STANOVENÍ CHLORIDU SODNÉHO VE VYBRANÝCH POTRAVINÁCH
DIPLOMOVÁ PRÁCE

Bc. Petra Kloučková
Učitelství pro střední školy, obor Bi-Ch

Vedoucí práce: Ing. Jan Hrdlička, Ph.D.

Plzeň, březen 2012
Prohlašuji, že jsem diplomovou práci vypracovala samostatně s použitím uvedené literatury a zdrojů informací.

Plzeň, 20. března 2012

...
Petra Kloučková
Poděkování

Děkuji panu Ing. Janu Hrdličkovi, Ph.D. za čas, který mi věnoval, za odborné vedení diplomové práce a za poskytnuté rady a připomínky. Děkuji také své rodině a přátelům za podporu při psaní diplomové práce.

..

Petra Kloučková
OBSAH

1 ÚVOD ... 1

2 TEORETICKÁ ČÁST ... 2
 2.1 SŮL ... 2
 2.2 SPECIFIKACE SUROVINY ... 2
 2.2.1 Kamenná sůl .. 2
 2.2.2 Vakuová sůl .. 2
 2.2.3 Mořská sůl ... 3
 2.3 POTRAVNÍ DOPLŇKY ... 3
 2.3.1 Jod ... 3
 2.3.2 Fluor ... 4
 2.4 PŘIDATNÉ LÁTKY .. 4
 2.4.1 Protispěkavé látky ... 4
 2.5 CHLORID SODNÝ .. 4
 2.5.1 Složení soli ... 4
 2.5.2 Funkce soli .. 6
 2.5.3 Vliv soli na organismus ... 7
 2.6 ZPRACOVÁNÍ BRAMBOR ... 9
 2.6.1 Smažené bramborové lupínky ... 9
 2.7 SUBJEKTIVNÍ A OBJEKTIVNÍ STANOVENÍ .. 11
 2.7.1 Objektivní stanovení .. 11
 2.7.2 Senzorické stanovení .. 12
 2.7.2.1 Faktory ovlivňující smyslové vnímání 13
 2.8 PRÁCE S BIOLOGICKÝM MATERIÁLEM ... 14
 2.9 METODY VYUČOVÁNÍ ... 15
 2.9.1 Metody vytváření praktických dovedností 15

3 EXPERIMENTÁLNÍ ČÁST ... 17
 3.1 PRAVOMÍCNÍ POSTUPY ... 17
 3.1.1 Příprava roztoku dusičnanu stříbrného .. 17
 3.1.2 Příprava roztoku chromanu draselného 17
 3.1.3 Příprava Carezova činidla I .. 17
 3.1.4 Příprava Carezovo činidla II ... 17
 3.2 STANOVENÍ TITRIU ... 17
 3.3 STANOVENÍ CHLORIDU SODNÉHO VE VZORKU BRAMBŮRKŮ A V OBOHACENÉM VZORKU O NaCL DLE VÝCHOZÍHO POSTUPU ... 17
 3.4 MODIFIKOVANÝ POSTUP ... 18
 3.5 ZJÍŠŤOVÁNÍ CHLORIDU SODNÉHO VE VZORCÍCH RŮZNÝCH BRAMBOROVÝCH LUPÍNKŮ 19
 3.6 SENZORICKÉ STANOVENÍ ... 19

4 VÝSLEDKY .. 21
 4.1 ÚŘEDNÍ FAKTORU DUSIČNANU STŘÍBRNÉHO 21
 4.2 VALIDITA VÝCHOZÍ METODY ... 22
 4.3 OVEŘENÍ SPOLEHLIVOSTI NOVÉHO POSTUPU NA ZÁKLADĚ STANOVENÍ CHLORIDU SODNÉHO VE VZORKU ... 23
 4.4 ZJÍŠŤOVÁNÍ OBSAHU CHLORIDU SODNÉHO VE VZORCÍCH BRAMBŮRKŮ ... 24
 4.4.1 Tradiční české brambůrky ... 25
 4.4.2 Lays ... 26
 4.4.3 Bohemia chips .. 26
4.4.4 World of chips ... 27
4.4.5 Bohemia grander ... 28
4.4.6 Rouskovy české brambůrky ... 28
4.4.7 Ave chipsy .. 29
4.4.8 Cyrilovy ručně smažené .. 30
4.4.9 Budget ... 31
4.4.10 Smažené bramborové lupínky TESCO 31
4.5 VÝSLEDKY SENZORICKÉ ANALÝZY 32
4.6 Pracovní návod pro učitele .. 34
4.7 Pracovní návod pro žáky ... 39
5 ZÁVĚR .. 40
6 Seznam obrázků .. 42
7 Seznam literatury ... 43
8 Resumé ... 47
Přílohy .. 48
1 ÚVOD

Důležitou roli při fungování lidského organismu hraje chlorid sodný. Uplatňuje se při přenosu nervových vzruchů, udržování vnitřního prostředí, ale i při tvorbě kyselých žaludečních šťáv a svalové kontrakci. Přesto všechno proč je pro organismus důležitý, může zároveň být škodlivý, pokud je přijímán ve sníženém, ale i nadměrném množství. Může tak způsobit zdravotní problémy, které mohou končit smrtí.

Současná společnost je zahlcena potravinami, které obsahují chlorid sodný ve vysoké koncentraci. Svědčí o tom i fakt, že průměrná denní spotřeba chloridu se pohybuje mezi 8 - 12 g. Tato hodnota se od doporučené denní dávky (5 g chloridu sodného) výrazně liší. Na základě zvýšeného příjmu chloridu sodného začala Světová zdravotnická organizace zavádět Program na snižování příjmu soli z potravin v zemích EU.

Mezi ukázkovou trvanlivou potravinou, která obsahuje v 100 g balení obvykle už doporučenou denní dávku soli, patří společnost oblíbené chipsy, přičemž tento fakt si málokdo uvědomuje.

Tato práce je zaměřena na stanovení chloridu sodného ve vzorcích chipsů argentometrickou titrací. Je zde popsán postup zpracování vzorku chipsů pro stanovení chloridů, který je pro jejich správné stanovení zásadní. Vedle části věnované stanovení chloridu sodného je navrženo možné využití takového postupu jako laboratorní úlohy pro chemii na středních školách. Práce obsahuje pracovní návod pro učitele doplněný o didaktickou část a pracovní návod pro žáky s jednotlivými úkoly a závěrečným senzorickým stanovením.
2 TEORETICKÁ ČÁST

2.1 Sůl

Solí je obvykle myšlen minerál označovaný jako halit, chemicky chlorid sodný obsahující v malé mře další minerální látky. Pokud má být sůl použita pro lidskou potřebu, je nazývána jedlá sůl a obsahuje minimální množství 98 % chloridu sodného v sušině. Tyto a další požadavky jsou zpracovány ve směrnici Rady Evropy 93/43/EHS o hygieně potravin. Zbylá 2 % soli tvoří voda a minerální příměsi (síran, uhličitan, chloridy, bromidy vápníku, sodíku a hořčíku). Navíc bývá obohacena doplňky stravy či přidatnými látkami. [1]

2.2 Specifikace suroviny

O tom, jak je sůl kvalitní, rozhodují senzorická hodnocení a chemické rozbory, především stanovení obsahu chloridu sodného, síranů, hořčíku a vápníku, vody a zbytku nerozpuštěného ve vodě. Dále se sůl upravuje podle jejího užití drcením, mletím a separací nečistot a příměsí.

Samotná sůl bez jakýchkoliv organických příměsí, jako je sušená zelenina a jiné rostlinné příznady, je mikrobiologicky nezávadná. Přesto je důležité při jejím skladování dodržovat jistá pravidla – větratelné prostory, suchá místa, relativní vlhkost vzduchu do 80 %, zamezení styku s různými pachy. Tato pravidla jsou také upravena výše uvedenou směrnicí. [1]

2.2.1 Kamenná sůl

Častěji než povrchovou těžbou se kamenná sůl získává hornickým způsobem. V ČR těžba neprobíhá, tak je sůl dovážena. Zrnitost a čistota dovážené soli je výhradně dána jejím dalším využitím.

2.2.2 Vakuová sůl

Vedle mechanického zpracování se vakuová sůl upravuje také chemicky, což zaručí vysokou čistotu soli. Získává se z nasyceného roztoku soli odpařováním a krystalizací. Na rozdíl od kamenné soli obsahuje v sušině 98,5 % NaCl, vyznačuje se jemnější zrnitostí. Navíc u ní není nutná separace příměsí v důsledku vysoké čistoty soli. [1]
2.2.3 Mořská sůl

Jak je z názvu zřejmé, je jejím zdrojem mořská voda, která se na rozlehlých plochách nechává volně odpařovat a zahuštěný roztok se pak nechává krystalizovat.Obsah NaCl by měl odpovídat 98 % a zrnitost je blízká vakuové soli.

Výraznou odlišností od předešlých solí je přirozený obsah jodu (především ve formě jodidů), který se pohybuje v rozmezí 0,5 - 5 mg/kg. Množství jodu má význam při uvedení výrobků z mořské soli na trh. [1]

2.3 Potravní doplňky
2.3.1 Jod

Dle legislativy je sůl obohacována jodidem a jodičnanem draselným a sodným. Nejčastěji se využívá jodičnan draselný, a to díky své stabilitě. Zároveň je nutno upozornit na možné riziko předávkování, kdy je pak zcela znehodnocena kvalita

Obrázek 1 Obecné schéma výroby a balení jedlých solí a solných výrobků [1]
výrobku. Povolená koncentrace jodu na 1 kg soli je 27±7 mg dle předpisu č. 10/1999 o Nařízení vlády, kterým se zrušuje nařízení vlády č. 192/1988 Sb., o jedech a některých jiných látkách škodlivých zdraví. [1]

2.3.2 Fluor

2.4 Přídatné látky

2.4.1 Protispékavé látky

Dále mohou být do soli přidána sladidla, barviva, modifikované škroby, aromatické látky a v neposlední řade soli a kyseliny, určené obvykle ke sterilizaci výrobků. [1]

2.5 Chlorid sodný

50 až 70 ‰ hmotnosti lidského těla tvoří voda, která je hlavním rozpouštědlem, vodičem tepla, kdy se podílí na udržování stálé tělesné teploty, a sama je i reaktantem.

Sůl rozpuštěná ve vodě má funkci stavební, kdy představuje stavební kámen organických součástí těla. Podílí se na stavbě zubů a kostí, po případně i krve. Další funkce organismu, na kterých se podílí bilance soli a vody, přenos nervového vzruchu (komunikaci mezi buňkami), svalovou kontrakci a tvorbu žaludečních šťáv. [2]

2.5.1 Složení soli

Sodík (ion Na⁺) – Je součástí extracelulárních tělních tekutin. Sodík se uplatňuje významně při hospodaření s vodou. Při jeho nadbytku může docházet k tvorbě otoků
v důsledku zvýšení osmotického tlaku, a tím pádem k nahromadění vody. Naopak při nedostatku dochází ke křečím. Podílí se na udržování acidobazické rovnováhy. Člověk přijímá sodík ve formě kuchyňské soli, masa, vajec, mořských ryb. Je vhodné si uvědomit, že denní dávku sodíku je možné získat i bez nutnosti solení. [3]

Chlor (ion Cl⁻) – Stejně jako sodík je i chlor součástí tělních tekutin, kde tvoří jeden z hlavních anionů. Uplatňuje se při tvorbě HCl v žaludku a zároveň ovlivňuje i jeho pH. Stejně jako sodík se uplatňuje při acidobazických rovnováhách. Ačkoliv je získáván v běžné potravě, nejvíce je chlor zastoupen v kuchyňské soli.

Fluor – Přirozených zdrojů fluoru stále ubývá, tudíž se přidává do soli nebo zubních past. Ovlivňuje ukládání vápníku, který je podstatný pro kosti a zuby. Tak zvyšuje jejich tvrdost. [4]

Hospodaření s chlorem a sodíkem v těle mají na starost hormony řídící činnost ledvin – antidiuretický hormon (ADH) a aldosteron.

- **Antiduretický hormon** vylučovaný neurohypofýzou podněcuje zpětnou resorpci vody v tubulech a naopak snižuje vstřebávání chloridu sodného. Pokud je tedy zvýšený přítom soli, je vyloučen ADH, kdy se voda vrací zpět do krve a výsledná moč má vysokou koncentraci soli.

Obrázek 2 Schéma nefronu [18]

2.5.2 Funkce soli

Sůl ovlivňuje řadu činností organismu.

Průběh bilance soli/vody – Buňka se svým okolím komunikuje přes semipermeabilní cytoplazmatickou membránu, která je propustná pro molekuly vody a nepropustná pro rozpouštěné látky ve vodě, jako jsou ionty Na⁺ a Cl⁻. Jedná se tedy o přechod rozpouštědla do koncentrovanějšího prostředí přes polopropustnou membránu. Tento jev se označuje jako osmóza. To, jakým způsobem bude probíhat samotná osmóza, je charakterizováno osmotickými tlaky na obou stranách membrány, na kterém se podílejí ionty Na⁺ a Cl⁻. [2]

Obrázek 3 Osmóza [17]

Přenos nervového vzruchu – Podstatou přenosu nervového je vzruchu je změna klidového potenciálu, který představují ionty draslíku uvnitř axonu, sodíku a chloru v okolí nervu. Samotný anion chloru je schopen procházet dovnitř axonu, a tak dochází
ke vzniku záporného náboje uvnitř a kladného náboje vně. Změní-li se klidový potenciál v akční, dochází k podráždění a otevírá se průchod pro ionty sodíku dovnitř. Změní se tak polarita membrány, neboli dojde k tzv. depolarizaci, kdy kladný náboj je uvnitř a záporný vně. Po přenosu vzruchu se situace vrátí do východziho stavu a na membráně je opět klidový potenciál. V důsledku nedostatku soli může nastat neschopnost přenosu vzruchu na okolní nervy. [6]

![Obrázek 4: Klidový potenciál][2]

![Obrázek 5: Změna klidového potenciálu][2]

Tvorba kyselých šťáv – Tělo využívá sůl k tvorbě trávicích enzymů, které působí v kyselém, či zásaditém prostředí. První významnější působení enzymů je v žaludku, v kterém je díky přítomné kyselině chlorovodíkové výrazně kyselé prostředí. Aby nedocházelo k naleptání žaludeční stěny, žaludek vylučuje ze svých stěn ochranu v podobě hlenu. HCl přítomná v žaludečních šťávách má mimo jiné desinfekční účinky, brání kvasným procesům, aktivuje pepsinogen na pepsin a přeměňuje nerozpustné minerální látky na soli rozpustné ve vodě. [7]

2.5.3 Vliv soli na organismus

Je zřejmé, že ionty sodíku a chloru jsou pro tělo nezbytné. Je ale nutno si uvědomit, že obsah soli v některých potravinách bývá alarmující a může se již při jednom jídle vyrovnat doporučené denní dávce. Ta by se měla v nejlepším případě pohybovat v rozmezí 5 - 6 g na den. Této DDD odpovídá množství 1500 - 2400 mg sodíku za den. WHO prosazuje DDD maximálně 5 g soli/den, aby bylo předcházeno kardiovaskulárním chorobám. Bohužel obvyklá spotřeba za den činný průměrně 8 - 12 g. Tyto poznatky byly předneseny na Výroční konferenci Rakouské společnosti pro výživu 2010. [4]

Nadměrný příjem sodíku – hypernatremie, mohou naznačovat příznaky jako svalový třes, křeče, pocity žízně, snížená produkce moči, suchá sliznice a zvláští

Ačkoliv by se mohlo jevit, že sůl v největší míře přijímáme přislovením pokrmů, není tomu tak. Bylo potvrzeno, že největší příjem soli je ze zpracovaných potravin. A tak cílem zdravotnických organizací je zajištění příslušných opatření v potravinářském průmyslu při daném zpracování. Spotřebitelé navíc lpi na zachování tradiční chuti pokrmů, což může být problémem do budoucna. Ačkoliv se využívá náhradě jako chloridu draselného, který se vyznačuje kovovou pachutí, chloridu vápenatého, jenž je velmi slaný a hygroskopický, a chloridu hořčnatého, který se také vyznačuje nečistou chutí, chuťově se nic nevyrovná samotnému chloridu sodnému. [8]

Tabulka 1 Obsah soli v potravinách [2]

<table>
<thead>
<tr>
<th>100 g</th>
<th>mg NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housky/knedlík</td>
<td>1234</td>
</tr>
<tr>
<td>Kukuřičné lupínky</td>
<td>1676 - 2311</td>
</tr>
<tr>
<td>Sýr eídám</td>
<td>1143</td>
</tr>
<tr>
<td>Bramborové lupínky</td>
<td>889</td>
</tr>
<tr>
<td>Kečup</td>
<td>3302</td>
</tr>
<tr>
<td>Kravské mléko</td>
<td>140</td>
</tr>
<tr>
<td>Trvanlivý salám</td>
<td>3200</td>
</tr>
<tr>
<td>Slanečci</td>
<td>15062</td>
</tr>
<tr>
<td>Šunka</td>
<td>3556</td>
</tr>
<tr>
<td>Špagety</td>
<td>902</td>
</tr>
<tr>
<td>Špenát</td>
<td>165</td>
</tr>
<tr>
<td>Bílý chleba</td>
<td>977 - 1371</td>
</tr>
</tbody>
</table>
2.6 Zpracování brambor

Mezi hlavní produkty brambor patří hranolky a lupínky. Procesy výroby těchto produktů jsou si velmi podobné. Prvotním krokem oloupání brambor, nakrájení na požadovaný tvar a velikost, blanšování, po něm následující smažení, které dodá produktům senzorické vlastnosti. Pro odstranění nežádoucího zbarvení a pro podporu odolnosti před zbarvením se využívá pyrofosforečnanu nebo pyrosiřičitanu sodného. Při výrobě bramborových produktů je riziko vzniku škrobové pěny při praní brambor, která je velmi stabilní. Proto je nutné těmto rizikům předcházet přidáním odpěňovacích látek. [9]

2.6.1 Smažené bramborové lupínky

Bramborové lupínky se začaly připravovat v USA koncem 19. století. Do dnešní doby se jejich výroba zkvalitnila a dostala mechanický ráz. Podstata procesu výroby u různých podniků je velmi podobná, liší se pouze drobnými rozdíly podmínek jednotlivých kroků a délku výroby lupínku. Společnými pochody jsou praní, loupání, třídění, oplachování, smažení, solení a balení. [10, 11]

Příjem brambor – V některých podnicích je preferováno okamžité zpracování brambor do 24 hodin po jejich příjmu, jinak se na nich objeví černé skvrny. Jinde jsou brambory uskladněny na několik měsíců při teplotě 8°C. [10, 11]

Praní – Praní se provádí v bubnových nebo flotačních pračkách. Oddělí se při něm bahno a kamení za vzniku pevného odpadu. [10]

Krájení – Brambory jsou na základě odstředivé síly tlačeny proti pevně upevněným nožům. Z jedné brambory získáme až 36 lupínků. Šířku bramborových
lupínků lze upravovat. Jednotlivé plátky jsou poté omývány jednu minutu studenou vodou, aby byl odstraněn povrchový škrob a cukry. Plátky jsou následně pod proudem vzduchu osušeny. [10, 12]

Blanšírování – Blanšírování předchází smažení, ale preferuji ho jen někteří výrobci. Jedná se o tepelné zpracování bramborových plátků, kdy se inaktivují enzymy a snižuje se počet mikroorganismů. Obvykle se provádí horkou vodou nebo parou za teploty 65°C až 95°C po dobu minimálně jedné minuty. [10]

Po smažení jdou lupínky na pás, kde odkapá přebytečný olej. Zároveň je zde kamerový systém, který vylučuje lupínky s defekty nebo se skvrnami. Ty jsou pomocí proudu vzduchu odstraněny. Takto vytříděné lupínky jsou osoleny, popřípadě jsou dochuceny práškovým kořením a dávkovány do náležitých obalů. Čas výroby jedné várky se pohybuje v rozmezí 15 - 30 minut a vyrobí se kolem 350 tisíc balíčků denně. [12]
2.7 Subjektivní a objektivní stanovení

Při subjektivním stanovení se výsledky hodnotitelů mohou lišit. Podstatnou roli hraje sám hodnotitel, vnější podmět a prostředí při smyslovém vnímání. Tyto faktory jsou rozepsány v kapitole Faktory ovlivňující smyslové vnímání. Každý hodnotitel má odlišný práh vnímání zkoumaného podnětu, a to se může odrazit ve výsledcích. Navíc je ovlivněn dalšími vlivy, mezi které patří současný psychický stav hodnotitele, prostředí, v němž se nachází, a společnost, která ho obklopuje.

2.7.1 Objektivní stanovení

Při dodržení optimálních podmínek kladených na senzorickou analýzu lze docílit objektivního stanovení. Optimální podmínky jsou vyznačeny v tab. 2. Vedle těchto podmínek je nutno dodržet i obecné zásady pro senzorickou analýzu. Mezi tyto podmínky patří:

- Dodržování hygienických předpisů
- Podávání dostatečného množství vzorku
- Podávání vzorků ve stejných nádobách
- Dodržení anonymity vzorků
Časový rozvrh podávání
Vysvětlení postupu při zkoušce a záznamu výsledků
Trvání ochutnávky minimálně 5 sekund
Vyplachování chuťovým neutralizátorom

Při splnění těchto zásad lze získat od hodnotitelů podobných výsledků a lze považovat stanovení za kvalitní. [14]

Tabulka 2 Optimální podmínky pro hodnocení [14]

<table>
<thead>
<tr>
<th>Optimizovaný faktor</th>
<th>Optimální podmínky pro hodnocení</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hladina zvuku</td>
<td>kolem 40dB, izolace dveří a oken</td>
</tr>
<tr>
<td>Teplota</td>
<td>21 - 23°C nejlépe klimatizace</td>
</tr>
<tr>
<td>Vlhkost vzduchu</td>
<td>40 - 70 %, v zimě vlhčení</td>
</tr>
<tr>
<td>Pohyb vzduchu</td>
<td>poznatelný jen o přestávkách, jinak klid</td>
</tr>
<tr>
<td>Pachy</td>
<td>ochrana před pachy ventilací, pachovými filtry a nátěry neabsorbující pachy</td>
</tr>
<tr>
<td>Zrakové vjemy</td>
<td>světle šedá nebo bílá barva, bez výzdoby</td>
</tr>
<tr>
<td>Kontakt s lidmi</td>
<td>příhrady mezi hostiteli, kóje</td>
</tr>
</tbody>
</table>

Za objektivní stanovení lze považovat i chemické stanovení, které při dodržení správného a přesného postupu je spolehlivé, opakovatelné a minimálně závislé na osobě, která stanovení provádí.

2.7.2 Senzorické stanovení

„Senzorickou analýzou rozumíme hodnocení potravin bezprostředně našimi smysly, včetně zpracování výsledků lidským centrálním nervovým systémem. Analýza podbíhá za takových podmínek, kdy je zajištěno objektivní, přesné a reprodukovatelné měření.“ Vedle senzorické analýzy, která je zaměřená na vjemy, je využívána analýza fyzikální a chemická. Ta se však zabývají chemickými či fyzikálními vlastnostmi potravin. [14]

Jsou sledovány organoleptické vlastnosti potravin na základě smyslového vnímání, tj. vedení nervového vzatku z receptoru a jeho vyhodnocení. Celá cesta začíná působením vnějšího podnětu na receptor, který je charakteristický pro daný smyslový orgán. Z receptoru vede dostředivě vláčno do specifické oblasti centrální nervové soustavy dle typu daného receptoru. Zde se signál zpracovává v tzv. primární oblasti a následuje asociací oblast mozkové kůry. Tato asociacní oblast vyvolává např.
pocitové projevy, vzbuzuje pozornost, spojuje informace z různých smyslů či napomáhá v slovním a písemném projevu senzorické analýzy.

Smysl čichový - Mechanismus tohoto vnímání není dosud jednoznačně určen. Získané vjemy, tzv. pachy lze rozdělit na příjemné (vůně, aroma) a nepříjemné (označované jako zápach). Vnímání pachu může ovlivnit věk, intenzita podnětu, poruchy čichového vnímaní a některé chuťové látky.

Smysl zrakový - Zrakové receptory jsou usídleny v oku, které je schopno vnímat elektromagnetické záření o rozsahu 380 - 780 nm vlnové délky. Zrak je důležitý při senzorické analýze, jelikož dle vzhledu si zákazník vybírá výrobek. Důležitý je barevný tón, intenzita, sytost zbarvení, tvar a objem výrobku.

Sluchový smysl - Sluch patří k důležitým smyslům, jelikož se díky němu rozvíjí vyšší psychická činnost, např. abstraktní myšlení. Lidské ucho je schopné vnímat zvuky o frekvenci 16 Hz až 20 000 Hz. Ucho vnímá tři typy zvukových podnětů, a to hřмотy, šelesty a tóny.

Hmatový smysl - V pokožce se nachází různé typy hmatových tělísek, která jsou orientována na teplo, chlad, tlak a bolest. Ta jsou napojena na nervová zakončení. Receptory ve svalech nás informují o křehkosti, tvrdosti a elasticitě.

Chuťový smysl - V dutině ústní, konkrétně na jazyku, měkkém patře, jazylce a horní části hrtanu se vyskytují chuťové buňky. V papilách na jazyku se nacházejí chuťové pohárky, v nichž jsou uloženy chuťové receptory vnímající čtyři základní chutě (sladkost, slanost, kyselost a hořkost). Zároveň lze pro ně rozlišit čtyři typy tvarově charakteristických papíl – houbovité, listovité, nitkovité a hrazené. V chuťových pohárkách se nachází též chuťové buňky, které reagují s danými receptory, a poté je nervový signál přenášen nervy dál. Pro vnímání chuti je důležitá dlouhá doba trvání, adaptace receptorů a vliv teploty. Problémem chuťového vnímání může být nefunkčnost receptorů, snížená citlivost a zkreslené vnímání. [14]

2.7.2.1 Faktory ovlivňující smyslové vnímání

Vlastní senzorická analýza je ovlivněna několika činiteli, jako je osobnost hodnotitele, vnější podněty a vnější podmínky hodnocení.

Aby daný podnět byl zaregistrován hodnotitelem, musí splňovat jisté předpoklady. Intenzita jeho působení musí být silná a dostatečně dlouhotrvající. Školení hodnotitelé mají snížený práh vnímání, a tak jsou schopni postřehnout minimální
podněty. Přestože na člověka během vnímání působí až několik tisíc podnětů, je zapotřebí se soustředit na zkoumaný podnět a eliminovat nežádoucí podněty a okolnosti.

Ačkoliv se hodnotitel plně soustředí na zkoumaný podnět, mohou ho ovlivnit vnější podmínky prostředí. Proto je prostředí pro analýzu speciálně upraveno a musí splňovat požadavky: odhlučněnost, minimální komunikace, klid, místnost musí být bez výzdoby a doplňků, pachově neutrální, teplotně a světelně optimalizované.

I na vnímající osobu mohou působit vlivy sociální, psychické a fyziologické, které mohou zkreslit vnímaný podnět. Vlivy sociálními se rozumí ovlivnění okolní společnosti před i během samotného hodnocení. Proto je nutné vytvořit přátelské podmínky a přijemnou atmosféru. Na psychické rozpoložení hodnotitele může působit únava nebo důležitější problémy. Proto je nezbytné se před hodnocením přesvědčit o schopnosti soustředit se na plnění zadaných úkolů, vyjádření vnímaných poznatků, a také udržování pořádku na stole. [14]

2.8 Práce s biologickým materiálem

Při zpracování biologického materiálu je nutno respektovat podmínky pro manipulaci s ním a podmínky pro jeho zpracování. Z biologického materiálu je za využití předepsaných postupů vyloučen analyt do prostředí, v kterém je možno ho stanovit. Jako jedna z klasických metod kvantitativní analýzy je využívána titrace, pomocí níž se snadno určí majoritní ionty, jako jsou například chloridové ionty. Nevýhodou těchto klasických metod jsou složité pracovní postupy pro úpravy a zpracování vzorku, které mnohdy bývají zdoluvavé.

2.9 Metody vyučování

Podstatou metod ve vyučování jsou způsoby, jakými jsou předávány, osvojovány dovednosti, vědomosti a postoje. Vyučovací metody jsou prostředkem, kterým je uskutečněno propojení cíle a obsahu pedagogického procesu s jeho výsledky.

Učitel by měl být s jednotlivými typy metod obeznámen a měl by být schopen zvolit takovou metodu, která je vhodná pro daný obsah v určitém předmětu. Volba metody nezávisí pouze na obsahu učiva. Vychází též ze zkušeností učitele, schopností a vědomostí žáků, či vybavení školy a třídy.

Klasifikace metod se u různých autorů trochu liší. Nejvyužívanější rozdělení metod je na:

- **Gnoseologické hledisko** vycházející z rozdělení vyučování na logické kroky (analytická, syntetická, induktivní, deduktivní, genetická srovnávací a dogmatická metoda).
- **Procesuální hledisko** (metody expoziční, osvojování nového učiva, fixační metody a metody prověřování a hodnocení žákovských výkonů).
- **Hledisko aktivity učebních činností žáků** (metody informativní, reproduktivní a informační, aktivizující a metody tvořivého charakteru).

Nejčastěji využívané metody jsou slovní, názorně-demonstrační a aktivizující metody, dále metody vytváření praktických dovedností. [16]

2.9.1 Metody vytváření praktických dovedností

Tyto metody jsou založené na propojení teoretických poznatků s dovednostmi za vzniku prakticky využitelné kompetence. Vytváření praktických dovedností patří mezi nejúčinnější formu učení. Nelze ani opomenout výzkum provedený mezi žáky ve věkovém rozmezí 11 – 18 let na anglických školách, který se zabýval oblíbeností využívaných metod, v kterém metoda vytváření praktických dovedností, konkrétně pokusů, skončila na čtvrtém místě. [16]

Jak ve vyučovacím procesu, tak i v běžném životě se setkáme s metodou napodobování. Jde o imitaci způsobů chování či praktické činnosti. Ve školním procesu je nutno dohlédnout na správnost imitace, jinak dochází k nežádoucím chybám. [16]

V přírodovědných předmětech se nejčastěji setkáváme s laborováním, kdy žáci provádějí pokusy obvykle k ověření pouček či získání nových informací. Současně
se u žáků rozvíjí schopnost samostatně uvažovat a pozorovat, pracovat s různými nástroji. Vedle seberozvíjení, žáci obvykle spolupracují a rozvíjí se tak zároveň schopnost komunikace. Laboratorní práce mohou být krátkodobého nebo dlouhodobého charakteru. [16]

Inovací laboratorních prací je experimentální činnost. Jejím základem je tzv. heuristický charakter, což znamená problémové řešení úkolu. Žáci experimentují, tj. zkouší a ověřují různé jevy. Experimentální činnost by měla zahrnovat formulaci problému, vytvoření hypotéz a metod řešení, provedení experimentu, srovnání hypotézy a výsledků experimentu, diskuze a formulace závěru.

V rozvíjení jemné motoriky se využívá produkčních metod, kterými se nacvičují výkony jako je psaní, modelování, kreslení… [16]
3 EXPERIMENTÁLNÍ ČÁST

3.1 Pracovní postupy

3.1.1 Příprava roztoku dusičnanu stříbrného

Byly připraveny dva zásobní roztoky dusičnanu stříbrného o koncentraci 0,05 mol/l. Navážka dusičnanu stříbrného činila 8,49 g. Toto množství dusičnanu bylo doplněno destilovanou vodou na objem jednoho litru.

3.1.2 Příprava roztoku chromanu draselného

Chroman draselný o hmotnosti 2,6 g byl přidán do 50 ml odměrné baňky, která byla po rysku doplněna destilovanou vodou.

3.1.3 Příprava Carezova činidla I

Síran zinečnatý o hmotnosti 75 g byl přidán do 250 ml odměrné baňky, která byla po rysku doplněna destilovanou vodou po rysku. Tento roztok má koncentraci 300 g/l.

3.1.4 Příprava Carezovo činidla II.

Hexakyanoželeznatan draselný o hmotnosti 37,5 g byl přidán do 250 ml odměrné baňky, která byla po rysku doplněna destilovanou vodou. Tento roztok má koncentraci 150 g/l.

3.2 Stanovení titru

Bylo naváženo 5 nezávislých vzorků chloridu sodného. Každý vzorek byl kvantitativně převeden do titrační baňky o objemu 250 ml a doplněn destilovanou vodou na objem 50 ml. Dále byl přidán 1 ml 5% roztoku K₂CrO₄. Poté byly jednotlivé vzorky titrované dusičnanem stříbrným o c ~ 0,05 mol/l do prvního zřejmého červeno-hnědého zbarvení.

3.3 Stanovení chloridu sodného ve vzorku brambůrků a v obohaceném vzorku o NaCl dle výchozího postupu

Byly naváženy 4 navážky z jednoho balení brambůrků o 10 g, přičemž dve navážky byly samotné brambůrky a dvě navážky obsahovaly mimo brambůrků i standardní přidavek NaCl, a to 150 – 170 mg NaCl. Tímto postupem byla ověřována
spolehlivost metody. Výchozí postup byl čerpán ze Seminárních cvičení ze základů analýzy potravin VŠCHT a jeho znění je v příloze 1. [15]

Brambůrky byly rozdrceny v hmoždíři a naváženy na analytických vaňách. Navážky byly převedeny do odměrných baněk o objemu 200 ml. Bylo zapotřebí důkladně vymýt navažovací nádobu od zbytků brambůrků, aby nedocházelo ke ztrátám a převedení bylo kvantitativní.

K navážkám v baňce byla příliš voda o teplotě v rozmezí 45 - 50°C a dále byly baňky protřepávány 5 minut.

Po 30 minutovém stání byly roztoky zchladeny na teplotu 20°C a přidáno 5 ml Carezova činidla I a 5 ml Carezova činidla II, přičemž při promíchání vznikla bílá sraženina. Baňky byly po rysku doplněny destilovanou vodou a opět promíchány. Následovala filtrace, pomocí níž byly roztoky zbaveny nerezpustných nečistot.

Ze získané filtrátu bylo odpipetováno 50 ml do titračních baněk. Tento roztok byl následně destilovanou vodou na 100 ml. Jeho pH bylo roztokem NaOH upraveno na hodnotu 6,5 – 10 a ověřeno pH indikátorovými papírky. Jako indikátor bylo přidáno 10 kapek 5% roztoku K₂CrO₄. Pak byl roztok titrován AgNO₃ o c ~ 0,05 mol/l do prvního zřejmého červeného zbarvení. Barvy roztoku před titrací a po titraci jsou uvedeny v příloze 4.

3.4 Modifikovaný postup

Z balení Bramborových lupínek bylo vždy odebráno 10 g Brambůrků, které byly před zvážením rozdrceny v hmoždíři na malé kousky o velikosti 5 - 6 mm. Rozdrcené Brambůrky byly naváženy na analytických vaňách s přesností na 0,0001 g. Takto připravená navážka byla převedena do kádinky. Vyšší obsah tuku v některých vzorcích Brambůrků způsoboval problémy při převádění vzorku do kádinky.

K navážce vzorku v kádince bylo přidáno 80 ml vody o teplotě asi 45 - 50°C. U Brambůrků s vyšším obsahem tuků byla část horké vody promyta navažovací lodička a obsah příliš ke vzorku v kádince. Navážka v kádince byla krátce promíxována ručním nerezovým mixérem, kdy velikost kousků se pohybovala okolo 2 - 3 mm. Velikost částic je vyobrazena v příloze 3.

Rozmixovaný obsah byl převeden do 200 ml odměrné baňky, přičemž byl minimálním množstvím vody do baňky omyt mixer, aby nevznikaly ztráty na vzorku.
Pokud bylo na omytí použito větší množství vody, docházelo v následujících krocích postupu k překročení objemu odměrné baňky.

Baňka byla odstavena na 30 minut a posléze byl její obsah zchladen tekoucí vodou na 20°C. K upravené navážce brambůrků bylo přidáno 5 ml Carezova činidla I a 5 ml Carezova činidla II. Následně byla baňka protřepána za vzniku bílého koloidu. Po přidání činidel a promíchání byla přilita k obsahu destilovaná voda po rysku a opět obsah baňky důkladně promíchán.

Roztok byl filtrován nejprve přes kovové sítko, kde se zachytily největší kousky brambůrků, a následovně filtrován přes filtrační papír ve filtrační nálevce. Filtrace byla poměrně rychlejší, přesto v některých případech bylo nutné získaný roztok kvůli zákalu ještě jednou přefiltrovat.

Ze získaného čirého filtrátu bylo odpipetováno 50 ml do titrační baňky a zředěno na 100 ml destilovanou vodou. Bylo upraveno pH roztoku několika kapkami NaOH na pH v rozmezí 6,5 až 10. Následně přidáno 10 kapek 5% K₂CrO₄ za vzniku nažloutlého roztoku. Tento roztok byl titrován AgNO₃ o c ~ 0,05 mol/l do vzniku červeného zbarvení. Barva roztoku před titrací a po titraci jsou uvedeny v příloze 4.

Tento modifikovaný postup byl ověřen na dvou sériích vzorků, které byly neobohaceny a obohaceny o NaCl. Přídavek NaCl činil 150 - 170 mg. Validita tohoto postupu vycházela z přímo úměrné spotřeby AgNO₃ dle množství NaCl.

3.5 Zjišťování chloridu sodného ve vzorcích různých bramborových lupínků

3.6 Senzorické stanovení

Jednotlivé vzorky brambůrků byly předloženy pěti posuzovatelům, kteří měli určit, do jaké míry se jim daný vzorek zdá slaný.
Základem hodnocení byla pěti škálová stupnice, jejíž stupně jsou vyobrazeny v obr. 7. Před podáváním vzorků hodnotitelé okusili špetku soli jako srovnávací vzorek. Mezi jednotlivými vzorky byla podávána 0,5dcl sklenice vody za účelem neutralizace v ústech.

Obrázek 7 Stupnice slanosti brambůrků [22]
4 Výsledky

4.1 Určení faktoru dusičnanu stříbrného

Jednotlivé navážky chloridu sodného byly titrovány dusičnanem stříbrným. Z výsledných hodnot titru byly stanoveny jednotlivé koncentrace dusičnanu stříbrného, které byly statisticky zpracovány a testovány na odlehlé výsledky. Pracovní postup pro matematickou analýzu je v příloze 5. Následně byla vypočtena průměrná hodnota koncentrace dusičnanu stříbrného, dle vzorce:

\[c(\text{AgNO}_3) = \frac{m_{\text{NaCl}}}{V_{\text{AgNO}_3} \times M_{\text{NaCl}}} \]

Vypočtené hodnoty koncentrace jsou uvedeny v tab. 3 a tab. 4 pro druhý roztok spolu s jejich statistickým zpracováním.

Tabulka 3 Výsledné hodnoty koncentrace dusičnanu stříbrného a určení intervalu spolehlivosti

<table>
<thead>
<tr>
<th>Vzorek</th>
<th>(m_{\text{NaCl}}) [mg]</th>
<th>(V_{\text{AgNO}_3}) [ml]</th>
<th>(c_{\text{AgNO}_3}) [mol/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,07</td>
<td>25,4</td>
<td>0,0471</td>
</tr>
<tr>
<td>2</td>
<td>0,0703</td>
<td>25,5</td>
<td>0,0472</td>
</tr>
<tr>
<td>3</td>
<td>0,0701</td>
<td>25,4</td>
<td>0,0472</td>
</tr>
<tr>
<td>4</td>
<td>0,0711</td>
<td>25,6</td>
<td>0,0475</td>
</tr>
<tr>
<td>5</td>
<td>0,0713</td>
<td>25,6</td>
<td>0,0477</td>
</tr>
</tbody>
</table>

Směrodatná odchylka: 0,000228533

Aritmetický průměr: 0,0473

Interval spolehlivosti: 0,0473±0,000284

\(x_n\) = 0,2671

\(x_t\) = 0,0327
Tabulka 4 Výsledné hodnoty koncentrace dusičnanu stříbrného a určení intervalu spolehlivosti

<table>
<thead>
<tr>
<th>Vzorek</th>
<th>m_{NaCl} [mg]</th>
<th>V_{AgNO3} [ml]</th>
<th>c_{AgNO3} [mol/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,0703</td>
<td>25,5</td>
<td>0,0472</td>
</tr>
<tr>
<td>2</td>
<td>0,07</td>
<td>25,4</td>
<td>0,0471</td>
</tr>
<tr>
<td>3</td>
<td>0,0706</td>
<td>25,6</td>
<td>0,0472</td>
</tr>
<tr>
<td>4</td>
<td>0,0705</td>
<td>25,5</td>
<td>0,0473</td>
</tr>
<tr>
<td>5</td>
<td>0,07</td>
<td>25,5</td>
<td>0,0470</td>
</tr>
</tbody>
</table>

Směrodatná odchylka: 0,000120569
Aritmetický průměr: 0,0472
Interval spolehlivosti: 0,0472±0,00015
x_n = 1,6667
x_1 = 0,0814

Na základě statistických výsledků nebylo zapotřebí ani jednu koncentraci dusičnanu stříbrného vyloučit. Zároveň byla vypočtena c_{AgNO_3}, která bude využívána při dalších výpočtech. Pro první roztok byla výsledná koncentrace rovna hodnotě 0,0473 mg/l a pro druhý roztok byla výsledná koncentrace 0,0472 mg/l.

4.2 Validita výchozí metody

Byly naváženy 4 navážky (tab. 5 a 6) z balení brambúrků, přičemž navážka č. 3 a č. 4 obsahovala navíc přídavek NaCl. Jednotlivé navážky byly zpracovány dle základního postupu a z naměřených dat byly vypočteny hodnoty obsahu chloridu sodného. Obsah chloridu sodného v navážkách 3 a 4 by měl dle předpokladů přímo úměrný jeho přídavkům.

Výpočet hmotnosti chloridu sodného u navážek:

\[m_{NaCl} (50ml) = 10^{-3} \times c_{AgNO_3} \times V_{AgNO_3} \times M_{NaCl} \]

\[m_{NaCl\text{celková}} = m_{NaCl} (50ml) \times 4 \]
VÝSLEDKY

Tabulka 5 První řada navážek bez přídavku NaCl s výpočtem chloridu sodného $(c_{\text{AgNO}_3} = 0,0473 \text{ mg/l})$

<table>
<thead>
<tr>
<th>Navážka</th>
<th>m_{chips} [g]</th>
<th>m_{NaCl} [g]</th>
<th>V_{AgNO_3} [ml]</th>
<th>m_{NaCl} (50ml) [g]</th>
<th>m_{NaCl} celková [g]</th>
<th>$\bar{O} m_{\text{NaCl}}$ celková [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,009</td>
<td>0</td>
<td>22,6</td>
<td>0,062</td>
<td>0,25</td>
<td>0,2472</td>
</tr>
<tr>
<td>2</td>
<td>10,0227</td>
<td>0</td>
<td>22,1</td>
<td>0,061</td>
<td>0,24</td>
<td></td>
</tr>
</tbody>
</table>

Tabulka 6 Druhá řada navážek bez přídavku NaCl s výpočtem chloridu sodného $(c_{\text{AgNO}_3} = 0,0473 \text{ mg/l})$

<table>
<thead>
<tr>
<th>Navážka</th>
<th>m_{chips} [g]</th>
<th>m_{NaCl} [g]</th>
<th>V_{AgNO_3} [ml]</th>
<th>m_{NaCl} (50ml) [g]</th>
<th>m_{NaCl} celková [g]</th>
<th>$\bar{O} m_{\text{NaCl}}$ celková [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10,0012</td>
<td>0,15</td>
<td>26</td>
<td>0,072</td>
<td>0,29</td>
<td>0,2908</td>
</tr>
<tr>
<td>4</td>
<td>10,009</td>
<td>0,169</td>
<td>26,6</td>
<td>0,074</td>
<td>0,29</td>
<td></td>
</tr>
</tbody>
</table>

Získaná hmotnost chloridu sodného z navážek 3 a 4 by se měla po odečtení jejich přídavku chloridu sodného přibližně rovnat hmotnosti chloridu sodné navážek 1 a 2, které byly bez přídavku chloridu sodného.

$$\bar{O} m_{\text{NaCl}} (\text{navážka 3 a 4}) - \bar{O} m_{\text{NaCl}} \text{ přídavku} = \bar{O} m_{\text{NaCl}} (\text{navážka 1 a 2})$$

$$0,2908 - 0,1595 = 0,1313 \text{ g NaCl}$$

Odečtením hodnot byla získána hmotnost 0,1313 g, která se výrazně lišila od předpokládané hodnoty 0,247 g NaCl.

Na základě naměřených a vypočítaných hodnot bylo zjištěno, že tento postup byl nevyhovující, a bylo zapotřebí nalézt spolehlivost metody a lepší extrakci NaCl do stanovovaného roztoku.

4.3 Ověření spolehlivosti nového postupu na základě stanovení chloridu sodného ve vzorku

Na základě dvou sérií navážek, přičemž jedna obsahovala přídavek NaCl, byla ověřena platnost nového postupu zpracování brambůrků. Oproti původnímu postupu se lišil mechanickým zpracováním chipsů a filtrací přes ocelové sítko, díky němuž se zkrátila doba filtrace.

U obou sérií bylo zjištěno průměrné množství chloridu sodného.

Jednotlivé hodnoty pro sérii 1 jsou uvedeny v tab. 7 a pro sérii 2 v tab. 8.
Tabulka 7 První řada navážek bez přídavku NaCl s výpočtem chloridu sodného
\(c_{\text{AgNO}_3} = 0,0473 \text{ mg/l}\)

<table>
<thead>
<tr>
<th>Navážka</th>
<th>(m_{\text{chipsy}}) [g]</th>
<th>(m_{\text{NaCl}}) [g]</th>
<th>(V_{\text{AgNO}_3}) [ml]</th>
<th>(m_{\text{NaCl}}) celková [g]</th>
<th>(\bar{m}_{\text{NaCl}}) celková [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,009</td>
<td>0</td>
<td>20,5</td>
<td>0,057</td>
<td>0,23</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>0</td>
<td>20,9</td>
<td>0,058</td>
<td>0,23</td>
</tr>
</tbody>
</table>

Tabulka 8 Druhá řada navážek s přídavkem NaCl s výpočtem chloridu sodného
\(c_{\text{AgNO}_3} = 0,0473 \text{ mg/l}\)

<table>
<thead>
<tr>
<th>Navážka</th>
<th>(m_{\text{chipsy}}) [g]</th>
<th>(m_{\text{NaCl}}) [g]</th>
<th>(V_{\text{AgNO}_3}) [ml]</th>
<th>(m_{\text{NaCl}}) celková [g]</th>
<th>(\bar{m}_{\text{NaCl}}) celková [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10,0099</td>
<td>0,1662</td>
<td>34</td>
<td>0,094</td>
<td>0,38</td>
</tr>
<tr>
<td>4</td>
<td>10,0089</td>
<td>0,1697</td>
<td>36</td>
<td>0,100</td>
<td>0,40</td>
</tr>
</tbody>
</table>

Pokud je od průměrné hmotnosti chloridu sodného ze série 2 odečten jejich přídavek NaCl, měla by být získána přibližně hodnota průměrné hmotnosti chloridu sodného ze série 1.

\[\bar{m}_{\text{NaCl}} (\text{navážka 3 a 4}) - \bar{m}_{\text{NaCl}} \text{ přídavku} = \bar{m}_{\text{NaCl}} (\text{navážka 1 a 2})\]
\[0,3817 - 0,16795 = 0,2148 \text{ g NaCl}\]

Hodnota získána po odečetě - 0,2148 g NaCl přibližně odpovídá průměrné hmotnosti chloridu sodného z první série – 0,2289 g, a tak lze tento postup považovat za funkční.

4.4 Zjišťování obsahu chloridu sodného ve vzorcích brambůrků

Nově navržený postup byl použit pro stanovení chloridu sodného u 10 typů brambůrků. Z každého balení byly odebrány 3 navážky, které byly na sobě nezávisle upraveny, ztitrovány a následně zpracovány na zjištění množství NaCl ve 100 g. Výsledné hodnoty byly porovnávány s hodnotami uvedenými na obalu.
Některé brambůrky mají na svých obalech napsaný pouze obsah sodíku ve 100 g. Pak byl zaveden zjednodušující předpoklad, že sodík je obsažen pouze ve formě NaCl a z tohoto předpokladu bylo vycházeno ve výpočtech:

\[m_{\text{NaCl}}(50\text{ml}) = 10^{-3} \times c_{\text{AgNO}_3} \times V_{\text{AgNO}_3} \times M_{\text{NaCl}} \]

\[m_{\text{NaCl}}(200\text{ml}) = m_{\text{NaCl}}(50\text{ml}) \times 4 \]

\[w_{\text{NaCl}} = \frac{m_{\text{NaCl}}(200\text{ml})}{m_\text{vzorku}} \times 100 \]

\[\sigma m_{\text{NaCl}}(100\text{g}) = m_{\text{NaCl}}(200\text{ml}) \times \frac{10}{3} \]

\[m_{\text{NaCl}}(100\text{g}) = \frac{m_\text{Na}(100\text{g})}{M_{\text{Na}^+}/M_{\text{NaCl}}} \times 100 \]

Jednotlivé hodnoty a značky brambůrek jsou uvedeny v následujících podkapitolách.

4.4.1 Tradiční české brambůrky

Informace na obalu nezahrnovaly ani množství NaCl ve 100 g, ani množství sodíku ve 100 g. Obsah chloridu sodného dle výpočtu činí 2,3 g.

Obrázek 8 Tradiční české brambůrky a informace uvedené na obalu

Tabulka 9 Získané hodnoty o obsahu chloridu sodného v Tradičních českých brambůrčích (c_{\text{AgNO}_3} = 0,0473 mg/l)

<table>
<thead>
<tr>
<th></th>
<th>(m_{\text{vzorku}}) [g]</th>
<th>V_{\text{AgNO}_3} [ml]</th>
<th>m_{\text{NaCl}} (200ml) [g]</th>
<th>w_{\text{NaCl}} [%]</th>
<th>(\sigma w_{\text{NaCl}}) [%]</th>
<th>(\sigma m_{\text{NaCl}}) (100 g) [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,0078</td>
<td>20,8</td>
<td>0,2300</td>
<td>2,30</td>
<td>2,28</td>
<td>2,29</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>20,5</td>
<td>0,2267</td>
<td>2,27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10,0035</td>
<td>20,7</td>
<td>0,2289</td>
<td>2,29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.4.2 Lays

Na obale byla udána hodnota sodíku na 100 g - 0,65 g, což v přepočtu je 1,7 g chloridu sodného na 100 g. Naměřená data vykazují množství chloridu sodného 2,2 g na 100 g.

Obrázek 9 Lays brambůrky

Obrázek 10 Uvedené množství sodíku na obalu Lays

Tabulka 10 Získané hodnoty o obsahu chloridu sodného v Lays brambůrcích
($c_{\text{AgNO}_3}=0,0473 \text{ mg/l}$)

<table>
<thead>
<tr>
<th>vzorku</th>
<th>V_{AgNO_3} [ml]</th>
<th>m_{NaCl} (200ml) [g]</th>
<th>w_{NaCl} [%]</th>
<th>Ωw_{NaCl} [%]</th>
<th>Ωm_{NaCl} (100 g) [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,0044</td>
<td>20</td>
<td>0,2212</td>
<td>2,21</td>
<td>2,21</td>
</tr>
<tr>
<td>2</td>
<td>10,003</td>
<td>19,9</td>
<td>0,2201</td>
<td>2,20</td>
<td>2,20</td>
</tr>
<tr>
<td>3</td>
<td>10,008</td>
<td>20,1</td>
<td>0,2223</td>
<td>2,22</td>
<td>2,22</td>
</tr>
</tbody>
</table>

4.4.3 Bohemia chips

Hodnota na obalu pro množství sodíku ve 100 g činí 0,6 g, což představuje 1,5 g chloridu sodného na 100 g. Lišila se od vypočtené hodnoty 1,8 g na 100 g.

Obrázek 11 Bohemia chips

Obrázek 12 Uvedená hodnota na obalu Bohemia Chips pro sodík
Tabulka 11 Získané hodnoty o obsahu chloridu sodného v Bohemia chips brambůrcích \((c_{\text{AgNO}_3} = 0,0473 \text{ mg/l})\)

<table>
<thead>
<tr>
<th>(m_{\text{vzorku}} [\text{g}])</th>
<th>(V_{\text{AgNO}_3} [\text{ml}])</th>
<th>(m_{\text{NaCl}} (200\text{ml}) [\text{g}])</th>
<th>(\omega_{\text{NaCl}} [%])</th>
<th>(\bar{\omega}_{\text{NaCl}} [%])</th>
<th>(\bar{\Omega}{m{\text{NaCl}}} (100 \text{ g}) [\text{g}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,0068</td>
<td>16,5</td>
<td>0,1825</td>
<td>1,82</td>
<td>1,83</td>
</tr>
<tr>
<td>2</td>
<td>10,0082</td>
<td>16,6</td>
<td>0,1836</td>
<td>1,83</td>
<td>1,83</td>
</tr>
<tr>
<td>3</td>
<td>10,0075</td>
<td>16,5</td>
<td>0,1825</td>
<td>1,82</td>
<td>1,83</td>
</tr>
</tbody>
</table>

4.4.4 World of chips

Hodnota uvedená na obalu pro množství sodíku ve 100 g je 0,8 g. V přepočtu to činí 2,03 g chloridu sodného na 100 g. Získaná hodnota chloridu sodného ve 100 g je 2,3 g.

Obrázek 13 World of chips

Obrázek 14 Obsah sodíku World of chips uvedený na obalu

Tabulka 12 Získané hodnoty o obsahu chloridu sodného v World of chips brambůrcích \((c_{\text{AgNO}_3} = 0,0473 \text{ mg/l})\)

<table>
<thead>
<tr>
<th>(m_{\text{vzorku}} [\text{g}])</th>
<th>(V_{\text{AgNO}_3} [\text{ml}])</th>
<th>(m_{\text{NaCl}} (200\text{ml}) [\text{g}])</th>
<th>(\omega_{\text{NaCl}} [%])</th>
<th>(\bar{\omega}_{\text{NaCl}} [%])</th>
<th>(\bar{\Omega}{m{\text{NaCl}}} (100 \text{ g}) [\text{g}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,0029</td>
<td>21</td>
<td>0,2322</td>
<td>2,32</td>
<td>2,30</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>20,8</td>
<td>0,2300</td>
<td>2,30</td>
<td>2,30</td>
</tr>
<tr>
<td>3</td>
<td>10,0024</td>
<td>20,5</td>
<td>0,2267</td>
<td>2,27</td>
<td>2,30</td>
</tr>
</tbody>
</table>
4.4.5 Bohemia grander

Jako u předchozích brambůrků od Bohemia chips obal nezahrnoval informace o množství soli či sodíku. Vypočtená hodnota chloridu sodného činila 2,1 g na 100 g.

Obrázek 15 Bohemia grander

<table>
<thead>
<tr>
<th>m_{vzorku} [g]</th>
<th>V_{AgNO3} [ml]</th>
<th>m_{NaCl} (200ml) [g]</th>
<th>% w_{NaCl}</th>
<th>% w_{NaCl}</th>
<th>% m_{NaCl} (100 g) [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,0028</td>
<td>19,2</td>
<td>0,2123</td>
<td>2,12</td>
<td>2,12</td>
</tr>
<tr>
<td>2</td>
<td>10,0022</td>
<td>19,1</td>
<td>0,2112</td>
<td>2,11</td>
<td>2,2</td>
</tr>
<tr>
<td>3</td>
<td>10,0026</td>
<td>19,2</td>
<td>0,2123</td>
<td>2,12</td>
<td>2,12</td>
</tr>
</tbody>
</table>

4.4.6 Rouskovy české brambůrky

Rouskovy české brambůrky patřily mezi mastnější. Na obalu byl uveden obsah NaCl 2% pro 80 g, což představuje 2 g chloridu sodného na 100 g. Dle měření vyšla hodnota NaCl 2,2 g na 100 g.

Obrázek 16 Rouskovy české brambůrky
Obrázek 17 Obsah soli uvedený na obalu Rouskovo českých brambůrků

Tabulka 14 Získané hodnoty o obsahu chloridu sodného v Rouskových českých brambůrcích ($c_{AgNO_3} = 0,0473$ mg/l)

<table>
<thead>
<tr>
<th></th>
<th>m_{vzorku} [g]</th>
<th>V_{AgNO_3} [ml]</th>
<th>m_{NaCl} (200ml) [g]</th>
<th>w_{NaCl} [%]</th>
<th>\bar{w}_{NaCl} [%]</th>
<th>\bar{m}_{NaCl} (100 g) [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,0038</td>
<td>19,9</td>
<td>0,2201</td>
<td>2,20</td>
<td>2,20</td>
<td>2,20</td>
</tr>
<tr>
<td>2</td>
<td>10,0037</td>
<td>19,9</td>
<td>0,2201</td>
<td>2,20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10,003</td>
<td>19,8</td>
<td>0,2190</td>
<td>2,19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.4.7 Ave chipsy

Na obalu byla udána hodnota sodíku 0,72 g ve 100g. Hodnota pro chlorid sodný je 1,8 g na 100 g. Výpočet chloridu sodného byl nižší a činil 1,6 g na 100 g.

Obrázek 4 Ave chipsy

Obrázek 5 Obsah sodíku uvedený na obalu Ave chipsů
Tabulka 15 Získané hodnoty o obsahu chloridu sodného v Ave chipsech (cAgNO₃ = 0,0472 mg/l)

<table>
<thead>
<tr>
<th>m_{vzorku} [g]</th>
<th>V_{AgNO3} [ml]</th>
<th>m_{NaCl} (200ml) [g]</th>
<th>w_{NaCl} [%]</th>
<th>Ø w_{NaCl} [%]</th>
<th>Ø m_{NaCl} (100 g) [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,0017</td>
<td>14,2</td>
<td>0,1570</td>
<td>1,57</td>
<td>1,59</td>
</tr>
<tr>
<td>2</td>
<td>10,0019</td>
<td>14,4</td>
<td>0,1592</td>
<td>1,59</td>
<td>1,59</td>
</tr>
<tr>
<td>3</td>
<td>10,0021</td>
<td>14,6</td>
<td>0,1615</td>
<td>1,61</td>
<td>1,60</td>
</tr>
</tbody>
</table>

4.4.8 Cyrilovy ručně smažené

Na obalu byla uvedena hodnota obsahu soli 2 % ve 100 g, což představuje 2 g chloridu sodného. Tato hodnota se liší od získané hodnoty 1,6 g NaCl na 100 g. Jelikož se jedná o mastnější brambůrky, mohlo docházet k jistým ztrátám při postupu či k problému přechodu látek do roztoku.

Obrázek 6 Cyrilovy ručně smažené

Tabulka 16 Získané hodnoty o obsahu chloridu sodného v Cyrilových ručně smažených brambůrcích (cAgNO₃ = 0,0472 mg/l)

<table>
<thead>
<tr>
<th>m_{vzorku} [g]</th>
<th>V_{AgNO3} [ml]</th>
<th>m_{NaCl} (200ml) [g]</th>
<th>w_{NaCl}</th>
<th>Ø w_{NaCl}</th>
<th>Ø m_{NaCl} (100 g) [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,0048</td>
<td>14,5</td>
<td>0,1604</td>
<td>1,60</td>
<td>1,60</td>
</tr>
<tr>
<td>2</td>
<td>10,0041</td>
<td>14,4</td>
<td>0,1592</td>
<td>1,59</td>
<td>1,60</td>
</tr>
<tr>
<td>3</td>
<td>10,0045</td>
<td>14,5</td>
<td>0,1604</td>
<td>1,60</td>
<td>1,60</td>
</tr>
</tbody>
</table>
VÝSLEDKY

4.4.9 Budget

Na těchto brambůrcích výrobce udává množství soli do 2,5 % ve 200 g, což by odpovídalo hodnotě obsahu chloridu sodného 2,5 g ve 100 g. Získaná hodnota chloridu sodného byla nižší a činila 2,1 g ve 100 g.

Obrázek 21 Budget

Tabulka 17 Získané hodnoty o obsahu chloridu sodného v Budget brambůrcích (c_{AgNO_3} = 0,0472 mg/l)

<table>
<thead>
<tr>
<th>m_{Vzorku} [g]</th>
<th>V_{AgNO_3} [ml]</th>
<th>m_{NaCl} (200ml) [g]</th>
<th>w_{NaCl} [%]</th>
<th>Ø w_{NaCl} [%]</th>
<th>Ø m_{NaCl} (100 g) [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,0035</td>
<td>18,7</td>
<td>0,2068</td>
<td>2,07</td>
<td>2,07</td>
</tr>
<tr>
<td>2</td>
<td>10,0035</td>
<td>18,7</td>
<td>0,2068</td>
<td>2,07</td>
<td>2,07</td>
</tr>
<tr>
<td>3</td>
<td>10,0036</td>
<td>18,8</td>
<td>0,2079</td>
<td>2,08</td>
<td></td>
</tr>
</tbody>
</table>

4.4.10 Smažené bramborové lupínky TESCO

Jako na jediných brambůrcích výrobce udává jak množství sodíku – 0,3 g ve 100g, což je 0,8 g chloridu sodného ve 100 g, a také hodnotu maximální množství soli – 2,5 %. Ta by odpovídala hodnotě 2,5 g chloridu sodného ve 100 g Dle výpočtů vychází množství chloridu sodného na 2,1 g na 100 g.

Obrázek 22 Smažené bramborové lupínky TESCO
Obrázek 23 Obsah soli Šmažených bramborových lupínků TESCO uvedený na obalu

Tabulka 18 Získané hodnoty o obsahu chloridu sodného v smažených bramborových lupínčích TESCO ($c_{AgNO_3} = 0,0472$ mg/l)

<table>
<thead>
<tr>
<th></th>
<th>m_{Vzorku} [g]</th>
<th>V_{AgNO_3} [ml]</th>
<th>m_{NaCl} (200ml) [g]</th>
<th>w_{NaCl} [%]</th>
<th>\bar{w}_{NaCl} [%]</th>
<th>\bar{m}_{NaCl} (100 g) [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,0029</td>
<td>18,5</td>
<td>0,2046</td>
<td>2,05</td>
<td></td>
<td>2,06</td>
</tr>
<tr>
<td>2</td>
<td>10,0032</td>
<td>18,7</td>
<td>0,2068</td>
<td>2,07</td>
<td></td>
<td>2,06</td>
</tr>
</tbody>
</table>

4.5 Výsledky senzorické analýzy

Pěti hodnotitelům byly podány vzorky stanovovaných brambůrků za účelem senzorické analýzy.

Tabulka 19 Výsledky senzorické analýzy

<table>
<thead>
<tr>
<th></th>
<th>Hodnocení ochutnavatelů</th>
<th>Výsledné hodnocení</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>č. 1</td>
<td>č. 2</td>
</tr>
<tr>
<td>TRADIČNÍ ČESKÉ BRAMBŮRKY</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LAYS</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>BOHEMIA CHIPS</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>WORLD OF CHIPS</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>BOHEMIA GRANDER paprika a rajče</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ROUSKOVY ČESKÉ BRAMBŮRKY</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AVE CHIPSY</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CYRILOVY RUČNĚ SMAŽENÉ</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BUDGET</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>SMAŽENÉ BRAMBOROVÉ LUPÍNKY TESCO</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Výsledkem hodnocení jednotlivých brambůrků je průměrná hodnota získaná posouzením konzumentů. Tučně jsou v průměrných hodnotách označeny ty brambůrky, které mají dle senzorického stanovení vysoký podíl soli. Nejvyšší hodnoty získaly brambůrky značky World of chips, Budget, Smažené bramborové lupínky TESCO.

Největšího ohlasu se dostalo vzorku Bohemia chips solených, které i po následující konzumaci nezpůsobili nesnesitelnou slanost v ústech. Vedle toho zaujaly i Rouskovy české brambůrky a Cyrilovy smažené brambůrky, které nejen svým vzhledem připomínaly brambory, ale odrážela se na nich i ruční příprava a smažení v oleji. Při ochutnávce byla více cítit chut’ oleje a až po krátké chvíli samotná slanost. U těchto brambůrků i přes důkladné promíchání zůstalo určité množství soli na dně.

Při porovnání výsledků senzorické analýzy se získanými hodnotami v předchozí kapitole, tj. obsahu chloridu sodného.
Tabulka 20 Porovnání získaných hodnot chloridu sodného a senzorické analýzy

<table>
<thead>
<tr>
<th></th>
<th>Obsah chloridu sodného (100 g) [g]</th>
<th>Senzorické hodnocení</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORLD OF CHIPS</td>
<td>2,3</td>
<td>4,2</td>
</tr>
<tr>
<td>TRADIČNÍ ČESKÉ BRAMBŮRKY</td>
<td>2,3</td>
<td>2,2</td>
</tr>
<tr>
<td>ROUSKOVÝ ČESKÉ BRAMBŮRY</td>
<td>2,2</td>
<td>3</td>
</tr>
<tr>
<td>LAYS</td>
<td>2,2</td>
<td>1,4</td>
</tr>
<tr>
<td>BUDGET</td>
<td>2,1</td>
<td>3,8</td>
</tr>
<tr>
<td>SMAŽENÉ BRAMBOROVÉ LUPÍNKY TESCO</td>
<td>2,1</td>
<td>3,6</td>
</tr>
<tr>
<td>BOHEMIA GRANDER paprika a rajče</td>
<td>2,1</td>
<td>1</td>
</tr>
<tr>
<td>BOHEMIA CHIPS</td>
<td>1,8</td>
<td>2,8</td>
</tr>
<tr>
<td>AVE CHIPSY</td>
<td>1,6</td>
<td>2,6</td>
</tr>
<tr>
<td>CYRILOVÝ RUČNĚ SMAŽENÉ</td>
<td>1,6</td>
<td>1,6</td>
</tr>
</tbody>
</table>

Výsledky objektivního hodnocení zcela neodpovídaly výsledkům senzorické analýzy.

Pocit slanosti nemusí být vyvolaný samotnou soli, ale mohou ho způsobit přidatné látky, jako jsou zvýrazňovače chuti. Příkladem jsou brambůrky Budget a Smažené bramborové lupínky Tesco, které získaly vysoké hodnoty v senzorickém hodnocení, přesto zjištěný obsah chloridu sodného nebyl vysoký. Pocit slanosti se vyskytl u brambůrků, které spadají do nižší cenové kategorie, a dá se u nich předpokládat právě přídavek zvýrazňovačů.

Za povšimnutí stojí brambůrky Bohemia grander paprika a rajče, které měly průměrný obsah chloridu sodného na 100 g a v senzorické analýze získaly nejnižší hodnoty. Z toho je možné usoudit, že některé příchutě, konkrétně v tomto případě papriky a rajče, snižují pocit slané chuti.

4.6 Pracovní návod pro učitele

Motivační část: Bramborové lupínky jsou velmi oblibené, ale jen málokdo si uvědomuje, že ve 100g balení lupínků je obsažena doporučená denní dávka soli činící 5 g. Tento laboratorní návod slouží k určení obsahu chloridových iontů v 10 g
bramborových lupínků. Přepočtem lze zjistit, kolik gramů soli je obsaženo v jednom balení.

Pomůcky: hmoždíř s tloučkem, několik kádinek (na navážení vzorku, na mixování chipsů, na teplou vodu...) teploměr, nerezový ruční mixér, 200ml odměrná baňka, nerezové sítko, filtrační nálevka, 5ml pipeta, filtrační papír, titrační baňka, 50ml pipeta, kapátko, 50ml byreta, pH papírky.

Nejvhodnější je použít nerezový mixér a sítko z důvodu inertního materiálu. Mixér se sítkem a pH papírky jsou vyobrazeny v příloze 2.

Chemikálie: vzorek brambůrků, destilovaná voda, Carezovo činidlo I (roztok síranu zinečnatého o koncentraci 300g/l), Carezovo činidlo II (roztok hexakyanoželeznatanu draselného o koncentraci 150g/l), 5% chroman draselný.

Úkol: Zjištění obsahu chloridových iontů ve vzorku brambůrků.

Využití: Laboratorní práce z chemie, praktická cvičení z biologie.

Výchovně vzdělávací cíle:
- Studenti získají informace o potřebě soli a zároveň negativním vlivu soli na lidský organismus.
- Seznámí se s principem úlohy.
- Z naměřených hodnot zjistí obsah soli v různých brambůrcích.
- Vypracují protokol a zamyslí se nad jednotlivými úkoly, které zpracují.

Příprava roztoků:
- **Carezovo činidlo I (c = 300 g/l):** Do 250ml odměrné baňky odvažte 75 g síranu zinečnatého a doplňte po rysku destilovanou vodou.
- **Carezovo činidlo II (c = 150 g/l):** Do 250ml odměrné baňky odvažte 37,5 g hexakyanoželeznatanu draselného a doplňte po rysku destilovanou vodou.
- **Roztok chromanu draselného (w = 5 %):** Do odměrné baňky o objemu 50 ml vpravte 2,6 g chromanu draselného a doplňte destilovanou vodou po rysku.

Žáci nemohou pracovat s chromanem draselným v této koncentraci, jelikož spadá do nebezpečných látek dle výpisu Ministerstva průmyslu a obchodu. Proto učitel
v postupu pracuje s chromanem, který přikápe žákům do roztoku. Tím se obsah chromanu při přidání 1 ml roztoku chromanu do objemu 100 ml sníží na 0,05 %. V této koncentraci roztok chromanu draselného již nespadá mezi toxické látky a žáci s takto připraveným roztokem mohou pracovat. [22]

Postup:

Studenti rozdrtí vzorek bramborových lupínek v třecí misce.

Na analytických váhách odváží 10,000 g takto připraveného vzorku a převedou jej kvantitativně do dostatečně velké kádinky.

K tomuto vzorku přilijí 80 ml vody zahřáté na 45 až 50°C a obsah baňky rozmixují ručním ponorným mixérem. Je důležité dobře odhadnout velikost mixovaných chipsů, jinak dochází ke vzniku kaše a následující filtrace se komplikuje. Velikost rozmixovaných lupínek by měla být cca 2 – 3 mm. Aby nedocházelo ke ztrátám na vzorku, omyjí mixér minimálním množstvím destilované vody zpět do roztoku.

Roztok studenti převedou do odměrné baňky o objemu 200 ml, přičemž kádinku opět vypláchnou minimálním množstvím destilované vody, a následně protřepávají baňku 2 – 3 minuty.

Vzorek odstaví na 30 minut a posléze zchladí vodou na teplotu 20°C.

Ke vzorku přidají 5 ml Carezova činidla I a 5 ml Carezova činidla II. Obsah promíchají a po rysku přidají destilovanou vodu. Baňku opět promíchají.

Roztok zfiltrují nejprve přes nerezové sítko, kde zůstanou větší částice, a následně přes filtrační papír do suché kádinky. Pokud je roztok žlutý, znamená to, že část pevných částic prošla filtrací papírem a je nutná další filtrace.

Do suché titrací baňky odpipetují 50 ml takto získaného filtrátu a roztok naředí na 100 ml.

Získaný roztok zneutralizují NaOH na pH 6,5 až 10, učitel přidá 1 ml 5% K2CrO4 do žlutého zbarvení a titrují AgNO3 o koncentraci 0,05 mol/l do vzniku červeného zbarvení.

Pracovní list:

Učitel má k dispozici pracovní list, který zahrnuje pracovní postup a příklady stahující se k tématu.
Úkoly v pracovním listu by měly věst žáky k bádání, diskuzím a zároveň by pro ně měly být zábavnou formou získání nových informací. Pracovní list lze považovat za motivační prostředek.

Je vhodné, aby každý žák dostal pracovní list v předstihu a mohl si ho prostudovat. Jakékoli nesrovnalosti může konzultovat se spolužáky či učitelem.

Každý žák odevzdá vyplněný a podepsaný pracovní list.

Řešení zadaných úkolů:

- Studenti samostatně či za pomoci učitele zjistí vzorec pro výpočet hmotnosti chloridu sodného v roztoku na základě známých veličin:

\[m_{\text{NaCl}} (50\text{ml}) = 10^{-3} \times c_{\text{AgNO}_3} \times V_{\text{AgNO}_3} \times M_{\text{NaCl}} \]

Zároveň si musí uvědomit, že daný výpočet se týká pouze ¼ objemu původního roztoku, a tak hodnotu musí vynásobit:

\[m_{\text{NaCl}} (200\text{ml}) = m_{\text{NaCl}} (50\text{ml}) \times 4. \]

- Nakresli aparaturu pro titraci?

Obrázek 24 **Titrační aparatura** [24]

- Zamysli se, proč je sůl pro člověka potřebná a naopak, kdy může škodit.

Sůl je potřebná pro organismu při svalové kontrakci, přenosu nervových vzruchů, bilanci vody v organismu, při tvorbě žaludečních šťáv.

Naopak její nadměrné množství – hypernatrie - způsobuje ztrátu vody, nadměrné pocení, pocit žízně, přispívá při srdečně-červených onemocnění.

Nízký obsah se vyznačuje ospalostí, dehydratací, nemocemi jater.
Popiš rovnicí, jaké sloučeniny vznikají při titraci.

\[\text{Ag}^+ + \text{Cl}^- \rightarrow \text{AgCl} \]

\[\text{AgNO}_3 + \text{NaCl} \rightarrow \text{AgCl} + \text{NaNO}_3 \]

Závěr:
Studenti porovnají své výsledky, tj. obsah chloridu sodného ve svých vzorcích, a sestaví stupnici u testovaných vzorků podle množství chloridů. Vypracují jednotlivé úkoly s pracovním protokolem

Průběh cvičení:
- Rozdělení žáků do skupin – Učitel dle svého vlastního uvážení rozdělí žáky do tří až čtyř členných skupin. Pokud je to možné, lze práci provádět individuálně.
- Motivační část a sdělení téma cvičení.
- Pracovní návod – Učitel žákům vysvětlí pracovní postup, který mají na pracovních listech, a úkoly s ním spjaté. Upozorní na manipulaci s chromanem draselným, s kterým nesmějí sami žáci zacházet. Žákům je též nabídnut prostor pro dotazy.
- Pracovní postup – Práce je v průběhu celého cvičení kontrolována. Učitel obchází jednotlivé skupiny a sleduje, jak si žáci rozvrhli práci ve skupině. Žákům napomáhá, stává se tzv. rádcem. Kontroluje správné sestavení filtrační nebo titrační aparatury a zachází s chromanem draselným.
- Vypracování zadaných úkolů – Během laboratorní práce či po jejím skončení skupiny vypracuji zadané úkoly. Na správný průběh řešení dohlíží učitel, případně směřuje žáky náležitým směrem.
- Kontrola úkolů – Učitel s žáky překontroluje výsledky zadaných úloh a jejich postup při řešení.
- Výsledky – Skupiny porovnají své výsledky s hodnotami na obalu a zkusí si senzorickou analýzu. Nakonec si sestaví stupnici slanosti chipsů.
- Závěr

Autorské řešení pracovního listu je uvedeno v příloze 6.
4.7 Pracovní návod pro žáky

V časovém předstihu dostane žák pracovní list, který si prostuduje. Při zjištění nesrovnalosti se poradí buď se spolužáky, nebo učitelem.

Během cvičení žák vyplňuje pracovní list, který zahrnuje praktickou část, tj. návod, a teoretickou část.

V praktické části připraví a provede pokus dle pracovního postupu (ve skupině nebo individuálně) a doplní náležitosti, jako jsou pomůcky a použité chemikálie.

Teoretická část zahrnuje úkoly vztahující se k postupu a úkoly k zamyšlení, v kterých se uplatní znalosti z biologie.

Na závěr porovná získané výsledky s ostatními a společně s ostatními žáky provede senzorickou analýzu.

Pracovní list pro žáky je ve volné příloze.

5 Závěr

Podstatnou část své práce jsem zaměřila na argentometrické stanovení chloridů ze vzorku bramborových lupínků. Původní postup byl čerpán z. Seminárních cvičení ze základů analýzy potravin VŠCHT. Při ověření jeho spolehlivosti byly nalezeny jisté nesrovnalosti, a tak bylo zapotřebí postup upravovat a zpracování vzorku inovovat. Problémem byla velikost drcených brambůrků, respektive filtrace roztoků, která byla velmi zdlouhavá. Proto bylo zapotřebí modifikovat postup tak, aby se zkrátila doba filtrace na únosnou míru. Zároveň bylo zjištěno přidáním známého množství soli, že výchozí postup nevedl ke kvantitativní extrakci chloridu sodného.

Inovovaný postup se liší ve zpracování brambůrků, kdy jednotlivé kousky jsou ještě rozmíxovány nerezovým ručním mixérem, převedeny do roztoku a filtrovány nejprve přes nerezové sítko pro odstranění hrubších částic, a pak teprve klasicky filtrovány přes filtrační papír. Ověření tohoto postupu na základě srovnání vzorku brambůrků a vzorku obohaceném o NaCl již vykazovalo odpovídající hodnoty. Upravený postup zpracování bramborových lupínků lze považovat za spolehlivý.

Na základě výše uvedených měření je dále navrhnuto laboratorní cvičení určené pro studenty chemie na středních školách. Připravený postup lze aplikovat v předmětu biologie, kde se lze zabývat účinky soli na organismus a její roli v těle, a chemie, kde najde uplatnění především praktická část této práce. Připraven je postup pro vyučující, jak z hlediska přípravy roztoků, práce žáků, ale i z hlediska didaktického. Zároveň bylo nutné vzít v úvahu, že některé roztoky ve vyšších koncentracích jsou považovány za toxické z hlediska zákona o chemických látkách dle Ministerstva průmyslu a obchodu Dance. Jednalo se především o 5% chroman draselný. Manipulaci s touto chemikálií bude zajišťovat pouze učitel. Přidáním chromanu draselného do roztoku se sníží jeho koncentrace natolik, že titrovaný roztok již nebude patřit mezi látky toxické, a žáci s ním mohou dále pracovat. Pracovní list pro žáky zahrnuje motivační část s pracovním
postupem a úkoly k vypracování. Laboratorní práce žáků je navržena tak, že žáci neznají výsledky předem, ale mají je sami vytvořit na základě svých měření. Závěrem si se spolužáky porovnají výsledky.
6 Seznam obrázků

Obrázek 1 Obecné schéma výroby a balení jedlých solí a solných výrobků
Obrázek 2 Schéma nefronu
Obrázek 3 Osmóza
Obrázek 4 Klidový potenciál
Obrázek 5 Změna klidového potenciálu
Obrázek 6 Schéma výroby bramborových lupínků
Obrázek 7 Stupnice slanosti
Obrázek 8 Tradiční české brambůrky a informace uvedené na obalu
Obrázek 9 Lays brambůrky
Obrázek 10 Uvedené množství sodíku na obalu Lays
Obrázek 11 Bohemia chips
Obrázek 12 Uvedená hodnota na obalu Bohemia Chips pro sodík
Obrázek 13 World of chips
Obrázek 14 Obsah sodíku World of chips uvedený na obalu
Obrázek 15 Bohemia grander
Obrázek 16 Rouskovy české brambůrky a obsah soli na uvedený na obalu
Obrázek 17 Obsah soli uvedený na obalu Rouskovo českých brambůrůk
Obrázek 18 Ave chipsy
Obrázek 19 Obsah sodíku uvedený na obalu Ave Chipsů
Obrázek 20 Cyrilovy ručně smažené
Obrázek 21 Budget
Obrázek 22 Smažené bramborové lupínky Tesco
Obrázek 23 Obsah soli Smažených bramborových lupínků TESCO uvedený na obalu
Obrázek 24 Titrační aparatura
Obrázek 25 Motivační obrázek č. 1
Obrázek 26 Motivační obrázek č. 2
Obrázek 27 Stupnice slanosti
Obrázek 28 Tyčový nerezový mixer
Obrázek 29 Nerezové sítko
Obrázek 30 Stupnice pH papírků
Obrázek 31 pH papírky
Obrázek 32 Rozdrcený vzorek
Obrázek 33 Vzok po rozmixování
Obrázek 34 Vzorek papírkových chipsů po rozmixování
Obrázek 35 Vzorek před titrací
Obrázek 36 Vzorek po titraci
7 Seznam literatury

(1) ZELENKA, M. a kol. Pravidla správné výrobní a hygienické praxe pro výrobce jedlé soli a solných výrobků. Solné mlýny, a.s., Olomouc

(2) Alpská sůl [online].
 Dostupný z <http://www.alpskasul.cz/start.html>

(3) Sodík [online].
 Dostupný z <http://laborator.vitalion.cz/sodik/>

(5) Řízení činnosti ledvin [online]
 Evidováno dne 15.10.2011.
 Dostupný z

(6) FOLTOVÁ, R. Nervový vzruch [online]
(7) BAUMGARTNEROVA, L. a kol. Žaludeční šťáva. Tvorba multimediálních výukových materiálů pro biologii na gymnáziu, Projekt SIPVZ 1842P2006, 2006 [online]
Dostupný z

(8) KVASNIČKOVÁ, A. Snižování soli v potravinách. Náhražky stolní soli. 2008 [online]
Evidováno dne 22.9.2011.
Dostupný z

(9) SUKOVÁ, I. Pozitiva a negativa snižování spotřeby soli [online]
Dostupný z
< http://www.agronavigator.cz/default.asp?ids=147&ch=13&typ=1&val=107602 >

(10) MINISTERSTVO ZEMĚDĚLSTVÍ Zařízení na úpravu a zpracování za účelem výroby potravin a krmiv z rostlinných surovin [online]
Dostupný z

(11) Bramborové lupínky – Jak se vyrábí bramborové lupínky [online]
Dostupný z
< http://www.jaksetodela.cz/video/1127/jak-se-vyrabibramborove-lupinky >
(12) HORÁČEK, F. Video: Podívejte se, jak se vyrábějí chipsy [online]
 Dostupný z
 < http://ekonomika.idnes.cz/video-podivejte-se-jak-se-vyrabej-chipsy-f1k-
 /ekonomika.aspx?c=A090212_150035_ekonomika_fih >

(13) KOPÁČOVÁ, O. Nový olej pro zdravější chipsy [online]
 Dostupný z

(14) INGR, I. POKORNÝ, J. VALENTOVÁ, H. Senzorická analýza potravin. 1.vyd.

(15) HÁLKOVÁ, J. RUMÍŠKOVÁ, M. RIEGROVÁ, J. Analýza potravin, 1. vyd.

(16) ŠVARCOVÁ, I. Základy pedagogiky pro učitelské studium. 1. vyd. VŠCHT
 v Praze, 2005. [online]
 Evidovaný dne 14.2.2012
 Dostupný z
 < http://vydavatelstvi.vscht.cz/knihy/uid_isbn-80-7080-573-0/pages-img/obalka-
 1.html >

 Pedagogika, 1999.

(18) RÉBLOVÁ, Z. Seminární cvičení ze základů analýzy potravin, Ústav chemie a
 analýzy potravin, VŠCHT v Praze, 2007.
 Dostupný z
 < http://web.vscht.cz/koplikr/Semin%C3%A1%C5%991a%C5%BE7.doc >

(20) Reverzní osmóza [online]
Dostupný z < http://www.culligan.cz/reverzni-osmoza/ >

(21) Nefron [online]
Evidovaný dne 3.3.2012.
Dostupný z < http://leccos.com/pics/pic/nefron_schema.jpg >

(22) Ministerstvo průmyslu a obchodu Dance (výpis) - chroman draselný [online]
Evidovaný dne 3.3.2012.

(23) GAJOVÁ, V. Titrační aparatura [online]
Dostupný z < http://www.bgml.chytrak.cz/nakre.htm >

(24) Galerie ClipArt, MS Word

(25) Chemik animovaný [online]
Dostupný z < http://www.chemik.sk/chemtechca09 >
8 Resumé

This work was focused on argentometric determination of sodium chloride in potato chips. The aim of this work was to find out a procedure that would help to reliably, practically and quickly measure the amount of the sodium chloride in potato chips. Parallelly this procedure should be easy and undemanding so that it could be applicable to secondary schools. A significant part of this work is focused on the determination of sodium chloride contained in the different samples of chips, and should compare it with the values indicated on the packaging. This work is also complemented by sensory analysis. The method is applicable for various kinds of potato chips. Worksheet for laboratory practice in secondary school was prepared and it is a component of this work too.
Přílohy

Příloha 1 Výchozí postup
Příloha 2 Využívané nástroje
Příloha 3 Zpracování vzorku
Příloha 4 Titrovaný vzorek
Příloha 5 Statistika
Příloha 6 Autorské řešení pracovního listu
Volná příloha 7 Pracovní list pro žáky
Příloha 1 Výchozí postup

- Vzorek bramborových lupínek byl rozdrcen v třecí misce.
- Na analytických vahách bylo odváženo 10 g takto připraveného vzorku a převedeno do dostatečně velké kádinky.
- Vzorek byl převeden do odměrné baňky o objemu 200 ml a k vzorku bylo přilito 80 ml vody zahřáté na 45 až 50°C a obsah baňky byl promícháván 5 minut.
- Vzorek byl odstaven na 30 minut a posléze zchlazen na teplotu 20°C.
- Ke vzorku bylo přidáno 5 ml Carezova činidla I a 5 ml Carezova činidla II. Obsah promíchán a po rysku přidána destilovaná voda a baňka opět promíchána.
- Roztok byl z filtrován přes filtrační papír do suché kádinky. Pokud byl roztok žlutý, byla nutná další filtrace.
- Do suché titrační baňky bylo odpipetováno 50 ml takto získaného filtrátu a roztok byl naředěn na 100 ml.
- Získaný roztok byl zneutralizován NaOH na pH 6,5 až 10, přidáno 10 kapek 5% K₂CrO₄ a titrován AgNO₃ o koncentraci 0,05 mol/l do vzniku červeno-hnědého zbarvení. [15]
Příloha 2 Využívané nástroje

Obrázek 28 Tyčový nerezový mixer

Obrázek 29 Nerezové sítko

Obrázek 30 Stupnice pH papírků

Obrázek 31 pH papírky
Příloha 3 Zpracování vzorku

Obrázek 32 Rozdrcený vzorek

Obrázek 33 Vzorek po rozmixování

Obrázek 34 Vzorek paprikových chipsů po rozmixování
Příloha 4 Titrovaný vzorek

Obrázek 35 Vzorek před titrací

Obrázek 36 Vzorek po titraci
Příloha 5 Statistika

1. Základní statistika – aritmetický průměr: $x_p = \frac{\Sigma x_i}{n}$

Interval spolehlivosti – $L_{1,2} = x_p \pm t_{n-1} \frac{s}{\sqrt{n}}$

Tabulka 21 Kritické hodnoty t Studentova rozdělní pravděpodobnosti pro různý počet stupňů volnosti $f = (n - 1)$ a hladinu významnosti $\alpha = 0,05$

<table>
<thead>
<tr>
<th>f</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>4,3</td>
<td>3,18</td>
<td>2,78</td>
<td>2,57</td>
<td>2,45</td>
<td>2,36</td>
<td>2,31</td>
<td>2,26</td>
<td>2,23</td>
</tr>
</tbody>
</table>

2. Testování odlehlých výsledků

Dixonův test

1. Seřadit naměřené hodnoty vzestupně (x_1 – nejnižší hodnota, x_n – nejvyšší hodnota).
2. Zvolit hladinu významnosti ($\alpha = 0,05$), viz tab. 22.
3. Vypočítat poměry τ_{10} (pro $3 \leq n \leq 7$), příp. τ_{11} (pro $8 \leq n \leq 10$), viz tab. 23.
4. Porovnat vypočtené hodnoty poměrů s jejich kritickými hodnotami uvedené v tabulce.

Pokud vypočtená hodnota τ_{10} resp. τ_{11} je větší než hodnota tabelovaná, pak měření x_1 resp. x_n vyloučíme. [13]

Tabulka 22 Hodnoty kritických poměrů pro hladinu významnosti $\alpha = 0,05$ poměr τ_n

kritická hodnota poměru

<table>
<thead>
<tr>
<th>poměr τ</th>
<th>n</th>
<th>kritická hodnota poměru</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_{10}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0,941</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,765</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,642</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0,56</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0,507</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>poměr τ</th>
<th>n</th>
<th>kritická hodnota poměru</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_{11}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0,554</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0,512</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,477</td>
<td></td>
</tr>
</tbody>
</table>
Tabulka 23 Vztahy pro výpočet poměrů τ podle počtu hodnot nezávislých měření

počet měření poměr pro vyloučených x_n pro vyloučených x_1

<table>
<thead>
<tr>
<th>počet měření</th>
<th>poměr</th>
<th>pro vyloučených x_n</th>
<th>pro vyloučených x_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3 \leq n \leq 7$</td>
<td>τ_{10}</td>
<td>$(x_n - x_{n-1}) / (x_n - x_1)$</td>
<td>$(x_2 - x_1) / (x_n - x_1)$</td>
</tr>
<tr>
<td>$8 \leq n \leq 10$</td>
<td>τ_{11}</td>
<td>$(x_n - x_{n-1}) / (x_n - x_2)$</td>
<td>$(x_2 - x_1) / (x_{n-1} - x_1)$</td>
</tr>
</tbody>
</table>
Příloha 6 Autorské řešení pracovního listu pro učitele

Sůl – potřeba nebo záhuba pro lidstvo

Pomůcky: hmoždíř s tloučkem, několik kádinek (na navážení vzorku, na mixování chipsů, na teplou vodu...) teploměr, nerezový ruční mixér, 200ml odměrná baňka, nerezové sítko, filtrační nálevka, 5ml pipeta, filtrační papír, titrační baňka, 50ml pipeta, kapátko, 50ml byreta, pH papírky.

Chemikálie: vzorek brambůrků, destilovaná voda, Carezovo činidlo I(roztok síranu zinečnatého o koncentraci 300g/l), Carezovo činidlo II(roztok hexakyanoželeznatu draselného o koncentraci 150g/l), 5% chroman draselný.

Postup:

1) Vzorek bramborových lupínků rozdrťte v třecí misce.

2) Na analytických vahách odvažte 10 g takto připraveného vzorku a převeďte jej do dostatečně velké kádinky.

3) K tomuto vzorku přilijte 80ml vody zahřáté na 45 až 50°C a obsah baňky rozmixujte ručním ponorným mixérem. Velikost mixovaných chipsů by měla být cca 2 - 3 mm. Omyjte mixér minimálním množstvím vody.

4) Roztok přelijte do odměrné baňky o objemu 200 ml, přičemž kádinku omyjte minimálním množstvím destilované vody, a následně baňku ještě 2-3 minuty protřepávejte.

5) Odstavte vzorek na 30 minut a posléze zchladíte na teplotu 20°C.
6) Ke vzorku přidejte 5 ml Carezova činidla I a 5 ml Carezova činidla II.
Baňku promíchejte, po rysku přidejte destilovanou vodu a opět ji promíchejte.

7) Roztok zfiltrujte nejprve přes nerezové sítko, kde zůstanou větší částice, a následně přes filtrační papír do suché kádinky. Pokud je roztok žlutý, je nutná další filtrace.

8) Do suché titrační baňky odpipetujte 50 ml takto získaného filtrátu a roztok naředíte na 100 ml.

9) Získaný roztok zneutralizujte NaOH na pH 6,5 až 10, zkontrolujte pH pomocí indikátorových papírků. Do zneutralizovaného roztoku vám učitel přikápněte 5% K₂CrO₄ do žlutého zbarvení. Titrujte AgNO₃ o koncentraci 0,05 mol/l do vzniku červeného zbarvení.

a. Vypočti, kolik gramů chloridu sodného obsahoval vzorek brambůrků?

Hmotnost chloridu sodného v 50 ml odměrné baňce

\[m_{NaCl}(50ml) = 10^{-3} \times c_{AgNO_3} \times V_{AgNO_3} \times M_{NaCl} \]

Hmotnost chloridu sodného v 200 ml odměrné baňce

\[m_{NaCl}(200ml) = m_{NaCl}(50ml) \times 4. \]

Nakresli aparaturu pro titraci?
Zamysli se, proč je sůl pro člověka potřebná a naopak kdy může škodit.

Sůl je potřebná pro organismu při svalové kontrakci, přenosu nervových vzruchů, bilanci vody v organismu, při tvorbě žaludečních šťáv.

Naopak její nadměrné množství – hypernatrie - způsobuje ztrátu vody, nadměrné pocení, pocit žízně, přispívá při srdečně-cévních onemocnění.

Nízký obsah se vyznačuje ospalostí, dehydratací, nemocemi jater.

Popiš rovnicí, jaké sloučeniny vznikají při titraci

\[\text{Ag}^+ + \text{Cl}^- \rightarrow \text{AgCl} \]

\[\text{AgNO}_3 + \text{NaCl} \rightarrow \text{AgCl} + \text{NaNO}_3 \]

Závěr:

Společně s ostatními skupinami si udělejte malou ochutnávku všech brambůrků, které jste měřili. Stanovte, jak se vám jednotlivé brambůrky zdají slané. Ochutnávky prokládejte 0,5 dcl sklenicí vody.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Téměř neslané</td>
<td></td>
<td></td>
<td></td>
<td>velmi slané</td>
</tr>
</tbody>
</table>

Poté výsledky porovnejte s obsahem obsah chloridu sodného v brambůrcích a zároveň sestavte stupnici brambůrků dle množství chloridu sodného.