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Abstract: The perfect analogy allows solving of heat transfer problems by a lot of advanced methods of electrostatics or circuit 
theory for simple cases. Two quantities can be computed in principle: electric potential or electric field strength, which corresponds 
to two driving quantities: voltage or electric charge. The potential calculation in practical tasks needs the use of finite element 
method. However, if we consider the charge approach, the analytical solution can be found in several technical arrangements, or the 
integration can be applied successfully. This approach has many advantages against the potential one. As an important practical 
result, the correction factor for finite dimension plate capacitor was found. Its value is in good agreement with that given in 
literature. Practically, we can correct the permittivity or heat conductivity measurement in standard apparatus. In the future, the 
effect of material voids on thermal conductivity will be studied. 
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INTRODUCTION 

An analogy is used in many technical areas, since it 
allows a simple and effective solution of many practical 
tasks. Full analogy between heat transfer and electro- 
technical science exists, but to our knowledge, it was not 
used in its full extent. An example of simple analogy was 
found in Ref. [1]; equivalent circuit with concentrated 
parameters consisting of resistor and capacitor models 
simple heat transfer problem. More precise approach 
should consider equivalent circuit with distributed 
parameters. The most general approach, complete 
analogy between electrostatic field and heat transfer, is 
given in detail in Ref. [2]. Using suitable approach, 
technical problem of heat transfer can be solved simply 
and efficiently. 

In this paper we present an example of specific 
application of general form of analogy. Important 
problem in heat conductivity measurement is finite 
dimensions of sample. The analogous of heat 
conductivity measured sample is the capacitor with 
dielectric. The basic simple formula for capacity should 
be corrected and the result can be used for correction in 
heat transfer measurement. Simple numerical method for 
the correction coefficient finding is presented in the 
paper. 

The theoretical part focuses to methods for analytical 
solution of electrostatic field exited by charged fibers and 
simple plates. The numerical part shows how the speed of 

integration can increase. Then some interesting results are 
presented and discussed.  

1 THEORY 
Depending on considered source, the electrostatic 

field of capacitor can be solved by two basic methods: 
potential or field strength. The potential approach should 
be preferred, if voltage is given, which corresponds to 
condenser with metallic plates. In this case the analytical 
solution cannot be found practically and finite element 
method (FEM) is necessary for approximate solution.  

If the charge is given, the field strength calculation 
appears as the best decision. The corresponding technical 
task is the analogous model for heat transfer. In the 
experiment heat source of constant heat flux density 
usually acts on the specimen. In this case the solution of 
the electrical model can be analytical in some cases, 
otherwise numerical integration is necessary. It results in 
potential or field strength. 

If the potential is given, the task to find field strength 
requires the numerical derivation, followed by big 
numerical errors. On the other hand, the potential can be 
simply and accurately calculated from field strength by 
numerical integration that smoothes errors. Therefore we 
use the field strength approach, although the formulae are 
more complicated.  

The superposition principle is used for field strength 
calculation. Let us suppose that charge element dQ=σdS 



 
is at surface dS with position vector ro. Symbol σ denotes 
the surface charge density. The contribution of this 
elementary charge to electric field strength E at point of 
position vector r  is given by formula     

dSd 3
0 ||4

1)(
0

0

rr
rrrE

−
−

= σ
πε

 (1) 

where εo is the permittivity of vacuum.  
In calculations the formula (1) has two types of 

coordinates. If field vector r has coordinates (x, y, z) = r 
and the material vector ro is written as ro = (xo, yo, zo), the 
vector difference has the form  
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and the distance between field and material points is  
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General formulae above will be used in three practical 

cases: 
1. Uniformly charged fibre. 
2. Rectangular plate of uniform surface charge 

density. 
3. Uniformly charged circular plate. 

The total field strength can be obtained by integration. 
In simple cases, analytical formula can be obtained. 

  
1.1 Uniformly charged fibre. 

 
If a thin straight fibre is charged by constant linear 

density η, the analytical integration is possible. The fibre 
is positioned at X axis, begins at point –a and ends at 
point a, Fig. 1. The field has cylindrical symmetry; 
therefore it can be calculated in plane XZ. Field strength 
components Ex and Ez are given by analytical formulae 
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Fig. 1: Problem of charged  fibre. 

 
1.2 Rectangular plate 

 
Let the plate parallel with plane XY is positioned at 

distance zo from origin. Its centre is in the Z axis of 
coordinate system. The length in the direction of X axis is 
2a and for the direction of Y axis it is 2b, Fig. 2.  

 

 
Fig. 2: Coordinates for charged plate. 

 
If the charge density σ is constant, the formula for x-

component of electric fields strength has the from  
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The integration must be performed two times. For 
simplicity we rewrite the formula (6) into simpler form1 
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where the contribution from strips along X axis is given 
by formula  
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The analytical integration of (8) is possible and gives 

the result  
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where the following symbols were used for simplicity 
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1 The contribution dEx has not dimension of electric field 

strength. However, for simplicity and clearance, new 
symbol was not used. The same is true later for formula 
(16).  



 
 

These symbols do not contain integrating variable yo. 
Therefore, they are constant for integration according yo. 

After substitution from (9) and (10) into general 
formula (7), we get the general result 
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where 
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Symbols I+  and I- were used for simplicity 

The above integrals can be calculated analytically 
using the general formula  
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We have obtained an analytical formula for x 

component of electric field strength. The approach for y 
component is analogical, if we change the integration 
order in formula (6), i.e.  
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The calculation of z component is more complicated. 

The basic formula is  
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We will follow the derivation described for x 

component earlier. Again for simplicity we rewrite this 
formula into simpler form  

 

∫−=
b

b zz dEE
04πε

σ
   (16) 

 
where the contribution from strips along X axis is given 
by formula  
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The analytical integration of (17) is possible and gives 

the result  
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where the following symbols were used for simplicity 
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The definition of β are the same as for x component, see 
(10). These symbols do not contain integrating variable 
yo. Therefore, they are constant for integration according 
yo. 

After substitution from (18) and (19) into general 
formula (16), we get the general result 
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where 
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The above integrals can be calculated analytically 

using the general formula  
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The result (22) was found by using system Mathematica 
for symbolic computation. Also, analytical solution was 
found for the z component of electric field strength, 
although it is much more complicated than the solution 
for two remaining components.  

Exact analytical solution for electric field strength 
exists in the case of rectangular plate. Superposition of 
fields of two parallel plates leads to analytical solution for 
plate condenser.   

 
1.3 Circular plate  

 
In principle, for circular plate the analogical approach 

can be used as for rectangular one; from thin rings to the 
plate. However, any general analytical solution was not 
found, neither for rings. Therefore, here we only outline 
the basic formulae for numerical solution.  

The circular plate is positioned at plane XY for 
simplicity. Since the charge distribution and field 
symmetry is cylindrical, cylindrical coordinates should be 
used in calculation. For material parameters the 



 
coordinates are radius ρ, azimuthally angle φ and z 
coordinate zo. The relation between material Cartesian 
and cylindrical coordinates are given by formulae  
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The surface element in cylindrical coordinates is given in 
(23) for completeness. 

The formulae for components of field strength 
suitable for numerical calculation are the following ones  
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The only analytical solution of the set (24) is at the Z 
axis. In this case the z component is the nonzero one only 
and the following formula is valid for z component 
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The formula is given in each textbook, for instance [3]. 
For zero z coordinate the field of infinite plane is 
obtained, while for very long distances the field of point 
charge equal to the charge of the plate follows from 
formula (25). 

2  CALCULATION 
As for rectangular plate condenser the analytical 

solution has been derived for all cases. The final formulae 
are so complicated to be analysed in general. Numerical 
calculation is necessary in order to get necessary 
information. Since the programming is very simple, we 
do not focus to this case here. We only note that both the 
numerical integration and analytical formulae were used 
in order to find possible algorithm errors. Both the results 
were almost identical and optimisation of integration was 
found from comparison.  

The numerical solution of electric field in circular 
plate condenser is based on the integration of field 
strength element given by formula (24). The cylindrical 
coordinate system is used. The only exact check is the 
field strength at condenser axis given by analytical 
formula (25).  

In the calculation finite differences are used and 
defined by number of divisions Nr of radius and Nφ of full 
azimuth angle of 360o. Number of divisions of radius was 
fraction or multiple α of Nro = 500, while the base for 
azimuth angle was usually the same fraction or multiple 
of Nφo = 360. The basic angle difference was therefore ∆φ 
= 1o. 

Main problem of numerical integration is accuracy 
and speed. The accuracy depends on net finesse, the more 
net elements, the higher accuracy. On the other hand, the 
more elements, the lower speed. Relation between 
accuracy and speed should be found by the method of 
trials. We have investigated the relation for points on the 
circular desk axis, where exact values are known.  

The dependence of result of numerical integration on 
the number of net elements is given in Fig. 3. The 
number of elements in logarithmic scale is on the X axis 
of the graph in Fig. 3. The point on Z axis was in distance 
of 0.001R from plate, where R is radius of the plate. It is 
evident that the numerical value of summing converges to 
the theoretical one monotonically. The detail of the 
convergence at high values of elements is in Fig. 4. In 
this graph the integration time is on the X axis. The 
relative difference of 0.1 % requires about 200 s of 
calculation time of relatively slow computer with AMD 
processor, 1.33 GHz.  

 
Fig. 3: Convergence of numerical integration.  

 

 
Fig.4: Detail of convergence.  

 
The convergence for three different distances on Z 

axis (10, 1 and 0.1 mm) is in Fig. 5. The theoretical value 
is given by dashed line. The curves for given distance are 
distinguished by colour (green, blue and red 
respectively). It is evident from the Fig. 5 that the 
convergence depends on the distance from the plate, the 
closer the point, the worse convergence.  

Another point of view on convergence is in Fig. 6, 
where the result of integration for points on Z axis near 
the plate is compared with theory. The approximate 



 
theory is the approximation of formula (25) for distance z 
small in comparison with radius R. For z << R the 
following formula is valid   
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As it follows from Fig. 6, the difference between 

exact and approximate theory exists, but both of them 
converge to field strength for infinite plate as distance z 
converges to zero. However, the result of numerical 
integration is lower the theoretical value and the 
difference between theory and numerical calculation 
increases as the distance from plate decreases, the relative 
difference is shown in Fig. 7. The calculation in Fig. 6 
and 7 used Nr = 1500 = 3 Nro (α = 3) elements for radius 
and Nφ = 1080 = 3 Nφo elements for azimuth angle. If the 
number of elements decreases to half, i.e. α = 1.5, the 
maximum of difference increases to about 4 %, as it is 
shown in Fig. 8.  
 

 
Fig.5:  Convergence for different distances from plate.  

 

 
Fig.6: Comparison of numeric integration and theory. .  

 
It is evident from Fig. 3 to 8 that in order to get a 

good accuracy also near the plate, many elements must be 
used and the computer time will be very large. Therefore, 
another integration method is necessary    

Probably optimum solution of this problem is to 
divide plate area into two parts, as it is sketched in Fig. 9: 

1. The main contribution for a given point is from 
circle centred in its projection to plate, i.e. empty 
circle2 in Fig. 9. For this case exact analytical 
formula exists.  

2. The small correction from the rest of plate is 
obtained by numerical integration. The suitable 
integration grid is sketched in Fig. 9.  

 

 
Fig.7: Relative difference between numeric integration 

and theory, finer step.  
 

 
 Fig 8: Relative difference between numeric integration 

and theory, more coarse  step.  

 
Fig. 9: Optimum method for integration  

                                                 
2 Due to the incorrect aspect ratio, the circles have form 

of ellipses.  



 
.  

The comparison of standard and optimized method is 
in Fig. 10. The field strength is calculated on a vertical 
line parallel with Z axis at distance of 0.85R from it, 
where R is radius. For long vertical distances z from plate 
there is practically no difference between standard and 
optimized method, see also Fig. 11, where the relative 
difference between two methods is shown. However for 
short distances the optimized method is in good 
agreement with theory (Fig. 10), while the error of 
standard method is big (Fig. 11).  

 

 
Fig. 10: Comparison of standard and optimised 

methods 
 

 
Fig. 11: Relative difference between  standard and 

optimised methods 
 

The fast increase of field strength from standard 
method in Fig. 10 is in contradiction to its decrease in 
Fig. 6. The discrepancy is due to the position of points, 
where the field is calculated. The results in Fig. 6 are for 
Z axis, while the results in Fig 10 are for vertical line at 
distance of 0.85R (R is the radius) from Z axis, i. e. near 
the plate edge. The theoretical curves in Fig 10 are not for 
verification of calculations. They only show that 
optimised method is correct for small distances from the 
plate.  

The optimised method also exhibits an improvement 
for tangential component of electric fields strength as it is 
illustrated in Fig. 12. However, the relative difference 
between results of both methods is less than 1 %.  

 

3 RESULTS  
A lot of graphs mapping electric field strength in 

various directions for charged plates and condensers are 
the graphical and numerical outputs of the programs 
written in MATLAB. We will focus here to the field and 
capacity of circular plate capacitor. Its radius R has value 
R = 100 mm and distance between plates is d = 2 mm, 
therefore the plate distance is 1 % of diameter D = 2R.    

 

 
Fig. 12: Tangential component of field stretch by  

standard and optimised methods. 
 

The normal component, or Z axis component, of 
electric field strength in the direction parallel to Z axis 
(normal to plates) and for different distances from the Z 
axis is in Fig. 13.  

 
 

Fig. 13: Normal  component of field strength Ez of 
plate capacitor 

 
As it follows from Fig. 12, the normal component of 

electric field strength is practically uniform up to distance 
of 0.95R from Z axis of condenser; it means 90 % of plate 
area. Near the plate edges strong end effects exist.  

As it was shown in section Calculation, the optimised 
method calculates the electric field strength at given point 
from two parts: main part and correction. Main part Ezo is 
excited from the circle around the point projection and is 
given by analytical formula. The correction ∆Ez is 
obtained by numeric integration from the rest of plate. 
The correction is in Fig. 14. As we could expect, for 
central part (about 90 % of plate area) the correction is 



 
small and uniform. Near the edges the correction is large 
and non-uniform. Again end effects take a place.  

The tangential component of electric field strength 
for the same points as the normal component is in Fig. 
15. The tangential component is negligible up to distance 
about 0.85 R from the condenser axis, e. i. at more than 
70 % of plate area. On the other hand, near plate edges 
the tangential component is high and comparable with 
normal one.  

 

 
Fig. 14: Correction of normal  component of field 

strength ∆Ez of plate capacitor 
 

 
Fig. 15: Tangential  component of field strength Ex of 

plate capacitor 
 

The comparison of calculation and theory is in Fig. 
16. The theoretical values on condenser axis are about 1 
% lower than those of infinite plate or ideal condenser. 
The field at the distance of 0.85R from condenser axis is 
lower by about 2 % in comparison with axis. At higher 
distances the difference increases rapidly.  

Detail of relative deviation of the field at the distance 
of 0.85R from condenser axis and the field at the axis is 
in Fig. 17. The z component of the field is practically 
uniform. Fig. 18 presents the similar difference, but for 
distance of 0.95R from condenser axis. The difference is 
much higher, near 7 %, but the z component of the field 
strength is practically uniform again, its change is less 
than 0.5 %..  

 

 
Fig. 16: Theoretical and real electric field strength Ez  

of plate capacitor 
 

 
Fig. 17: Relative difference between field on 

condenser axis and at distance of 0.85R from it. 
 

 
Fig. 18: Relative difference between field on 

condenser axis and at distance of 0.95R from it. 
 

Probably, the most important result is the distribution 
of voltage along the plate radius, which is given in Fig. 
19. The voltage between plates can be calculated by the   
numerical integration (simple summation) of calculated 
values of the z component of electric field strength. The 
ratio of distance between plates and diameter is relatively 
high, 5 %, therefore it does not correspond to previous 
graphs. The choice of these capacitor dimensions was to 



 
enhance the graphs. The theoretical value for ideal 
capacitor axis is given by the horizontal dashed line. 

Relatively large distance between plates results in a 
big difference between real voltage and voltage of ideal 
capacitor, which has very large (theoretically infinite) 
dimensions of plates. Especially large end effects are 
obvious in Fig. 19. The voltage between plate edges is 
less than half of the value on condenser axis.   

 

 
Fig. 19: Voltage between circular plates  

 
The effective numerical integration allows calculating 

the capacity of finite dimension capacitors. Since the 
voltage in non-uniform, we suppose that the condenser 
consists of small parallel connected elementary capacitors 
and the resulting capacity is their sum. The correction 
factor δC necessary to multiply the result from standard 
formula for plate capacitor is in Tab. 1. In the ratio d/D 
the symbol d is the distance between plates and D = 2R is 
plate diameter. The values are in satisfactory agreement 
with those given in technical literature [3] (last row), if 
we take into account that the ratio of dimensions in not 
defined precisely in the literature.    
 
d/D [%] 0.5 1 2.5 5 10 15 
δC [%] 1.9 3.2 7.0 12.4 20.8 27.2 
δC Liter.  ~2   ~20  

 
Tab. 1: Correction factor for capacitance 

4 DISCUSSION  
In the paper we have focused to the determination of 

electric field of technical charged objects by the use of 
integral form of Maxwell equations of electrostatics. The 
solution was to use numerical integration. Another 
approach is to use the differential form of Maxwell 
equations and apply the finite element method (FEM).  

Several advantages of our approach, using integral 
form of Maxwell equations, exist: 

1. Integral approach leads to analytical solution for 
practically important charged objects, while the 
analytical solution of differential approach is 
only in very simple cases of low technical 
interest. 

2. The analytical solution is correct in every point. 

3. The integration can be performed in every point 
and the accuracy can increase according to 
demand. 

4. The FEM solution is in the set of points that 
cannot be selected and its accuracy is not 
known.  

5. The use of FEM results in the potential and then 
the field strength must be calculated by 
numerical derivation, which is imprecise.  

6. The FEM cannot respect the condition of zero 
potential in infinity3, while integration formulae 
include it automatically.  

7. The numeric integration results in field strength 
and the potential can be obtained by numerical 
integration, which reduces errors. 

On the other hand the disadvantage of integration 
approach is in these facts  

1. Constant charge density is supposed in order to 
get analytical formulae. The FEM uses constant 
potential, which is typical boundary condition in 
electrostatic field.  

2. The method of integration is limited to relatively 
simple structures, while the use of FEM is 
practically unlimited. 

Fortunately, the heat conduction analogy supposes 
constant charge density, which corresponds to constant 
heat flux used in typical experiments. The task of 
constant potential can be also solved. In this case the 
charge density changes, therefore the analytical solution 
cannot be applied. Since the charge distribution is not 
known, the semiautomatic method of corrections should 
be used in principle, but it requires a lot of computer 
time. In present time it is not a serious limitation, since 
parallel computer cooperation (cluster) is possible and the 
integration is probably the simplest task for the use of 
cluster.  

Also the limitation to relatively simple structures and 
models is not a strict one. In the measurement simple 
structures are necessary in order to get precise results. It 
is also well-known that simple models usually lead to 
surprisingly good agreement with experiment, 
irrespective of their simplicity. Furthermore, next 
improvement is possible by adding corrections to the 
simple model, but its initial simplicity is lost.  

In present work we limited to the calculation of 
vacuum condenser with constant charge density. The 
second limitation (constant charge density) was discussed 
above. The dielectrics can be included into model by 
several ways depending on its shape. If we consider thin 
layer of very large, theoretically infinite, lateral 
dimensions along X and Y axis, the electric field strength 
can be found by: 

1. Insertion of relative permittivity of dielectrics 
into formulae. 

2. Using the surface and volume coupled charges. 
They are proportional to electric field strength 
for supposed soft dielectrics.   

While the first approach can be used with high accuracy 
only inside the condenser, the second approach is valid 
everywhere. The simplest approximation is to suppose 
                                                 
3 Commercial FEM systems have possibility to simulate 

this condition.    



 
the uniform polarisation, which leads to uniform coupled 
surface charge and no coupled volume charge. Then the 
method given above can be used without modification. It 
is similar to the use of relative permittivity.  

The use of non-uniform surface and volume coupled 
charges complicates the integration as in the case of 
constant potential. But the corrections are simpler in this 
case, since the charges are proportional to electric field 
change, especially the surface one. For the volume 
coupled charge the numeric derivation of polarisation is 
necessary, which can lead to numerical errors. 

If the dielectric has finite dimensions that usually 
copy the shape of the electrode, boundary conditions 
must be satisfied on the free (not under the electrode) 
face of dielectrics: 

1. The tangential component of electric field 
strength must be continuous.  

2. The normal component of electric flux density 
must be continuous.  

Both these conditions can be satisfied approximately by 
the suitable choice of electric charges as in above cases. 
However, the calculation is considerably more 
complicated in this case.  

It should be stressed that the use of FEM for the 
condenser with dielectrics has the same problems and the 
inclusion of general boundary conditions, given above, is 
not simple.  

The correction factor in Tab. 1 derived for constant 
charge density is valid also for condenser of constant 
potential, since it is of no matter, what is constant. For the 
case of heat conduction analogy it corresponds to the case 
of large and thin layer of measured material. Side 
dimensions of material layer should be very large in 
comparison with dimensions of warming elements. The 
correction is approximately valid also for material of low 
heat conductivity and with the same dimensions as 
warming elements.  

The correction factor has relatively high values. It 
means that only very thin layers of dielectric or material 
in general should be used for correct measurement of 
permittivity or heat transfer coefficient.  

5 CONCLUSION 
The paper shows that the method of analytical or 

numerical integration is very useful for solution of basic 
problems of hest transfer using analogy with electrostatic 
field. It has many advantages in comparison with finite 
element method. In relatively simple arrangement 
analytical formulae for electric field strength calculation 
were derived.  

 
 
 
 
 
 
 
 
 
 
 
 

 
As a practical result the correction factor for capacity 

or heat conduction measurement was obtained. The value 
of the correction factor requires a very this layer for 
accurate measurement. In the case of circular electrodes 
or heating element the layer thickness should be less than 
1 % of diameter.  

This approach is valid for material of very low heat 
conductance. Otherwise the dielectric must be included 
into the electric condenser model. The dielectrics can be 
modelled by coupled surface or volume charges. 
Therefore, the solution is similar, but more complicated. 

Another case that has simple solution is the elliptic 
hole in dielectrics. Some preliminary results are in Ref. 
[2]. It can by used for the modelling of heat conductivity 
of porous medium.   
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