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Abstract: In the paper are presented the calculations of the active and reactive power in the tubular screen of the monophase single-

pole high current busduct. Into account were taken skin and internal and external proximity effect. Calculations were made using the 

Poynting theorem and Joule-Lenz law. 
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INTRODUCTION 

 The most popular solution of the high current 
busduct is single-pole coaxial high current busduct fig. 
1. 
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Fig. 1. Single-pole high current busduct 
 

 Design of the high current busducts on high 
currents and voltages causes necessity precise 
describing of electromagnetic, dynamic and thermal 
effects. Knowledge of the relations between 
electrodynamics and constructional parameters is 
necessary in the optimization construction process of 
the high current busducts. Mathematics analysis of 
electromagnetic effects in the high current busducts is 
rather complicated. In devices these type, the active 
power emits into phase conductors and screens [2]. 

 Information about distribution electromagnetic field 
and power loses is a base into analysis of 
electrodynamics and thermal effects in the high current 
busducts. Correct determination of the electrodynamics 
parameters has huge practical meaning into analysis of 
work of the every types of electrical devices. 
Determination of the power loses into high current 
busducts let calculate the temperature these devices, 
which is a basic constructional parameter. 
 In the analysis of the electromagnetic effects in the 
high current busducts should be taken the shape of the 
phase conductors and screen. Besides into account 
should be taken all mutual couplings between 
conductors and screen. Into account should be the 
taken eddy currents induced on the screens, skin and 
proximity effect and coupling of the electromagnetic 
field with temperature [2]. 

1. ELECTROMAGNETIC FIELD 

 Let us consider the electromagnetic field in the 
tubular screen with conductivity eγ , with internal 

radius 3R  and external radius 4R  parallel to the 

coaxial internal conductor with conductivity γ, internal 
radius 1R  and external radius 2R  with complex rms 

current I  - fig. 1. 

 The alternating magnetic field generated by phase 
current I  induces on the screen the eddy currents 

about density 0eJ  - proceeds the internal proximity 



 

effect. On account of cylindrical symmetry of the 
system, this current density has one component along 
Oz axis and is function r variable of the cylindrical 
coordinate system, thus )()( 0e0e rJr z1=J . This 

current density fulfills the Helmholtz’s equation, which 
in the cylindrical coordinate system becomes the 
Bessel’s equation [2] 
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where the complex propagation constant of 

electromagnetic wave in the screen ee  j2 kΓ =  in 
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 From the above formula we obtain  
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where 0C  and 0D are integral constants. 

In the above formulas )( rΓI n  and )( rΓK n  are 

modified Bessel’s functions accordingly first and 
second kind, of n-th order. 
 The magnetic field has only one component, i.e. 

0e0e  
ΘΘ H1=H , which on the basis the second 

Maxwell’s equation, given is by the formula 
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Constants 0C  and 0D  we will determine from 

boundary conditions 
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and then we obtain the current density 
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The electric field strength )(
γ

1
)( 0e

e
0e rr JE = , is a 

function of variable r the cylindrical coordinates 
system and has one component along Oz axis, thus 
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From formula (5) 
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2. ACTIVE AND REACTIVE POWER IN THE 

SCREEN 

 Stream of the complex power penetrates into area 
of the tubular screen through his border is expresses by 
formula 
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Complex apparent power of the screen  
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If we take into account formulas (8) and (9) then 
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In the above formula we can not distinguish of real 
part (active power) and imaginary part (reactive power) 
because this equation contains complex Bessel’s 
functions and complex propagation constant. Therefore 
we will calculate the active power from the formula 
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From the above formula we obtain 
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 The reactive power emitted on the internal 
reactance of the tubular screen we determine from 
formula (9), yielding 
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The active (12) and reactive (13) power are real 
numbers although they are expressed by complex 
numbers and complex Bessel’s functions. We can 
prove this using properties of Bessel’s functions or 
making numerical calculations. 

If we introduce the parameter binding frequency, 
conductivity and transverse dimensions of the tubular 

screen, i.e. 4e
e

4
e  Rk

R
==

δ
α  then the active power 

with taking into account the internal proximity effect is 
expressed by formula 
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and reactive power  
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and complex apparent power 
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If we introduce the reference power 
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Then the active power lost in the screen as a result of 
the internal proximity effect, we can express as 
coefficient 
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Dependence of the above coefficient on parameter eα  

for different values of the relative thickness eβ  wall of 

the tubular screen presents figure 2. 
 

0.2 0.4 0.6 0.8 1 1.2 1.4
lg@ΑeD

1

2

3

4

5

6

ke0
P

Β=0.8

Β=0.9

Β=0.95

 
 

Fig. 2. Dependence of relative active power lost in the 
tubular screen on parameter eα  

 
 In the paper [1], author derived a formula on the 
internal inductance 

w0L  of the tubular conductor 

without taking into account skin effect. From here the 
internal reactance of the tubular screen  ew00ew LX ω=  

and then we can introduce the reactive power of 
reference 
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Then the reactive power we can express as a relation 
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Dependence of the above coefficient on parameter eα  

for different values of the relative thickness eβ  wall of 

the tubular screen presents figure 3. 
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Fig. 3. Dependence of relative reactive power lost in 
the tubular screen on parameter eα   

 
Internal inductance of the tubular screen has a form [1] 
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where 
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 We should add that the total reactive power in the 
tubular screen is a sum of the above determined 
reactive power connected with the internal inductance 
and of the reactive power connected with external 
inductance [1] 
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Hence the external reactive power 
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and do not depend from skin effect. The above power 

on the unit length of conductor 
l

Qz  do not depend on 

length l, we can not take it, like a external inductance 

l

zL  on the unit length, as a correct defined. Although 

this quantity has certain practical meaning into 
determination of the reactive power in the transmission 
lines.  
 This reactive power we can compare with the 
internal reactive power as a coefficient 
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Dependence of the above coefficient on parameter eα  

for different values of parameter eβ  and 
4
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presents figure 4.  
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Fig. 4. Dependence of the relative external reactive 
power in the tubular screen on parameter eα  for 

constant value eη and different values of parameter eβ  
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Fig. 5. Dependence of the relative external reactive 
power in the tubular screen on parameter eα  for 

constant parameter eβ  and different values of eη  

3. CONCLUSIONS 

Presented research show that about total active and 
reactive power of single-pole high current busduct 
decide skin and proximity effect. 
 Active power (fig. 2) in the coaxial screen increases 
with rise of parameter αe. It is caused the rise of 
resistance as a result of internal proximity effect. In 
turn the reactive power (fig 3) decreases with rise of 
parameter αe. It is connected with decreasing of 
inductance as a result of skin effect. Along with 
increase of parameter αe the internal inductance drops 
because the effective thickness of walls drops too. 
 Figures 4 and 5 show that the reactive power 
connected with mutual and external inductances is tens 
bigger than the reactive power connected with internal 
inductances. 
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