

Ročník 2017 Číslo I

Towards Design Flow for Space-Efficient Implementation of Polymorphic

Circuits Based on Ambipolar Components
V. Simek1, J. Nevoral2, A. Crha2, R. Ruzicka1

1 IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology,

Bozetechova 2, Brno, Czech Republic
2 Department of Computer Systems, Faculty of Information Technology, Brno University of Technology,

Bozetechova 2, Brno, Czech Republic

E-mail: simekv@fit.vutbr.cz, inevopral@fit.vutbr.cz, icrha@fit.vutbr.cz, ruzicka@fit.vutbr.cz

Anotace:

Hlavním cílem tohoto příspěvku představit ucelený návrhový postup, díky němuž je možno docílit efektivní

implementace polymorfních obvodů. Především je zde využito technik na bázi evolučních algoritmů, které slouží

k automatizovanému navrhování základních typů multifunkčních obvodových prvků (tj. logických hradel).

V tomto případě se předpokládá uplatnění pokročilých materiálů či nanostruktur vykazujících tzv. ambipolární

chování. Při návrhu vlastní struktury logických hradel je využito tranzistorů, u nichž lze řídit režim činnosti (tedy

zda se chovají jako N- či P-kanálové prvky) řízením polarity napájecích větví. Bohužel konvenční návrhové

metody a algoritmy není možné přímo využít pro efektivní návrh polymorfních obvodů, aniž by nebylo nutné se

zabývat jejich podstatnou modifikací. Další z důležitých součástí prezentovaného způsobu návrhu vytváření

polymorfních obvodů je tedy příslušná syntézní technika využívající specifických vlastností popisovaných

multifunkčních hradel. Tento přístup k obvodové syntéze napomáhá dosažení prostorově efektivních výsledků

zejména v případě komplexních polymorfních obvodů skládajících se ze stovek hradel. Klíčovým aspektem je

v tomto případě využití principů Booleovského dělení a techniky tzv. kernellingu logických funkcí.

Abstract:

Main objective of this contribution is to present a unified design flow for an efficient implementation of

polymorphic circuits. First of all, it employs an evolutionary inspired techniques that facilitates the creation of

multifunctional circuit elements (i.e. logic gates) based on emerging materials and nano-structures exhibiting the

ambipolar behavior. Those logic gates consists of individual transistors where the conduction mode (N- or P-

channel) is controlled by switching the power rails. Unfortunately, conventional design methods and algorithms

are not directly applicable for a design of polymorphic circuits without the need to face major changes. Hence

the other important part of the suggested design flow is comprising the necessary circuit synthesis technique

using those multifunctional logic gates. The presented circuit synthesis approach makes it feasible to achieve an

area-efficient results in case of complex polymorphic circuit involving hundreds of gates. Its core is based on the

utilization of Boolean division principles and function kernelling technique.

INTRODUCTION

The field of digital systems design has experienced an

astonishingly vivid development throughout several

previous decades. In fact, a closer look given to the

technological side reveals their steadily growing

complexity. The obvious challenge to keep pace with

the growing functionality demands has resulted into

the need to introduce large-scale heterogenous

integration of miscellaneous physical features.

However, as it clearly becomes apparent, the

contemporary state-of-the-art conceptual paradigm,

design approaches and fabrication procedures are

inevitably getting closer to the ultimate edge depicted

by the inherent technological constraints, which are

naturally associated with the physical foundations of

the widespread conventional CMOS process.

Substantial advancements reached along the way

have gradually unlocked new directions and

opportunities for digital circuits and systems

implementation, and how to further increase their

efficiency. However, the arrival of novel technologies

also introduced in the same time a new set of

obstacles to be surmounted. Researchers are facing

more than ever before the necessity to grasp properly

the benefits of those technological trends and turn

them into an advantage when building digital logic

gates, or other relevant circuit components.

It is assumed that a significant potential can be

further unlocked thanks to the highly unorthodox

computational or design approaches comprising e.g.

reconfiguration of a digital circuit, exploitation of

multifunctional circuit elements or even larger circuit

structures taking an advantage of advanced emerging

materials or nano-structures. A specific approach how

to address these peculiar needs, at least in certain

situations, could be also based upon the principles of

so-called polymorphic or multifunctional electronics.

Polymorphic electronics is an approach that enables

the design and implementation of multifunctional

digital circuits [1]. Main idea behind the polymorphic

electronics is connected with a circuit structure that is

able to perform more than one intended function. It is

characteristic that the interconnection of the circuit

components (gates) remains unchanged, which also

represents a substantial contrast with the conventional

electronics where the function must be explicitly

selected at a given moment in time.

A closer look will reveal an important evidence that

the approach based on polymorphic electronics

paradigm carries one significant advantages in

comparison with the conventional ways. In fact, that

particular feature can be identified in its substantial

technological independence. It means that the

constantly emerging advanced materials or

fabrication techniques might be considered at this

place without major implications for the theoretical

background of polymorphic electronics.

In recent years, various research activities have been

focused on the utilization of so called post-silicon

devices [2] for the construction of polymorphic

circuit elements. It seems that some features of post-

silicon devices, like the ambipolar charge carrier

conductivity feature, may play an important role in

the field of polymorphic electronics. The change of

polymorphic gate function based on ambipolarity

obviously leads to very efficient and neat

implementation of logic gates, very close to the purity

of ordinary CMOS logic gates. Parameters of such

designed gates are also very promising, as the design

is wholly digital – transistors operate as switches in

the saturation mode.

Practical utilization of the polymorphic electronics

concept is somewhat limited by the availability of

suitable polymorphic logic gates. In the same time it

becomes apparent that the aspects of designing

polymorphic gates (and in particular more complex

polymorphic circuits as such) are far from being a

straightforward task for an ordinary human designer.

This observation is true especially due to the fact that

more than one function must be kept in mind while

the structure of the gate is proposed. It is no wonder

that most of the available polymorphic gates were

created by means of using the evolutionary based

design approaches. At the time of preparation of this

paper, only three polymorphic gates based on

ambipolar transistors were already reported in the

literature.

Focus of the contribution

Main objective of this contribution is to present a

unified design flow for an efficient implementation of

polymorphic circuits. It employs an evolutionary

inspired technique that facilitates the creation of

multifunctional circuit elements (i.e. logic gates)

based on emerging materials and nano-structures

exhibiting the ambipolar behavior. Those logic gates

consists of individual transistors where the

conduction mode (N- or P-channel) is controlled by

switching the power rails. In fact, the adoption of

those reconfigurable transistors for construction of

logic gates suggest the possibility to achieve a notable

savings of the overall transistors count. Another

advantage taking place within the context of the

fabrication process is given by the fact that unlike the

conventional CMOS technology (P-type MOS is

mostly 2-3 times larger than its N-type MOS

counterpart) all those transistors could be physically

fabricated with the same dimensions and balanced

switching characteristics.

The availability of multifunctional logic gates clearly

opens a way towards the implementation of larger

circuit structures. Unfortunately, conventional design

methods and algorithms are not directly applicable

for a design of polymorphic circuits without the need

to face major changes. Therefore it is desirable to

take into account this assumption for the design of a

new, better and more efficient design methods of

polymorphic circuit. Hence the other important part

of the suggested design flow is comprising the

necessary circuit synthesis technique using those

multifunctional logic gates. The presented circuit

synthesis approach makes it feasible to achieve an

area-efficient results in case of complex polymorphic

circuit involving hundreds of gates. Its core is based

on the utilization of Boolean division principles and

function kernelling technique.

PRINCIPLES OF AMBIPOLAR

CONDUCTION

Among number of very interesting features associated

with the emerging materials and nanoscale devices,

especially the ambipolar conduction seems to be

exposed to significant attention. The actual reason

can be identified within the potential opportunity to

enable a physical implementation of multifunctional

circuits (these can be optionally referred to as

reconfigurable) in a very efficient way.

From a technical point of view, fundamental principle

behind the ambipolar mode of conduction is basically

given by the mutual superposition of electron and

hole currents. Physical devices built with this unique

principle in mind offer an exceptional opportunity

how to impose a direct control on electron-hole

recombination taking place within the semiconductor

channel. Ambipolar behavior that can provide both n-

and p-channel performance in just a single device is

very important due to its tremendous importance for

manufacturing of complementary integrated circuits,

where it basically eliminates the need to perform

micropatterning of the individual p- and n-channel

semiconductors. As a direct result of that, only a

single type of an elementary switching device (let's

say transistor) is sufficient in comparison with

conventional CMOS fabrication technology.

Some of the advanced nanoscale devices provides

transparent and reliable means how to take a precise

control over this behavior and obtain significant

benefits for digital-like circuits. Ambipolar mode of

conduction has been already observed in many next-

generation devices, e.g. comprising nanotubes,

graphene, silicon nanowires, organic single crystals,

and organic semiconductor structures. As opposed to

the unipolar silicon MOSFET device whose p-type or

n-type behavior is unambiguously specified during

fabrication, ambipolar devices can be switched from

p-type to n-type, for example, by changing the gate

bias intensity or drain-source polarity.

POLYMORPHIC ELECTRONICS

The purpose of this section is to provide a concise

summary of the fundamental aspects relevant to the

field of polymorphic electronics, which can be seen

as a relatively new discipline in the field of electronic

systems. In addition, several open problems are also

specified in this context as well.

Within the domain of digital circuits and system, the

notion of polymorphic electronics depicts a group of

digital circuits that have the ability to perform more

than one function, while the wiring of a given circuit

remains still the same in all intended operating

modes. This observation can be recognized as the

most significant difference between polymorphic

electronics and traditional approach to the realization

of multifunctional circuits.

Selection of the corresponding function, which the

circuit is going to execute, simply depends on the

actual state of the target operating environment. Most

importantly, the change of the polymorphic circuit

function comes into the effect right away (without

any eminent delay perceived) and sensitivity to the

environments is naturally embedded into the circuit

itself [3].

It is important to point out that all the required circuit

functions are designed intentionally, rather than, for

example, as a fault condition caused by exceeding

certain operating parameters of the circuit. The state

of the environment can be accurately expressed

through a physical quantity with a direct impact on

the electrical properties of circuit building elements.

Then, it is possible to clearly determine the actual

function to be realized by that circuit according to the

specific value of a relevant parameter [1].

Such behaviour is useful for circuits that must adapt

itself to unfriendly environment, e.g. by imposing

restriction of power consumption [4] or heat

dissipation [5] with preservation of essential

functionality. Polymorphic electronics is also very

beneficial for applications that are basically mono-

functional, but need some additional feature. This

might be helpful e.g. for embedded diagnostics [6],

security applications [7], etc.

Open issues of polymorphic electronics

The field of polymorphic electronics, and especially

the required multifunctional nature of its building

components (e.g. logic gates, circuit blocks, etc.)

which represent an important pillar of the whole

paradigm, is surrounded with a number of still open

problems that need to be addressed properly in order

to successfully deploy this unconventional approach

to digital circuit design, fully exploit its potential

advantages and conceive practically feasible and

efficient solution.

Some of the most important aspects, which deserve

further attention in order to be resolved or further

improved from the current level of advancement, are

especially the following ones. The 1st one is the

problem of an appropriate design methods for

polymorphic circuits. One of the most common

approaches of polymorphic circuits design is based

on using some evolutionary methods. The 2nd issue

is closely related to a search for convenient

polymorphic components (gates). It is anticipated that

especially the adoption of suitable emerging materials

exhibiting so called ambipolar property may facilitate

the implementation of space-efficient and reliable

polymorphic gates.

Existing polymorphic gates

Polymorphic gate is described as an element which

realizes elementary logic (boolean) function, whereas

the function may vary in accordance with the

particular state of the environment. It is possible to

say that the function of the gate is controlled by

environment. Such feature may be useful for variety

of applications, may save chip area as well in terms

of a total transistors count and, in the same time,

reduce global interconnections significantly. If the

gate exhibit e.g. NAND function for some range of

the power supply voltage (Vdd) and e.g. NOR function

for another range of the Vdd, the gate could be

specified as a NAND/NOR gate controlled by Vdd. It

is assumed that polymorphic gate may perform no

more than one function with respect to any particular

instant during the course of time.

Table 1 surveys the polymorphic gates reported in

literature. For each polymorphic gate, the logic

functions performed by the gate are given together

with recommended setting of the control signal

variable. The number of transistors characterizes the

size of polymorphic gates only partially (transistors

occupy different areas, gates were fabricated using

different fabrication technology).

Tab. 1: A survey of existing CMOS-based polymorphic gates.

Gate Cntrl.
Cntrl.

Type
Transistors

NAND/NOR 3.3/1.8 V Vdd 6

AND/OR 1.2/3.3 V Vdd 8

NAND/NOR 5/3.3 V Vdd 8

AND/OR 27/125 C temp. 6

AND/OR 5/90 C temp. 8

NAND/NOR 0/5 V ext. V 10

NAND/NOR 5/0 V ext. V 8

NAND/NOR 5/0 V ext. V 10

NAND/XOR 5/0 V ext. V 9

AND/OR 0/3.3 V ext. V 6

AND/OR/XOR 3.3/1.5/0 V ext. V 9

NAND/NOR 0/5 V ext. V 10

Only two of the polymorphic gates have been

physically fabricated so far; remaining polymorphic

gates were either simulated or tested in a FPTA [8].

For instance, the 6-transistor NAND/NOR gate

controlled by Vdd was fabricated in a 0.5-micron HP

technology [9]. Another NAND/NOR gate controlled

by Vdd and introduced in [10] was utilized in the

REPOMO chip [3]. Internal electrical

interconnections of the designed gate are depicted on

a transistor level in Figure 1 below. The gate was

designed with the aim to achieve properties and

criteria defined in the previous section.

Fig. 1: Figure 3. Internal structure of polymorphic

NAND/NOR gate on a transistor level (a) and its

corresponding physical layout (b) using standard

CMOS AMIS 0.7 um technological library. The
resulting size of a single gate (b) is approximately

55.8 um x 68.2 um.

EVOLUTIONARY DESIGN OF

POLYMORPHIC LOGIC GATES

Utilization of the polymorphic electronics concept,

and therefore construction of more complex circuit

arrangements, is somewhat limited by the availability

of suitable polymorphic gates. In fact, the existence

of several polymorphic gates employing so called

ambipolar transistors has been already reported, e.g.

in [11]. However, no systematic exploration of

automated methods was conceived yet. Moreover,

only a few papers were devoted to the application of

evolutionary-inspired methods for the construction of

small-scale digital circuits directly at a transistor

level, which are utilizing in most cases standard p-

MOS and n-MOS transistor devices.

In this section, key features behind the evolutionary

method used for the design of polymorphic gates

controlled by switching the power rails on a transistor

level are outlined. In this case, four-terminal

transistor with the ambipolar behavior are considered

[12]. The approach reflects a different functionality of

the ambipolar transistors and utilizes a novel view on

circuit representation and simulation.

In order to verify the operation of a given circuit

structure through the simulation performed in analog

domain within a reasonable amount of time, i.e. the

interconnection of individual transistors inside a

polymorphic logic gate, which was obtained by

means of using an evolutionary-based algorithm,

Mrazek and Vasicek proposed a discrete simulator

with a switch-level transistor model extended by a

threshold drop degradation effect to achieve a fast

simulation with convenient trade-off between

accuracy and the overall time required for circuit

evaluation [13].

Circuit representation

In order to perform evolution of polymorphic circuits

at the transistor level, a suitable representation that

allows to encode the bidirectional graph structures

containing junctions is needed. The method of choice

utilized in the case is generally known as a Cartesian

genetic programming (CGP), which was proposed by

J. Miller [14].

The circuit representation is derived from the CGP

representation of gate-level circuit. Each polymorphic

digital circuit is represented using an array of nodes

and can be encoded by fixed length array of integers.

Each node consists of three source terminals and one

output terminal and can act as an ambipolar transistor

or a junction. Ambipolar transistor uses all three

source terminals, whereas the junction nodes two

source terminals only. The utilized nodes are shown

in Figure 2 below. Source terminals of each node can

be independently connected to the output terminal of

any node placed in previous columns or to one of the

primary circuit inputs.

Fig. 2: Basic building blocks of transistor-level circuits: (a)
ambipolar transistor and (b) junction. The arrows

denote the possible directions of signal flow which

have to be considered during the evaluation

The junction nodes combine two input signals and

one output signal together. As a consequence of that,

loops and multiple connections are natively

supported.

Figure 3 demonstrates the utilized representation of a

polymorphic inverter circuit which inverts the logical

value of the input signal independently of power rails

switching. The shown representation encodes a

candidate circuit using four nodes. However, only

three of them contribute to the phenotype and are

active.

Fig. 3: Example of a candidate circuit implementing
polymorphic inverter using two ambipolar

transistors. Circuit has one input (in.0), one output

signal (out.0) and two power rails (pwr.0, pwr.1).

Evaluation of the candidate solutions

The goal of the evaluation is to determine whether the

candidate circuit meets the requirements, i.e. there is

no violation of the specified constraints and the

circuit itself is working correctly with regard to its

functional definition. In fact, evaluation of the

candidate solutions consists of two steps.

Firstly, set of active nodes is determined. This

operation is performed due to speed optimization and

because of skipping the short circuits in the unused

part of the circuit. Only the active nodes represent

(i.e. they are in a path from input nodes to outputs)

the evaluated circuit. Inactive nodes are ignored.

Then, multi-level discrete event-driven simulator is

utilized to determine the circuit response for each

input signal combination. The advantage of this

approach is that only necessary nodes are updated if

there is a change of a value.

The research of ambipolar transistors started a few

years ago. As a consequence of that, no exact models

are still available. Therefore, we created several

discrete models of ambipolar transistors with six

discrete voltage levels according to the expected

behavior, which are utilizes in the circuit simulation.

Search strategy

As a search algorithm, 1 + Λ evolutionary strategy is

utilized [14]. The initial population is generated in a

random manner. Every new population consists of the

best individual and several offspring created using a

point mutation operator which modifies randomly

selected genes. The evolution is terminated when a

predefined number of generations is reached.

Quality of each candidate solution is determined by

the fitness function, which calculates the difference

between expected circuits outputs and outputs

delivered by the discrete simulation. Moreover, if a

given simulation run exceeds the predefined number

of steps or the occurrence of short-circuit is identified

for some input signal voltage combination, a penalty

is subtracted from the total fitness value.

As soon as a fully working solution is found,

additional requirements (like e.g. high input

impedance and low output impedance) for circuit

properties are checked and the circuit is optimized to

reduce the transistor count starts whereas quality of

circuit outputs remains unchanged.

Evolved gates

An extensive library of building components for

digital circuits based on ambipolar transistors has

been already reported [15]. However, only three

polymorphic circuit blocks utilizing these transistors

and simultaneously controlled by switching the power

rails were physically designed. Yang et al. presented

NAND/NOR and XOR/XNOR gates [11]. Moreover,

polymorphic inverter (labelled as NOT/NOT), which

involves two ambipolar transistors connected

similarly to classic MOS inverter, is generally well

known.

Both XOR/XNOR and NAND/NOR mentioned gates

use 4 transistors only. However, the first one expects

the presence of both input signal negation. Therefore,

in order to assemble the gate, 4 ambipolar transistors

and 2 polymorphic inverters are needed (i.e. 8

ambipolar transistors in total).

In order to design new polymorphic gates based on

ambipolar transistors, where their behavior is

controlled by switching the power rails, evolutionary

approach described above was utilized. Our goal was

to design a set of polymorphic gates where each of

them exhibits full voltage swing on the outputs.

Tab. 2: Size of the smallest solutions of selected polymorphic

gates in number of ambipolar transistor being used

W/O impedance

constraints

High input

impedance & Low

output impedance

NOT/NOT 2 2

NAND/NOR 4 4

AND/OR 3 4

XOR/XNOR 4 5

All the evolved gates consist of equal or, in most

cases, less ambipolar transistors compared to the

currently known best circuits. Four transistors are

needed to design the XOR/XNOR gate and even just

three transistors are needed to design the AND/OR

polymorphic gate. Table 2 summarizes the minimal

transistor count for chosen evolved polymorphic

gates. As an example, Figure 4 shows the AND/OR

and XOR/XNOR polymorphic circuit gates with high

input and low output impedance. Signal inputs of

those gates are marked as in.0 and in.1, gate output as

out and power rails are finally denoted as pwr0 and

pwr1.

The electrical behavior of all the designed gates was

subject to further analysis using HSPICE circuit-level

simulator. As it was mentioned before, there do not

exist any freely available, HSPICE compatible

models applicable for simulation of behavior in case

of four-terminal ambipolar transistors. Therefore,

ambipolar behavior was emulated by a circuit

composed of two MOSFET transistors, two

transmission gates and one inverter. All the circuits

were valid and operated correctly. Figure 5 shows the

HSPICE simulation results of the gate depicted in

Figure 4. Function of the polymorphic gates is

changed every 40 ns – i.e. when the voltages on

power input signals are switched.

Fig. 4: AND/OR (a) and XOR/XNOR (b) polymorphic gates

Fig. 5: AND/OR (a) and XOR/XNOR (b) polymorphic gates with high input and low output impedance

REVIEW OF POLYMORPHIC

CIRCUITS SYNTHESIS METHODS

Synthesis methods of ordinary digital circuits have to

solve the problem of finding interconnection graph G

between individual functional elements (e.g. gates)

which altogether make up just one particular function

F. If a suitable canonical form of F is found, the

structure of G can be easily inferred from it. For

polymorphic circuits, this approach tends to exhibit

higher complexity because just one graph needs to

cover already several functions from the existing set

Φ = {F1,..., Fn}, which makes up the given circuit and

fulfil the demand of multifunctional operation. The

task to find the same form for all the functions F1 to

Fn (with different elementary functions on the same

position) is, therefore, not so trivial at all.

Nowadays, polymorphic circuits design is currently

performed at a gate-level, while the individual gates

are constructed at a transistors-level. Throughout

wide range of experiments with the design of

polymorphic circuits it became clear that design of

circuits composed solely from polymorphic gates is

less suitable. It seems appropriate to propose

polymorphic circuits containing both polymorphic

and static gates (the same behavior in both modes). It

should be noted at this point that a number of static

gates typically exceeds the number of polymorphic

gates of developed circuit. In many cases it is also

sufficient to use a single type of polymorphic gate

only. This observation appears valid especially in

case of the logic gate which implements logically

complete behavior (e.g. NAND / NOR). If a wider set

of polymorphic gates is used, it could eventually lead

to more efficient solution. Nevertheless the level of

complexity in case of a circuit design and synthesis

would be inevitably facing a problem related to a

significant state-space growth [16].

Let us also note that polymorphic circuit synthesis

methods do not aim at dealing with the question of

environment intentionally and how it is physically

involved in the circuit operation. This is the subject

delegated to the chosen and employed polymorphic

gates – building components of the circuit. Simple

circuits could be obviously designed by hand but the

growing complexity renders this approach virtually

unfeasible. Proper synthesis techniques have to be

obviously considered. As it turns out, direct usage of

various conventional optimization methods targeted

at the ordinary digital circuits fails to yield adequate

results in this specific situation. Hence an alternative

approach needs to be considered, e.g. the exploitation

of evolutionary optimization methods, which might

bring the solution [17], [18].

Selected evolutionary methods

Digital circuit synthesis and optimization techniques

based on the exploitation of convenient evolutionary-

inspired paradigms, as demonstrated by Sekanina

[19] (and before initially suggested by Miller [14],

Koza [20] and Thompson [21]), could establish a way

how to achieve a rather unconventional but, at the

same time, interesting and useful solution. Needless

to say, also the original concept of polymorphic

electronics emerged virtually as a side effect of

evolutionary design experiments [1]. Almost all

polymorphic circuits, more complex than just a few

gates, have been designed using Carthesian Genetic

Programming (CGP) [14] till now.

In terms of CGP, the circuit structure is laid out as an

array of u (columns) × v (rows) of programmable

elements (gates). The number of circuit inputs, ni, and

outputs, no, is fixed and no feedback is allowed. Each

gate is programmed to perform one of the functions

defined at the beginning of the experiment. The

fitness function is constructed to minimize the

Hamming distance between the output vectors of a

candidate circuit and the required output vectors.

Typically, all possible input vectors are applied to

obtain the set of output vectors for the two required

functions F1 and F2.

Selected conventional methods

One of the first examples of conventional design

methods focused on polymorphic circuits was

introduced by Gajda [16]. The first of these methods

involves the so-called polymorphic multiplexing.

This approach falls on the borderline between

conventional and polymorphic digital circuits. For

each function, a digital circuit is synthesized and the

outputs of these circuits are then multiplexed by a

polymorphic multiplexor. The structure of a circuit

designed by this method shows a relatively low

optimality. However, possible workaround towards

the desirable improvement dwells in the partial

sharing of some logic resources.

In addition to that, Gajda [16] proposed a method of

polymorphic circuit synthesis utilizing binary

decision diagrams (BDD). The method is called

PolyBDD. Its core part is using Multi-terminal BDD

(MTBDD), which is an extension of binary decision

diagrams. For desired functions F1 and F2, a MTBDD

is created. Then the MTBDD is converted into a

circuit, where the nodes assume the role of

multiplexers and the terminals are replaced by a

proper polymorphic sub-circuit according to the

number in a given leaf.

PROPOSED SYNTHESIS METHOD

Designing polymorphic circuits is undoubtedly a very

difficult task. A designer must take into account two

different digital circuits at the same time and

advisedly design them to share common parts with

aim to save resources, i.e. gates. Small amount of

articles, relatively new technology and limited

information resources about polymorphic synthesis

confirm this fact. There were a few attempts to design

polymorphic circuits, but most of them were at least

partially suffering with various drawbacks.

The easiest method how to build a polymorphic

circuit is to synthesize two different circuits by means

of using conventional logic synthesis techniques and

then switch their output with a polymorphic

multiplexer element accordingly. An output function

will be changed by environment state due to the

polymorphic nature of a multiplexer being used, but

sharing of resources is not met at this point. It is

obvious that from the perspective of resource savings

there is no improvement achieved at all [16].

Due to all of these weaknesses mentioned in previous

paragraphs, main target is to develop a synthesis

methodology of polymorphic circuits which puts

polymorphic gates directly inside the circuit. It

requires a well-controlled design from beginning to

the last stage of polymorphic synthesis. That is a

reason why the design of the proposed method of

polymorphic circuits design was designed completely

from the scratch.

Principles of the synthesis method

The main idea behind the novel approach is based on

the undeniable identification of common parts across

the input circuits which are virtually shared between

them as so-called common divisors by means of

exploiting techniques of function kernelling [21], [23]

and Boolean division [22].

The input for the proposed synthesis methodology is

represented by specification of two different circuits

– F1 and F2, see (1), (2) below. Their minimized

notations are provided in DNF representation

(Disjunctive Normal Form). Each function is further

processed by the synthesis tool as a truth table in two-

level PLA format.

 (1)

 (2)

From this starting point an intersection table of Sum-

Of-Products of each circuit is derived. See table 3 for

example of intersection table. A vertical line of a

table is filled by SOP of a first circuit, a horizontal

line of table is filled by SOP of a second circuit. Each

cell fills the intersection of SOPs corresponding to

row and column. When the table is completely filled

in, it is possible to continue with a next step.

Then the first pass through the completed table is

performed. The purpose is to identify those boxes that

exhibit the mutual intersection of a maximum size,

e.g. minterm (1 | 1). The first minterm to be

successfully recognized is then put at its place into

the final expression. These minterms are basically

common for both input functions and, thus, it is not

required to deal with them in a polymorphic way.

Once the minterm is registered in the final

expression, corresponding row and column are

eliminated from the table.

Next, the second pass through the table 3 is

commenced. This time, the task is to find the largest

intersection. The box fulfilling this requirement is

then rewritten into the final expression, the whole

row and column with this particular box are

eliminated from the table. However, it is important

not to put aside the remaining literals which are

specific for the first and second function alternatively.

These literals will be isolated by suitable

polymorphic element.

A polymorphic multiplexer [24] and polymorphic

inverter are intended to be used at this place. When

the difference between literals is originating only

from the negation, the polymorphic inverter is used,

otherwise when the rest of literals are actually

distinguished in literal names, a polymorphic

multiplexer is applied. Now, the necessary step to be

taken is to cross out the column and row in the table,

because these product terms are already covered.

Algorithm itself continues with an iterative walk

through the table and is trying to find a maximum

intersection until coverage of the whole table is

effectively achieved. However, it is not as easy task

as it might look like on a first sight. There exist a

number of specific situations which need a particular

attention:

1) No intersection: When no intersection is found

and any column and row rests, hard 1 is used as

the intersection.

Example: f = 1(f1literals | f2literals).

2) Different number of product terms: When this

situation occurs, is possible to deploy one

polymorphic multiplexer switching between hard

1 and rest product terms of a function.

Example: f = 1(1 | f2product term1 + … +

product_termn).

The algorithm concept is essential, however an

automated tool performing this algorithm is very

indispensable. That fact has resulted into the creation

of specific software tool for the suggested

methodology, which is briefly discussed in the

following section.

Notes on software tool

With regards to the basis of the methodology

discussed in the previous section, there has been

prepared a software tool performing an automated

synthesis of two polymorphic circuits defined by

PLA input files. A main purpose of creating the

synthesis tool is a substantial automation of the whole

procedure. In fact, it is perfectly feasible to synthesize

small circuit ”on the paper”, but more complex

circuits require a considerable level of automation.

The synthesis software tools is console application, a

GUI is not necessary for this purposes.

The synthesis tool itself has been divided into three

parts. The first part performs loading of a PLA file(s),

second part is responsible for the polymorphic

synthesis based on identification of common parts

among the product terms and the third part finally

collects the statistic data and prepares their output for

further analysis or visualisation.

At first, names of input and output files are given.

Then the PLA file type check is carried out with the

specified files. Then, next step involves loading of the

PLA data to a special internal structure of the

synthesis tool which forms a table, the table of

intersections. Each cell in a row or column is based

on unsigned integer type that means a one product

term is represented by one unsigned integer. This

solution allows very fast and bit-wise operations on

the intersection table.

As soon as the intersection table is created from the

input PLA file, the tool can proceed with the

synthesis. A main task of this part is going through

the intersection table, searching for the maximum

intersection between two different circuits and

generating output formula describing a target

polymorphic circuit. This particular step is executed

until the intersection table is fully covered. It is

important to notice that all operations with table are

bit-wise, so it significantly contributes to the overall

efficiency. This part also solves special cases like no

intersection and different number of product terms.

During this process, a statistics are gathered into the

statistic data structure.

EXPERIMENTAL RESULTS

The proposed software synthesis tool for a design of

polymorphic circuits has been tested on several real

circuits defined by a truth table in two-level PLA

format. Circuits have been chosen with respect to the

same number of input for one synthesis run. All

circuits are taken from MCNC benchmarks.

Basic specification of these circuits can be found in

table 4 below. A circuits in the table have original

names with brackets notation. Letters in brackets

denotes which outputs are synthesized (all noted

letters) and capital letters tell us which output is

active while circuit works in mode one, or in mode

two respectively. When there are no brackets, two

different circuits are synthesized and polymorphism

is responsible for switching between circuit function

one or circuit function two.

Finally, results provided by polymorphic synthesis

tool are shown and compared with results from

conventional synthesis tool SIS [25]. With the aim of

straightforward comparison, all circuits were built

from two input gates only. The only exception in this

context is an inverter. We have chosen a number of

actually deployed two-input gates as the main

parameter for comparison. Percentage improvement

over the conventional solution is noted in the last

column of the table 4 as the number of used gates in

polymorphic solution versus convectional solution.

CONCLUSIONS

A unified design flow for an efficient implementation

of polymorphic circuits was presented in this

contribution. In order to design unique polymorphic

gates an evolutionary approach based on Cartesian

genetic programming was utilized. The purpose of the

evolutionary algorithm was to effort to achieve

minimization of the overall number of transistors

being used for each one of the evolved gates. Those

logic gates consisted of individual transistors where

the conduction mode (N- or P-channel) was

controlled by switching the power rails. The achieved

results clearly shows significant transistor savings

compared to the currently best known conventional

logic gates.

The evolved set contains polymorphic gates with high

input impedance and low output impedance as well as

various discrete switch-level ambipolar transistor

models extended by taking into account the threshold

voltage drop degradation effect were used.

Functionality of the proposed gates was verified by

HSPICE simulation. It appears that those gates bring

a significant advantage for space-efficient synthesis

of polymorphic circuits and suggest the opportunity

how to considerably reduce the target size of complex

polymorphic circuits.

Unfortunately, conventional design methods and

algorithms are not directly applicable for a design of

polymorphic circuits without the need to face major

changes. Hence the other important part of the

suggested design flow included the necessary circuit

synthesis technique using those multifunctional logic

gates. Its core is based on the utilization of Boolean

division principles and function kernelling technique.

A set of real experiments with complex circuits,

where in the one case it was possible to achieve

almost 40% gates saving to our previous results, was

performed in order to evaluate the proposed synthesis

tool. Then, an average improvement on real

benchmark MCNC circuits is about 20%.

In order to further increase the synthesis efficiency of

polymorphic circuits further steps will explore, for

example, the applicability of AIG graphs and

structural hashing for better identification of circuit

parts that can be shared between two (or even more)

functions subjected to the synthesis process. Potential

advantage could be also exploited in connection with

more efficient circuit elements (e.g. logic gates)

based on so called ambipolar transistors created using

silicon nanowires hetero-structures or by means of

using the hybrid integration of silicon-based chip

structure with deposition of ambipolar semiconductor

material for the active channel layer of a transistor.

ACKNOWLEDGEMENTS

This work was generously supported by the national

COST grant Unconventional Design Techniques for

Intrinsic Reconfiguration of Digital Circuits: From

Materials to Implementation (no. LD14055). Another

support was also provided by The Ministry of

Education, Youth and Sports of the Czech Republic

from the National Program of Sustainability (NPU

II); project IT4Innovations excellence in science -

LQ1602.

REFERENCES

[1] Stoica, A., Zebulum, R., Keymeulen, D.:

Polymorphic electronics. In: Proceedings of

Evolvable Systems: From Biology to Hardware

Conference, vol. 2210 of LNCS. Berlin-

Heidelberg: Springer, 2001, pp. 291–302.

[2] Rabaey, J. M., Malik, S.: Challenges and

solutions for late- and post-silicon design. In:

IEEE Design Test of Computers, vol. 25, no. 4,

pp. 296–302, July 2008.

[3] Sekanina, L., Růžička, R., Vašíček, Z., Prokop,

R., Fujcik, L.: REPOMO32 - New

Reconfigurable Polymorphic Integrated Circuit

for Adaptive Hardware. Proc. of the 2009 IEEE

Symposium Series on Computational

Intelligence - Workshop on Evolvable and

Adaptive Hardware, Nashville, IEEE CIS, 2009,

pp. 39 – 46.

[4] Růžička, R.: Gracefully Degrading Circuit

Controllers Based on Polytronics. Proc. of 13th

Euromicro Conference on Digital System

Design, IEEE CS, 2010, pp. 809 – 812.

[5] Ruzicka, R., Simek, V.: Chip temperature

selfregulation for digital circuits using

polymorphic electronics principles. In: Proc. of

14th Euromicro Conference on Digital System

Design. Institute of Electrical and Electronics

Engineers, 2011, pp. 205–212.

[6] Sekanina, L., Stareček, L., Kotásek, Z., Gajda,

Z.: Polymorphic Gates in Design and Test of

Digital Circuits. International Journal of

Unconventional Computing, 4(2), 2008,

Philadelphia, pp. 125 – 142, ISSN 1548-7199.

[7] Sekanina, L., Růžička, R., Vašíček, Z., Šimek,

V., Hanáček, P.: Implementing a Unique Chip

ID on a Reconfigurable Polymorphic Circuit, In:

Information Technology And Control, 42(1),

2013, pp. 7-14.

[8] Zebulum, R., Stoica, A., Keymeulen, D.: A

Flexible Model of a CMOS Field Programmable

Transistor Array Targeted for Hardware

Evolution. In: Third Int. Conference on

Evolvable Systems: From Biology to Hardware

(ICES2000), Edinburgh, 2000, pp. 274 – 283.

[9] Stoica, A., Zebulum, R., Keymeulen, D., Lohn,

J.: On polymorphic circuits and their design

using evolutionary algorithms. In: Proc. of

IASTED International Conference on Applied

Informatics (AI2002). Insbruck, 2002.

[10] Růžička, R., Sekanina, L., Prokop, R.: Physical

demonstration of Polymorphic Self-checking

Circuits. Proc. of the 14th IEEE IOLTS, IEEE

CS, 2008, pp. 31 – 36.

[11] Yang, X., Mohanram, K.: Ambipolar electronics,

2010.

[12] Harada, N. et al.: A polarity-controllable

graphene inverter. In: Applied Physics Letters,

96(1): 012102 -012102-3, 2010.

[13] Mrazek, V., Vasicek, Z.: Evolutionary design of

transistor level digital circuits using discrete

simulation. In: Proc. of European Conf. on

Genetic Programming, vol. 9025 of LNCS.

Berlin-Heidelberg: Springer, 2015, pp. 66–77.

[14] Miller, J., Thomson, P.: Cartesian Genetic

Programming. In: Proc. of the 3rd European

Conference on Genetic Programming, EuroGP

2000, vol. 1802 of LNCS. Berlin-Heidelberg:

Springer, 2000, pp. 121-132. ISSN 0302-9743.

[15] Ben-Jamaa, M. H., Mohanram, K., Micheli, G.

D.: An efficient gate library for ambipolar

CNTFET logic. In: IEEE Trans. on Computer

Aided Design of Integrated Circuits and

Systems, 2011, vol. 30, no. 2, pp. 242–255.

[16] Gajda, Z., Sekanina, L.: On Evolutionary

Synthesis of Compact Polymorphic

Combinational Circuits, In: Journal of Multiple-

Valued Logic and Soft Computing, vol. 17, no.

6, 2011, Philadelphia, US, pp. 607-631.

[17] Bäck, T.: Evolutionary Algorithms in Theory

and Practice. Oxford University Press, New

York, Oxford, 1996.

[18] Gajda, Z., Sekanina, L.: Reducing the Number

of Transistors in Digital Circuits Using Gate-

Level Evolutionary Design. 2007 Genetic and

Evolutionary Computation Conference, New

York, ACM, 2007, pp. 245 – 252.

[19] Sekanina, L.: Ubiquity symposium:

Evolutionary computation and the processes of

life: evolutionary computation in physical world.

Ubiquity. 2013, vol. 2013, no. 2, pp. 1-7. ISSN

1530-2180.

[20] Koza, J. R.: Genetic Programming: On the

Programming of Computers by Means of

Natural Selection. MIT Press, 1992, 840 p.,

ISBN 0-262-11170-5.

[21] Thompson, A.: Silicon Evolution. Proc. of

Genetic Programming, GP’96, MIT Press, 1996,

pp. 444 – 452.

[22] Hachtel, G. D., Somenzi, F.: Logic Synthesis

and Verification Algorithms, Kluwer Academic

Pub, 1996, 564 p.

[23] Brayton, R. K., McMullen, C.: The

Decomposition and Factorization of Boolean

Expressions, ISCAS Proceedings, April 1982.

[24] Crha, A., Ruzicka, R., Simek, V.: On the

Synthesis of Multifunctional Logic Circuits. In:

Abstracts Proceedings of International FLASH

Conference. Brno: Fakulta elektrotechniky a

komunikačních technologií VUT v Brně, 2015,

pp. 52-53. ISBN 978-80-214-5270-1.

[25] Ellen, S., Luciano, L., Alexander, S., Robert, K.

B.: SIS: A System for Sequential Circuit

Synthesis. In: Electronics Research Laboratory

Memorandum No. UCBERL M92/41, 1992.

Tab. 3: Intersection table for two input functions F1 and F2.

Tab. 4: Comparison of the results achieved with the proposed synthesis flow and conventional SIS tool applied on a set of test circuits.

