroinformatiky. Dále jsem provedl srovnání tří populárních mikropočítačů. Snažil jsem se jak o srovnání na základě technických parametrů, tak o porovnávání téchto zařízení i v obecné rovině. To znamenalo zohlednit parametry i jiného rázu než technického, například kvalitu vývojářské komunity. První úkol zadání byl tedy splněn.

Ve spolupráci EEG snímače a vytvořeného programu uživatel na základě své mozkové aktivity ovlivňuje určité déje. Pojem rozhraní mezi mozkem a počítačem tak byl úspěšně naplněn. Navrhl jsem rozhraní, které má požadované parametry dle zadání.

Podle dalšího bodu zadání byl program testován na dostatečném počtu osob a některé poznatky byly použity pro opravu nedostatků programu. Subjekty při plnění úkolů reagovaly převážně kladně. Vyskytla se pouze jedna závažná chyba, jejíž příčinu jsem téměř ihned odhalil a poté provedl nutné úpravy zdrojového kódu.

Veškeré body zadání tato bakalářská práce splňuje. To znamená, že jsem s jejím obsahem i výsledným programem celku spokojen.
Literatura

A Seznam zkratek

ARM - Advanced RISC Machine
BCI - Brain-Computer-Interface
SBC - Single-Board-Computer
EEG - Elektroencefalogram
EMG - Elektromyografie
DDR3 - Double-Data-Rate 3
NAND - Not AND
RISC - Reduced Instruction Set Computing
UML - Unified Modeling Language
SRM - Sensorimotor Rhythm
UART - Universal synchronous/asynchronous Receiver and Transmitter
NAS - Network Attached Storage
GPIO - General-Purpose Input/Output
UEXT - Universal EXTension
I2C - I-squared-C, Inter-Integrated Circuit
SPI - Serial Peripheral Interface
GPS - Global Positioning System
CVBS - Composite Video Blanking and Sync
LRADC - Analog to Digital Converter integrated into processor
PS2 - Rozhraní pro myš a klávesnici
PWM - Pulse-Width Modulation
TS/CSI - Top Secret/Sensitive Compartmented Information
IRDA - Infrared Data Association
VGA - Video Graphics Array

HDMI - High-Definition Multimedia Interface

USB - Universal serial bus

GNU - GNU’s Not Unix

ISP - In-System Programming

RFCOMM - Radio Frequency COMMunication

API - Application Programming Interface

CPU - Central Processing Unit
Obrázek B.1: Diagram tříd – první část
Obrázek B.2: Diagram tříd – druhá část
Obrázek B.3: Grafické uživatelské rozhraní
C Uživatelský manuál

Tento manuál slouží pro popis přesného postupu, který umožní úspěšný překlad programu rozhraní (BCI) a připojení bluetooth zařízení MindWave Mobile a Sphero 2.0. Poslední podkapitola pojednává o způsobu spuštění programu, popisu grafického uživatelského rozhraní a ovládání.

Minimální požadavky programu

Program lze spustit na zařízení s těmito minimálními požadavky:

- Mikropočítač disponuje procesorem ARM.
- Mikropočítač disponuje operační pamětí RAM o velikosti minimálně 512 MB.
- Operačním systémem je Linux.
- Nainstalovaný framework Qt verze 4 a vyšší.
- Bluetooth adaptér.
Překlad

Spuštěte terminál a přejděte do složky „sphero_mindcontrol“ se zdrojovými soubory. Dále zadejte tyto příkazy:

1. qmake ../source/BCI.pro -r -spec linux-g++
2. clean -w int ../source/

V případě potíží spusťte Qt Creator, otevřete soubor BCI.pro a nastavte parametry překladu dle zmíněných příkazů.

Připojení zařízení bluetooth

Pro připojení zařízení je nutný program RFCOMM. Před samotným připojením získajte MAC adresu již zapnutého zařízení s tímto příkazem: hcitool scan
Tento příkaz vypíše všechna dostupná zařízení s jejich MAC adresami. Jako parametry programu RFCOMM zadejte port a adresu například takto:

1. rfcomm connect rfcomm1 74:E5:43:9C:62:11

Po úspěšném připojení se zobrazí tento výstup:

1. Connected /dev/rfcomm1 to 74:E5:43:9C:62:11 on channel 1
2. Press CTRL-C hangup
Spouštění programu

Po připojení zařízení MindWave Mobile a Sphero 2.0 připojte do portu USB adaptér ovladače. Nyní lze spustit program rozhraní pomocí skriptu „start_bci“ s těmito parametry:

- Cesta k souboru emulovaného portu Sphero 2.0.
- Cesta k souboru emulovaného portu MindWave Mobile.

Například taktéž: ./start /dev/rfcomm0 /dev/rfcomm1

Skript zajistí spuštění programu, který zobrazí jednoduché grafické uživatelské rozhraní. Je složeno z grafu, který zobrazuje průběh úrovně koncentrace v čase. Dále hodnotu kvality signálu, která musí být větší nebo rovna 75. Dále pak číselnou hodnotu úrovně pozornosti. Pro pohyb robotické koule musí být úroveň pozornosti minimálně na hranici 30 % bez gumového ochranného obalu.

Obrázek C.1: Grafické uživatelské rozhraní programu.
Ovládání robotické koule

Směr - Směr pohybu koule lze určit levým polohovatelným kníplem ovladače.

Rychlost - Rychlost je odvozena z úrovně koncentrace snímané zařízením MindWave Mobile. Po zvýšení koncentrace je ještě nutné stisknout spodní tlačítko na pravé čelní straně ovladače.

Nastavení orientace koule - Pro přirozené ovládání je nutné seřídit orientaci robotické koule. Pomocí změny směru nastavte polohu modré svítícího bodu na boční straně koule přímo proti sobě. Poté stiskněte tlačítko s označením „X“. Světelná signalizace znamená úspěšné nastavení orientace.