# ESTIMATION OF PARAMETERS OF <br> FERROMAGNETIC OBJECTS 

Dr. Ing. MirosŁaw Wołoszyn


#### Abstract

Ferromagnetic object placed in the earthly magnetic field causes additional disturbance of the distribution of this field all around itself. The determination of the position and the value of the extremes of the magnetic field of the object allows to calculate the approximate localization and identification of the object. This paper presents the results of analysis of the position and the value of the extremes of the magnetic field and new method of localization and calculation of magnetic moment of the object. The numerical calculations have been made on the basis of MatLab.


Key words: localization, identification, ferromagnetic object, magnetic moment

## Introduction

A ferromagnetic object (e.g. mine, missile) placed in the earthly magnetic field undergoes magnetization. In spite of the magnetizing with a homogeneous filed the object is subject to inhomogeneous magnetization. Such an object undergoes so-called induced magnetization. It also has permanent magnetism. Both types of magnetization produce an object's own resultant field, which in certain positions weakens the earth's magnetic field, while in some cases it reinforces its value. In the case of a relatively large distance from the object (the distance three times bigger from the highest object's value) a sufficiently accurate tool for the analysis of an object's magnetic field is the dipole model [3, 4].

The resultant magnetic field in the object's surround is the superposition of the earth's fields and an object's own field (1):

$$
\begin{equation*}
\mathbf{B}_{\mathrm{t}}=\mathbf{B}_{\mathrm{e}}+\mathbf{B}_{\mathrm{o}} \tag{1}
\end{equation*}
$$

where: $\mathbf{B}_{\mathrm{e}}$ - the Earth's magnetic flux density vector, $\mathbf{B}_{0}$ - an object's magnetic flux density vector

The module of object's own magnetic field equals:

$$
\begin{equation*}
\left|\mathbf{B}_{\mathrm{o}}\right|=\left|\mathbf{B}_{\mathrm{t}}\right|-\left|\mathbf{B}_{\mathrm{e}}\right| \tag{2}
\end{equation*}
$$

Expanding of the $B_{e}$ function in the Taylor series and assuming single components ( $\mathrm{B}_{\mathrm{x}}, \mathrm{B}_{\mathrm{y}}, \mathrm{B}_{\mathrm{z}}$ ) of the object's own magnetic field, as increments of the values of
components ( $\mathrm{B}_{\mathrm{xe}}, \mathrm{B}_{\mathrm{ye}}, \mathrm{B}_{\mathrm{ze}}$ ) of the $\mathbf{B}_{\mathbf{e}}$ vector, we get magnetic field of the object of the approximate value:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{o}} \approx \frac{B_{x e}}{B_{e}} \cdot B_{x}+\frac{B_{y e}}{B_{e}} \cdot B_{y}+\frac{B_{z e}}{B_{e}} \cdot B_{z} \tag{3}
\end{equation*}
$$

where: $\mathrm{B}_{\mathrm{xe}}, \mathrm{B}_{\mathrm{ye}}, \mathrm{B}_{\mathrm{ze}}$ - components of the Earth magnetic field, $B_{x}, B_{y}, B_{z}$ - components of the object's magnetic field.

Assuming Cartesian coordinate system with x axis paraller to $\mathrm{B}_{\mathrm{xe}}$ (x axis paraller to N -S magnetic direction) the formula (3) changes into:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{o}} \approx B_{x} \cdot \cos (\mathrm{I})-B_{z} \cdot \sin (\mathrm{I}) \tag{4}
\end{equation*}
$$

## 1 EXTREME VALUES OF THE FIELD

In the analysis of object's magnetic field an arbitrary direction of the magnetic moment vector and the constant value of the module $\mathrm{M}_{\mathrm{o}}$ were assumed (fig.1). Ferromagnetic object's magnetic field for the $\theta$ angle of the approximate value of $0^{\circ}$ and $180^{\circ}$ has one of two significant extrema. Object's magnetic flux density module is the non-linear function of 6 variables. In this paper the analysis of the extreme values of the magnetic flux density module and their location was performed on the basis of numerical calculations, for the two variables $\varphi$ and $\theta$, on the xy plane with the depth z above the object and with the magnetic inclination $\mathrm{I}=70^{\circ}$ (magnetic inclination in Poland). Ferromagnetic object's magnetic
field for the inclination $\mathrm{I}=70^{\circ}$ has two significant extreme values: the positive and negative extrema. For the low values of $\theta$ angle the location of the negative extrema $\left(\mathrm{x}_{\min }, \mathrm{y}_{\text {min }}\right)$ is relatively close to the location of the object $\left(\mathrm{x}_{0}, \mathrm{y}_{\mathrm{o}}\right)$. The same property can be observed for the angle of approximate $180^{\circ}$, but refers to the positive extrema. The results of the analysis of the ferromagnetic object's magnetic field reveal an interesting ratio of the location of the extreme values to the angle $\varphi$. The angle between the axis reaching the extreme values and the magnetic direction N -S approximately equals $\varphi$ angle.


Fig. 1 The components of the magnetic moment vector with the constant value of $M_{o}$

Fig. 2 shows the relation of the maximum (5) and minimum (6) ratio of the value of the negative extrema $\mathrm{B}_{\text {min }}$ to the value of the positive extrema $\mathrm{B}_{\text {max }}$ in the function of the $\theta$ angle (7).

$$
\begin{align*}
& \beta_{\max }=\left.\frac{\mathrm{B}_{\min }}{\mathrm{B}_{\max }}\right|_{\varphi=0^{\circ}}  \tag{5}\\
& \beta_{\min }=\left.\frac{\mathrm{B}_{\min }}{\mathrm{B}_{\max }}\right|_{\varphi=180^{\circ}}  \tag{6}\\
& \beta=\left.\frac{\mathrm{B}_{\min }}{\mathrm{B}_{\max }}\right|^{2} \tag{7}
\end{align*}
$$



Fig. 2 Graph of the $\beta$ coefficient (9) in the function of $\theta$ angle

What can be concluded from the graph (fig.2) is that for the high values of $\beta$ the range of the possible values of the $\theta$ angle is between $0^{\circ}$ and $30^{\circ}$. The lower value of the $\beta$ coefficient results in the reduction of the range of possible values of the $\theta$ angle.

## 2 Localization object's

On the basis of the ratios derived from the analysis of the magnetic field, with the use of the least square method the formulae for estimating object's location $\left(x_{0}, y_{0}, z_{0}\right)$ have been specified. It is a new method of the localization of an object, which is similar but easier than the one presented in the paper [5], in which a simplified assumption $\left(B_{0} \approx B_{o z}\right)$ was implemented. The approximate location $z_{o}$ of the object [speto] equals (8). The relative error of the estimation $\mathrm{z}_{\mathrm{o}}$ is below $5 \%$.

$$
\begin{equation*}
z_{o}=r \cdot f(\beta) \tag{8}
\end{equation*}
$$

where:

$$
\begin{gather*}
\mathrm{f}(\beta)=\frac{\beta}{-0.679+1.23 \cdot \beta+0.017 \cdot \beta^{2}}  \tag{9}\\
r=\sqrt{\Delta x^{2}+\Delta y^{2}}  \tag{10}\\
\Delta x=\left|x_{\min }-x_{\max }\right| \\
\Delta y=\left|y_{\min }-y_{\max }\right| \tag{11}
\end{gather*}
$$

The approximate location $x_{0}$ and $y_{o}$ of the object equals $(12,13)$ :

$$
\mathrm{x}_{\mathrm{o}}=\left\lvert\, \begin{array}{ll}
\mathrm{x}_{\text {min }}-\Delta \mathrm{x} \cdot g(\beta) & \beta \geq 10  \tag{12}\\
\mathrm{x}_{\text {min }}-\Delta \mathrm{x} \cdot g(\beta)+0.1 \cdot|\Delta y| \cdot\left|\sin \left(\varphi_{\mathrm{e}}\right)\right| & 1 \leq \beta<10 \\
\mathrm{x}_{\text {max }}+\Delta \mathrm{x} \cdot g\left(\beta^{-1}\right)+0.1 \cdot|-\Delta y| \cdot\left|\sin \left(\varphi_{\mathrm{e}}\right)\right| & 0.1<\beta<1 \\
\mathrm{x}_{\text {max }}+\Delta \mathrm{x} \cdot g\left(\beta^{-1}\right) & \beta<0.1
\end{array}\right.
$$

$$
y_{o}=\left\lvert\, \begin{array}{ll}
y_{\text {min }}-\Delta y \cdot g(\beta) & \beta \geq 1  \tag{13}\\
y_{\text {max }}+\Delta y \cdot g\left(\beta^{-1}\right) & \beta<1
\end{array}\right.
$$

where:

$$
\begin{align*}
& \mathrm{g}(\beta)=\mathrm{g}_{\max }(\beta)-\left(\mathrm{g}_{\max }(\beta)-\mathrm{g}_{\min }(\beta) \cdot \frac{\varphi_{\mathrm{e}}}{\pi}\right.  \tag{14}\\
& \mathrm{g}_{\max }(\beta)=\frac{1}{1.235+0.559 \cdot \beta+0.002 \cdot \beta^{2}}  \tag{15}\\
& \mathrm{~g}_{\min }(\beta)=\frac{1}{1.422+0.902 \cdot \beta+0.02 \cdot \beta^{2}} \tag{16}
\end{align*}
$$

Relative errors $\delta_{\mathrm{x}}(17)$ and $\delta_{\mathrm{y}}(18)$ of the $\mathrm{x}_{\mathrm{o}}$ and $\mathrm{y}_{\mathrm{o}}$ estimation are below $10 \%$.

$$
\begin{align*}
& \delta_{\mathrm{x}}=\frac{\Delta \mathrm{x}}{\mathrm{z}} \cdot 100 \%  \tag{17}\\
& \delta_{\mathrm{y}}=\frac{\Delta \mathrm{y}}{\mathrm{z}} \cdot 100 \% \tag{18}
\end{align*}
$$

## 3 Estimation of magnetic moment vector

The value of the $\beta$ coefficient enables determination of the range of the value of the $\theta$ angle. The average value of this range can be chosen for estimation of the $\theta_{\mathrm{e}}$ angle. The angle between the axis reaching the extreme values and the magnetic direction N -S approximately equals $\varphi$ angle, so this angle can be estimated from formulae:

$$
\begin{equation*}
\varphi_{\mathrm{e}}=\operatorname{arctg}\left(\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}\right) \tag{19}
\end{equation*}
$$

The magnetic moment can be calculated using the greater extremum from the formula:

$$
\begin{equation*}
M_{e}=\frac{r_{i}^{5} B_{i}}{100 \cdot\left(A_{x} \cos (I)-A_{z} \sin (I)\right)}\left[A m^{2}\right] \tag{20}
\end{equation*}
$$

where: $\mathrm{B}_{\mathrm{i}}=\mathrm{B}_{\text {max }}$ or $\mathrm{B}_{\text {min }}[\mathrm{nT}]$ and

$$
\begin{align*}
& A_{x}=\left(2 x^{2}-y^{2}-z^{2}\right) \sin \left(\theta_{e}\right) \cos \left(\phi_{e}\right)+  \tag{21}\\
& +3 x y \sin \left(\theta_{e}\right) \sin \left(\phi_{e}\right)+3 x z \cos \left(\theta_{e}\right) \\
& A_{z}=3 x z \sin \left(\theta_{e}\right) \cos \left(\phi_{e}\right)+3 y z \sin \left(\theta_{e}\right) \sin \left(\phi_{e}\right)+ \\
& +\left(2 z^{2}-x^{2}-y^{2}\right) \cos \left(\theta_{e}\right)  \tag{22}\\
& r=\sqrt{x^{2}+y^{2}+z_{o}^{2}}  \tag{23}\\
& x=x_{\text {ekstr }}-x_{o}  \tag{24}\\
& y=y_{\text {ekstr }}-y_{o} \tag{25}
\end{align*}
$$

## 4 MEASURING METHOD

The magnetic field can be measured using a vector (SQUID, fluxgate) magnetometer and a scalar (proton, optically pumped) magnetometer. The scalar magnetometer measures the modulus of the magnetic flux density vector. The scalar magnetometers are independent of the variations of the position of the mobile platform regarding to Earth's magnetic field vector. The sensitivity of a modern optically pumped magnetometer is 1 pT . Such high sensitivity can be applied only with two magnetometers, which work in differencial configuration. One of them works as the base station magnetometer and second as the measure magnetometer. The position of the measure magnetometer system is determined with GPS.

## 5 EXAMPLES OF ESTIMATION

The distribution of the magnetic fields of three ferromagnetic objects are presented in fig.3. After the selection of the distribution of the magnetic field of the chosen object (fig.3) it is possible to localize and calculate magnetic moment vector. On the table tab. 1 the parameters of the three objects are presented.

| Object | xyz <br> $[\mathrm{m}]$ | $\mathrm{M}\left[\mathrm{Am}^{2}\right]$ <br> $\theta\left[{ }^{\circ}\right]$ <br> $\phi\left[{ }^{\circ}\right]$ | $\mathrm{B}_{\text {min }}$ <br> $\mathrm{B}_{\max }$ <br> $[\mathrm{nT}]$ | $\mathrm{x}_{\text {min }}$ <br> $\mathrm{x}_{\max }$ <br> $[\mathrm{m}]$ | $\mathrm{y}_{\text {min }}$ <br> $\mathrm{y}_{\max }$ <br> $[\mathrm{m}]$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| I | -9.5 | 17.8 | -4.59 | -6.50 | 13.75 |
|  | 11.9 | 110 | 8.22 | 12.00 | 10.75 |
| II | 5.2 | 30 |  |  |  |
|  | -10.75 | 8.45 | -12.89 | 12.00 | 13.00 |
|  | 5.3 | 140 | 4.38 | 9.50 | 14.50 |
| III | 11.5 | 2.5 | -1.63 | 1.25 | -7.50 |
|  | 13.5 | 70 | 8.37 | 6.00 | -11.75 |
|  | 2.9 | -30 |  |  |  |

Tab. 1: Parameters of the three objects

| Object | xyz <br> $[\mathrm{m}]$ | $\mathrm{M}\left[\mathrm{Am}^{2}\right]$ <br> $\theta\left[{ }^{\circ}\right]$ <br> $\phi\left[{ }^{\circ}\right]$ |
| :--- | :---: | :---: |
| I | -9.96 | 18.87 |
|  | 11.78 | 110 |
|  | 6.27 | 30 |
| II | 5.24 | 8.27 |
|  | -10.81 | 140 |
|  | 5.39 | 140 |
| III | 11.43 | 2.1 |
|  | 13.40 | 70 |
|  | 2.78 | -30 |

Tab. 2: Estimated parameters of the three objects
In the table tab. 2 the calculated parameters of the objects are presented. The error of the localization is less than $10 \%$ and identification of magnetic moment vector is less than $20 \%$.


Fig. 3 Distribution of magnetic field of the three ferromagnetic objects

## 6 SUMMARY

Characteristic features of the extreme values of the magnetic field enable approximate localization and identification of the magnetic moment vector of the ferromagnetic object. The new method of localization of an object presented in the paper enables estimation of the object's location with the error below $10 \%$ and moment magnetic vector with the error below $20 \%$.

## 7 REFERENCES

[1] Telford W.M., Geldart L.P., Sheriff R.E.: Applied Geophysics. Cambridge University Press, New York 1990.
[2] O'handley R.: Modern Magnetic Materials. Principles and Applications. John Wiley \& Sons, Inc. New York, 2000.
[3] Baum C.E.: Detection and identification of visually obscured targets. Taylor-Francis, Philadelphia 1998.
[4] Ripka P.: Magnetic sensors and magnetometers. Artech House, Norwood 2001.
[5] McFee J.E., Yogadhish Das: Fast Nonrecursive Method for Estimating Location and Dipole Moment Components of Static Magnetic Dipol. IEEE Trans. on Geoscience and Remote Sensing, vol. G-24, no.5, September 1986

Mirosław Wołoszyn, dr ing., Faculty Electrical and Control Engineering, Gdańsk University of Technology, G.Narutowicza 11/12, 80-952 Gdańsk, Poland
email: mwolosz@ely.pg.gda.pl

