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Abstract: Induction heating of long cylindrical nonmagnetic billets rotating in time invariable magnetic field is modelled by integral 

approach. The model also includes the mechanical transient. The methodology is illustrated by an example whose results are dis-

cussed. 
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INTRODUCTION 

 Induction heating of nonmagnetic billets represents an 
industrial technology employed mainly for their softening 
before next heat treatments (such as hot forming). The 
classical process consisting in heating of a workpiece in 
an inductor is simple, but its efficiency is rather low (usu-
ally it does not exceed about 60%). That is why novel, 
more effective ways are looked for. For long cylindrical 
workpieces an efficient technique was recently intro-
duced based on their rotation in a time invariable mag-
netic field produced by appropriately arranged field coils 
carrying DC currents (Fig. 1). For the sake of optimizing 
the arrangement of the system, the steady-state part of the 
process was analyzed by the finite element method 
(FEM) [1], [2].  
 The paper deals with an alternative way of mathe-
matical and computer modeling of the process. The au-
thors developed a novel method of mapping eddy cur-
rents in the system using an integrodifferential approach. 
Numerical solution of the corresponding mathematical 
model directly provides temporal and spatial distribution 
of eddy currents in the heated cylinder (thus, without any 
need to calculate the distribution of the field quantities), 
which substantially reduces the time of computation and 
numerical errors. There is also no need to care for the 
boundary conditions because they are implemented di-
rectly in the kernel function of the corresponding inte-
grals. Another advantage is no need to remesh the defini-
tion area at every time step.  
 The next step is mapping of the temperature rise of 
the cylinder. This problem is solved in the quasi-coupled 
formulation, the electrical conductivity of the billet is 

assumed to be a function of temperature. Respected is 
also the mechanical transient characterized by the gradual 
increase of revolutions up to their nominal value.  

 

Fig. 1. Induction heating of rotating cylinder in time 

invariable magnetic field 

 

1. FORMULATION OF THE PROBLEM 

 The top view of the solved arrangement is depicted 
(with principal dimensions) in Fig. 2. The arrangement is 
supposed to be sufficiently long in the direction of the z -
axis, so that the investigated domain may be considered 
two-dimensional in Cartesian coordinates ,x y . 

 The aim of the analysis is to assemble the complete 
mathematical model of the process and solve it numeri-
cally for the prescribed input data.  



 

 

 

Fig. 2. Detailed top view of the solved arrangement 

2. MATHEMATICAL MODEL 

 The mathematical model consists of the following 
equations and expressions: 
• Integrodifferential equation describing the spatial and 

temporal distribution of eddy currents in the billet. 
• Expression for the drag torque produced by the inter-

action between the time invariable magnetic field and 
eddy currents generated in the rotating billet. 

• Partial differential equation describing the heat trans-
fer in the system. 

• Ordinary differential equation for the time evolution 
of the angular velocity of the billet. 

Particular aspects of the model will shortly be described 
in the following text. For other details see [3] and [4]. 

 

Eddy currents in the heated cylinder  

 Consider a system containing n  nonferromagnetic 
metal bodies , 1, ,j j nΩ = …  (see Fig. 3) whose electrical 

conductivities are , 1, ,j j nγ = … .  The bodies carry cur-

rents ( ) , 1, ,ji t j n= …  and each of them can move at a 

velocity , 1, ,j j n= …v . Consider now a reference point 

( )j j jQ Ω∈r  with the position vector ( )j j t=r r . 

 

Fig. 3. A system with n  electrically conductive current 

carrying bodies with motion 

Ref. [3] contains the complete derivation of the cur-
rent densities induced in the system. It can be shown that 

current density at a reference point ( )j j jQ Ω∈r  obeys the 

integrodifferential equation 
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where, ( )i iP t,J  denotes the vector of total current den-

sity at a general integration point i iP Ω∈  at time t , 

( )
i j

PQr t  is the distance between the reference point jQ  

and point of integration iP  (for an illustration, Fig. 3 

depicts such a distance between points 1Q  and kP ) and 

( )0j tJ  is an unknown time function. This function must 

be determined indirectly from the condition of the total 
current that reads  

( ) ( ), d
j

j j j
S

Q t i t=∫∫ J S ,                      (2) 

where jS  denotes the corresponding cross section. This 

relation is applied in such elements where the total cur-
rent ( )ji t  is known. 

 Equation (1) may further be modified as follows: 
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where ( ) ( ) ( )ij i jt t t= −v v v ,  ( ) ( ) ( )
i j i j

PQ P Qt t t= −r r r . 

The second term on the left-hand side denotes the com-
ponent of eddy currents due to transformation and the 
third one another component due to motion. 
 Now equation (3) will be modified for the arrange-
ment in Fig. 2 that is supposed sufficiently long in the 
axial direction. In such a case the arrangement has 2D 
feature and its solution can be performed in the polar 
coordinate system. Distribution of current densities hav-
ing the only component in the z -direction is then given 
by equation 
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where 1γ  is the electrical conductivity of the billet, 
1QPs , 

2QPs , and 
3QPs  are the distances between the reference 

point Q  (ϕ  denoting its angle with respect to the x - 

axis), and general integration points 1P , 2P , and 3P  in 

regions 1Ω  (billet), 2Ω , and 3Ω  (left and right parts of 



 

the field coil), respectively. Finally 2 3z zJ J= −  is the 

current density in the field coil calculated from the cur-
rent I  and cross section of the coil (this density is con-
sidered independent of the eddy currents produced in the 
billet). 

 
Specific Joule losses in the heated cylinder 

Knowledge of the specific Joule losses Jw  in the j th 

body in Fig. 3 is the principal condition for the conse-
quent thermal computations. There holds 
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This expression can be, without any change, directly 
applied to the heated cylinder. 
 
Temperature distribution in the heated cylinder 

Nonstationary temperature field T  in the current car-
rying parts of the system is described by the heat transfer 
equation in the form respecting the motion 
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where λ  is the thermal conductivity, ρ  denotes the 

specific mass, pc  is the specific heat at the constant pres-

sure, symbol v  stands for the velocity, and Jw  denotes 

the specific Joule losses. The physical parameters of 
materials λ , ρ , and pc  are generally temperature-

dependent functions.  
Equation (6) has to be supplemented by the boundary 

conditions that respect the convection and radiation of 
heat from the body. 
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where α  is the convective heat transfer coefficient (that 
is a function of temperature and also frequency of rota-
tion), T  is the local surface temperature of the billet, σ  
stands for the Stefan-Boltzmann constant 

( 85.6704 10σ −= ⋅  kg s–3K–4), C  is a constant respecting 
influences of emissivity, absorption and configuration 
factors, iT  (simplified) the temperature of the field wind-

ing and 0T  the temperature of ambient medium (air). 
 
Mechanical transient 

 The billet is rotated by an asynchronous motor of 
given torque characteristic ( )T ω , where ω denotes the 

angular frequency.  The equation describing the time 
evolution of ω  reads 
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where J  denotes the moment of inertia of the billet, D  

is the coefficient of damping and ( )dT ω  the strongly 

nonlinear drag torque due to Lorentz forces acting be-

tween the primary magnetic field and eddy currents pro-
duced in the billet.  
 

Drag torque 

 The drag torque ( )dT ω  will be determined not for a 

general arrangement, but just for the rotating billet de-
picted in Fig. 2. First we calculate the elementary force 
(per unit length) acting at point Q . Let point Q  be de-

scribed by coordinates ,r ϕ  (or coordinates cosx r ϕ= , 

siny r ϕ= ), while points 2P  and 3P  by coordinates 

2 2,x y  and 3 3,x y , respectively. Now the elementary 

force Ld Qf  acting at point Q  of the billet follows from 

expression  

Ld dQ Q Q= ×f J B ,                           (9) 

where QJ  is the vector of current density at point Q  (as 

previously said, it has only one nonzero component in the 
z  direction) and d QB  is magnetic field produced by 

filaments located at points 2P  and 3P  of both parts 2Ω  

and 3Ω  of the inductor. The vector equation (9) may be 

divided into two component equations 

L Ld d , d dQx Qz Qy Qy Qz Qxf J B f J B= − ⋅ = ⋅ .          (10) 

The x  and y  components of magnetic flux density d QB  

at point Q  due to current density at point 2 2P Ω∈  are 

given by formulas 
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and analogous formulas can be obtained for the contribu-
tions due to current density at point 3 3P Ω∈ . 

 The components of the total local force per unit 

length '
LQf  can be obtained by integration of (10) over 

the cross sections 2S  and 3S   

2
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 The elementary torque Qt  acting at point Q  is now 

given by formula 

Q Q×t = r f                           (12) 

has only one nonzero component in the direction of the 
z -axis 

Qz Qy Qxt x f y f= ⋅ − ⋅ .                    (13) 

The total torque ( )'
dT ω  per unit length is given by inte-

gration of Qzt  over 1Ω . The total torque is then obtained 



 

by multiplying ( )'
dT ω  by the length of the billet (with 

some error due to disregarding the front effects). 

3. NUMERICAL SOLUTION OF THE MODEL 

 The model was solved by a code developed and writ-
ten by the authors. The integrodifferential model of eddy 
currents was solved by a technique similar to the finite 
elements. The definition area was discretized by a trian-
gular mesh, the distribution of eddy currents in particular 
cells of the heated billet was replaced by an appropriate 
function and their time evolution was solved by the 
Runge–Kutta method. The nonstationary temperature 
field (6) was solved by the classical finite element 
method of the first order that is well known, so that no 
details will be provided in the paper. As for the move-
ment equation (8), it was also solved by the Runge–Kutta 
method, where at each time level the drag torque ( )dT ω  

was recalculated appropriately.  
 Particular attention was paid to the convergence of 
results depending on the density of the discretization 
mesh and time step. As the integrodifferential method 
works with dense matrices, the highest number of ele-
ments in the mesh could not exceed about 10000.   

4. ILLUSTRATIVE EXAMPLE 

For an illustration, we analyzed in details the process 
of heating of an aluminum billet. The basic geometry of 
the arrangement is shown in Fig. 2. Other principal data 
follow: 
• axial length of the billet 0.3l = m, 
• mass of the billet 6.362m = kg, 
• moment of inertia of the billet 0.00795J = kgm2, 

• field current density 7
2 2.7285 10zJ = × A/m2, 

• coefficient of damping 0.001D = kgm2/s, 
• torque of the induction motor driving the billet 

( ) 410T ω = Nm, 

• maximum revolutions max 2850n = /min, 

• number of coils 1–4 (but the total magnetomotive 
force remaining the same, as well as the surface of 
their cross-section).  

The computations provided a lot of results. Fig. 4 
shows the distribution of the module of current densities 
in the arrangement with one field coil and Fig. 5 in the 
arrangement with four field coils.  

Fig. 6 shows the distribution of the specific Joule 
losses in the steady state (at the maximum revolutions of 
the drive) produced along the radius of the billet for vari-
ous radii. It is clear that these losses are produced just in 
the surface layer of the billet, whose thickness is about 
0.015 m (which well corresponds with the depth of pene-
tration). 

Although the specific Joule losses produced along the 
radii in Fig. 6 differ from one another (some of them very 
much), for further computations we can consider their 
average values during one revolution. The dependence of 
the average Joule losses Jaw  along the radius of the billet 

is shown in Fig. 7. Even this figure confirms the above 
conclusion, that is, the specific Joule losses are produced 

in the layer of thickness corresponding to the depth of 
penetration. 

 

Fig. 4. Distribution of current density in a system with 

one field coil 

 

Fig. 5. Distribution of current density in a system with 

four field coils 

 

 
Fig. 6. Distribution of the specific Joule losses along the 

radius of the billet for various angles 



 

 

Fig. 7. Distribution of the average specific Joule losses 

along the radius of the billet (one field coil)  

 
Fig. 8 shows the dependence of the drag torque of the 

billet as a function of revolution for varying number of 
the field coils. The shapes of the characteristics remind of 
the torque characteristic of a asynchronous machine. 
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Fig. 8. Dependence of the drag torque on revolutions 

 for various numbers of the field coils 

 

Fig. 9 depicts the dependence of revolutions on time 
for varying number of the field coils. It is obvious that 
even in the most unfavorable case the time of reaching 
steady state (for one field coil) does not take more than 
0.04 s. 
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Fig. 9. Revolutions of the billet as a function of time for 

various numbers of the field coils 

 
The last Fig. 10 shows the time evolution of the aver-

age temperature of the billet. The dependence is practi-
cally linear. 
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Fig. 10. Time evolution of the average temperature of the 

billet as a function of the number of the field coils. 

 

It is obvious that the variant with one coil is the best 
one (this corresponds with Fig. 4, the modules of the 
eddy current density over the cross-section of the billet 
reach the highest values in this case). 

5. CONCLUSION 

The methodology of solution is correct and suffi-
ciently fast (the computations take minutes or tens of 
minutes). Some results of calculations were compared 
with data obtained using professional codes (COMSOL 
Multiphysics). The accordance was very good (the differ-
ences between the results did not exceed about 5%). The 
future work in the domain will be aimed at the accelera-
tion of the suggested algorithm and evaluation of the 
inverse possibility of induction heating of an unmoving 
billet by rotating coils or permanent magnets. 
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