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1 Introduction 

1.1 Overview 

An ancient theme of many novels, fantasy as well as children books is to understand animals. 

Automatic recognition of animal sounds represents a very interesting area with a great potential. 

There is a great number of species, for which vocalization plays an important role. In addition, their 

vocal tract anatomy is similar to the human vocal tract. Animals make sounds for many purposes: 

defending territory, courtship, danger warning, communication, expressing emotions, etc. People do 

not understand animals’ language. Moreover, it is a logical assumption that we will never be able to 

accurately interpret the meanings of animal sounds. Creating "interpretative" dictionary appears to 

be an unrealistic task. However, it is be possible to retrieve two crucial pieces of information from 

their vocalization: Identification of an individual and Species recognition. Although we mainly focus 

on the individual identification in our thesis, many parts of our research could be also used for species 

recognition. 

Vocalizations are often the most noticeable manifestations of avian species. For many species living 

in secrecy, or in structurally complex habitats (e. g. forests, bushes, reeds), listening to bird 

vocalizations is often the easiest, fastest, and cheapest way to detect the presence of a local species; 

and for this reason, it is a widely used method of species detection in bird censuses and monitoring 

surveys [BIB00]. The use of acoustic monitoring methods remains limited when information about 

individual birds (e. g. in studies of survival, site fidelity, ethological studies) is needed and the 

capture-mark-recapture methods remain the only way of retrieving reliable information about 

individual birds for ornithologists as well as behaviour and conservation biologists. 

However, capture-mark-recapture (ringing, wing tags, collars, colour marks) techniques have also 

some disadvantages. Some species can be difficult to capture [MAC74], marked birds may avoid 

recapture [LIN12a], or they may avoid the site where they were captured [LAI07]. Capturing, 

handling, and marking likely causes stress in animals [WIN82] and may even lead to injuries, which 

can be a serious issue, especially for endangered species [ARM99]. Therefore, there is a strong need 

for non-invasive method that would allow recognition of individual birds. 

Recognition of individuals within passerine species, which possess complex songs, is a challenging 

task as they can adjust their repertoire content over time. They may acquire new songs or syllables 

during their lifetime [NOT86]. They can vary the song content in respect to the audience, whether 

the receiver is a male or a female [BYE96], or adjust their repertoire to match that of their neighbours 

each year [PAY96]. Thus, song content can vary within the day, season, or from season to season in 

passerines [KRO04], [CAT08]. This hinders, or even prevents, the use of call-dependent individual 

recognition techniques. On the other hand, call-independent methods could be efficient for individual 

recognition of songbirds as described in this thesis. 

Content-independent methods (song- or call-independent) do not compare specific vocalization 

structures. Instead, they extract parameters related to sound source and filter (vocal chords / syrinx 

and vocal tract respectively) characteristics common to all vocalizations given by a particular 

individual. Recently, there were some promising attempts to apply call-independent methods for 

individual recognition of songbirds [FOX08], [CHE10], [GRA10].  
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Several animal recognition systems have been proposed. Speaker identification on the closed set of 

African elephants was introduced by [CLE05] where the Hidden Markov Models (HMM) with Mel-

frequency Cepstral Coefficients (MFCC) were used, and the animal-speaker identification reached 

82.5%. [TRA05] provided song-type classification and speaker identification of Norwegian Ortolan 

Bunting. They used HMM with MFCC, delta, and delta-delta parameters. The achieved accuracy 

varies between 63.6%-92.4% for five song types, and the song-type dependent measurements 

reached a higher score. The songs and syllables were extracted from the records, and the task was 

performed on the closed set. [TRI08] used HMM for species recognition, tested on five species of 

antbirds. Zsebok et. al [ZSE15] deals with a species recognition. First, the recordings are manually 

sorted (good or poor quality). Good recordings are involved in the experiment only. They extracted 

songs and calculate signal spectral parameters (time and frequency characteristics). A statistic models 

are conducted in Matlab Statistics Toolbox. Furthermore, [FOX08] provided call independent 

classification on the closed set with accuracy 54.3%-75.7% and for call dependent with 69.3-97.1% 

accuracy, both using Artificial Neural Network (ANN) and MFCC classification. The sounds were 

cut off and pre-processed. [CHE10] Cheng et al. (2010), introduces individual identification based 

on Gaussian Mixture Model (GMM) and MFCC across 4 passerine species with an accuracy of 

89.1%-92.5%. In their study, the syllables were selected from the records and then sorted; the system 

used the close set. Bird species classification using Gaussian Mixture Model and a Universal 

Background Model (GMM-UBM) on the close set was introduced by [GRA11]. The songs were 

extracted from recordings, and the shortest songs were discarded. Their achieved accuracy varied 

between 80.8% and 99.8%.  

[BUD14] studied an identification of Corncrake (Crex crex) individuals based on the pulse-to-pulse 

duration (PPD) on the close set. Each syllable was measured separately, and each pulse distribution 

measurement was visually checked.  Atypical syllables were removed by authors. 

In some studies were also used the continuous as-is recordings (so-called raw, long real-field). For 

example, [KOG98] experimented with recognition of song elements of birds from continuous 

recordings. The songs were recorded under the laboratory conditions and visually checked. [POT14] 

introduces a system using as-is recordings for automatic species recognition based on the HMM with 

MFCC parametrization. The Hilbert follower was used as a Voice Activity Detector (VAD). 

Matching recordings were directed to the human observer and final classification. The results varied 

from 71.2% to 93.3%. [VEN15] proposed a robust frame selection for bird species recognition. Only 

best frames that represent the dominant sounds are selected and parametrized by MFCCs. These 

frames were selected applying morphological operators on the raw spectrogram. The results 

demonstrated an accuracy of 71.5 %. 

[BRI12] deals with classification of multiple simultaneous bird species. One of the essential problem 

of as-is recordings is the audio signal contains bird sounds that overlap in time. Challenging problem 

is how to separate the singers. Described automation detection of bird species occurrence is based on 

using a tailored framework, so-called multi-instance multi-label, MIML. The experiments contain 13 

species collected with unattended omnidirectional microphones. The aim of [JAN11] was to 

investigate automatic detection and recognition of bird sounds in noisy environment. The detection 

was performed by a spectral shape method to identify sinusoidal components.  
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The primary goal of our thesis is the design, implementation, and evaluation of new methods and 

algorithms for automatic recognition of birds using live recordings without the necessity of their pre-

processing. In the thesis, such automated systems using the suggested methods and algorithms, are 

going to be called the Automatic Recognition System of Bird Individual (ARSBI), and in some 

sections, we also deal with Automatic Recognition System of Bird Species (ARSBS). Ornithologists 

of University of South Bohemia (UoSB), Faculty of Science (FoS) required1 the ARSBI system 

accuracy to be at least � ≥ 70%. System accuracy	� is defined as simple ratio of correctly identified 

birds to total amount of individuals. This value was given based on the discussion of ornithologists 

on the practical use of ARSBI. The value has no exact base, but it evolves from the practical 

experience of ornithologists and from the comparison of classical ringing vs. non-contact 

identification with the help of the automatic system. It cannot be excluded that the required value � 

will be changed according to the use in particular cases. It can be concluded that the worse conditions 

(bad climate, high overlapping ratio, etc.) require fewer accuracy requirements, and vice versa.   

System ARSBI enables bird identification without the necessity of catching them for ringing or DNA 

check. The author does not set an unrealistic goal of creating a complete universal tool for 

identification of individuals of all species. The completion of such a system is, under the current 

given recognition, unrealistic, mainly because of the recording quality issues (see sections 3.2 and 

5.2.3) and non-existing sufficient recording database for training (see chapter 10). 

That is why one particular species was chosen in the first part of our thesis: the chiffchaff. For our 

purposes, the recordings we used were made by our colleagues from University of South Bohemia, 

Faculty of Science, see section 5.2.2. In the course of our thesis, it was also necessary to handle some 

minor issues. The goals of our thesis are summarized in the following chapter 2.  

1.2 Thesis motivation 

At the very beginning of our research, we started to cooperate with ornithologist from Faculty of 

science in Ceske Budejovice. The main idea originated with ornithologist Pavel Linhart, Ph.D.: to 

create a tool, which enables a non-contact identification of an individual –ARSBI. Together with the 

observed colour band combination, the ARSBI can greatly increase the probability of a bird 

individual identification without the necessity of its capture. 

The advantages of the method are: 

 Contactless identification, which has significant advantage compared to ringing. 

 Increasing the exploitability of bird song recordings. Usually an ornithologist does a 

spectrogram visual control (examination), or he/she uses a specialized software for basic 

spectrum analysis as basic parameters computation (bandwidth, energy, start points, end 

points, bending, etc.). Both processes are automated and computing with advanced 

parameters should considerably increase information derived from the vocalization. 

 

All tasks described in this thesis follow from the original ARSBI idea and related problems. Although 

we see that for creating a functional ARSBI, much work still has to be done which we believe is 

                                                      
1 Just for the record we can bring out that the required accuracy for mole-rats identification was � ≥ 65% 
η≥65% see section 11.1. The definition of required accuracies (for chiffchaf and for mole-rat) was set 
independently. 
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feasible, with some limitation, of course. In our opinion, a crucial problem is the recording quality, 

especially overlapping. Altogether, we are still optimistic that an ARSBI will exist in future. 
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2 Thesis goals 

The main goals of our thesis are: 

1. Creating ARSBI for chiffchaff individual identification using as-is recordings i.e. live 

recordings made by ornithologist in nature without any pre-processing. The purpose of this 

goal is to help ornithologists from University of South Bohemia, Faculty of Science with 

chiffchaff identification. 

ARSBI solution is described in chapter 5. 

 

2. Propose a new feature extraction optimized for a bird song. Because ARSBI is based on the 

techniques used for human speech recognition, its optimization for bird songs is desirable.   

Goal solution is described in chapter 8. 

 

At the same time, it is necessary to solve the below tasks that are closely connected to the main goals 

of the thesis: 

3. Utilize bird audiograms in ARSBI. Optimizing feature extraction (goal 2) is connected to the 

need of working with birds audiograms in programme environment (Matlab, etc.). 

Audiograms are available only for certain species, and only in graphic version. It was 

necessary to find mathematical expression of these audiograms.  

Solution of the goal is described in chapter 7. 

 

4. To build up a bird song database for scientific bird song data sharing. When working on 

ARSBI it was desirable to test the system in the best possible way also on other bird species 

other than chiffchaff. Currently there is not available a universal bird song database that 

would contain annotated recordings in the sufficient amount and offer a wide range of bird 

species representatives. That is why a decision was made to create such database.  

The solution is described in chapter 4. 

 

5. To test a State of the Art technique for bird individual identification to prove its functionality. 

We choose an iVector trained by speech. We were also thinking about some techniques to 

improve an identification accuracy. 

Solutions of these goals are described in chapters 6 and 9. 

 

6. When creating ARSBI it was taken into consideration that it can be used for other species 

not just birds, but also other animals. It was decided to verify the functionality of ARSBI for 

mole-rats. For their way of life under the ground, vocalization is extremely important for 

identification at this particular species. 

Using ARSBI for identification of mole-rat is described in chapter 11.  
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3 State of the Art 

3.1 Birds 

3.1.1 Overview 

Ornithology is a field with a long tradition. First known scientific record of ornithology stems from 

1773. Until recently, the only true possibility to identify a bird was ringing. First ringing was made 

by Mr. H. C. Mortensen in Denmark in 1899, in the Czech Republic in 1914 (the Austro-Hungarian 

empire). 

Some birds (lark, nightingale, robin) are able to sing two-part. Some species create the sound in a 

totally different way, without using the vocal tract. For example wing vibrations (mosquito), using a 

special membrane (cicada), friction of wings (cricket), rodents hit their head onto burrow wall 

(Tachyoryctes), etc. 

It is impossible or at least very difficult to create something like a lexicon, speech corpus for animals. 

Humans do not “understand” animals. It is possible at some species, although with difficulties and 

with obvious objections to the imperfection of such interpretations: incompleteness, ambiguity, when 

one sound has more meanings, etc. [MOL08] recognizes five different barks according to its 

“meaning” (joy, warning, sadness….) . 

Human speech is unique because of the amount of information it carries. Animals with a vocal tract 

similar to human, we can theoretically assume  that with a better equipped brain those species would 

produce sounds more similar  to humans. Opposed to this theory is the fact, that passerine which can 

imitate human speech (budgerigar, cockatiel, starling, gracula) obviously do not have a more efficient 

brain than other species. The produce the sounds thanks to a developed musical memory (imprint of 

a human word). At the same time they do not realize the meaning of produced words. 

The observations have shown that the bird songs and its voice change over the time (months, years). 

Also there are influences of the environment. So far there has not been any research if those changes 

influence the model of its vocal tract.   

3.1.2 Passerine 

For the purpose of bird recognition the important order is Passerine, Passeriformes (in Czech 

language „pěvci“).Passerines are divided into two suborders which are dependent on syrinx 

anatomy, song learning ability, and some others criteria: 

 Suboscines, Tyranni (lat.), Křiklaví (Czech, however this name is not often used). 

 Oscines also called songbirds, Passeri (lat.), Zpěvní (Czech). 

Unfortunately, division of passerines into categories and subcategories is still not unified in the Czech 

language due to the fact that subcategory names are still changing, duplicities exist, etc.  

3.1.3 Hearing 

From the anatomical point of view, the vocal tract of a passerine is similar to humans. The 

fundamental difference is that birds have a syrinx, which is equivalent to the human voice box or 
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larynx. Like the larynx, the syrinx contains special membranes, which vibrate and generate sound 

waves when air from the lungs is forced through them [CAT08]. It allows a bird to generate two 

independent audio signals simultaneously. In practice, however, there are only a few „two-tone 

singers“.  

A significant feature of a birdsong is its duration. It is common to hear a bird singing continuously, 

tens of seconds without interruption. It is considered that this is achieved due to the anatomy of the 

bird vocal tract mentioned above, where one of the tubes drives the singing while the second performs 

micro-breathing. 

3.1.3.1 Human audiogram 

The perception of sound is limited by frequency and intensity. The human frequency range depends 

on the physical state of hearing of the particular person and his age. Similar dependence at animals 

was studied for example at [KON70]. In the work of  Dooling [DOO02a], it was discovered that the 

hearing of a bird matures within 2 to 3 weeks. After this time, the hearing properties are identical 

with adult individuals. 

With the constant intensity but changing frequency, the sound is not perceived the same [GRE98]. 

So, an audiogram over a range of frequencies, perceived with the same intensity, is used for capturing 

this dependency. Additionally, it was discovered that the resulting curves are different for sounds 

with a different intensity. For simple tones (sound containing one frequency) the curves were first 

measured in 1933 by Fletcher and Munson; whereas, nowadays audiograms are defined by the ISO 

standards over a broad range of frequencies. See Figure 3.1 for an equal-loudness curve based on the 

ISO. 

 

Figure 3.1: ISO equal-loudness curve, 40 dB. 

Gaining the human audiogram is a routine procedure that is possible to carry out at any workplace 

with standard equipment and through simple communication. If the examined subject is reliable (e.g. 

good quality hearing is the condition for the subject’s occupation: pilot, musician), it is possible to 

obtain substantial data with high resolution within a short time. In case a more accurate audiogram 

is desired, more correspondents can be tested. Thus, the reliability of gained data increases and the 

measurement uncertainty decreases.  

The standard audiometric procedure requires the respondent to be placed in a muted room. He/she 

wears headphones into which sounds are randomly played with a constant frequency. The intensity 
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is gradually increased, and as soon as the he respondent hears the sound, he/she pushes a button. The 

doctor changes the frequency of the testing signal and the measurement is repeated.  

For measurements that are more objective or with individuals suffering a hearing disorder, excitation 

of the cranial bone is used. In this case, an oscillator is placed onto the cranial bone. The vibrations 

are thus transmitted directly into the middle ear and the eardrum and oscillation are bypassed. 

Another method is reading by an electroencephalogram (EEG). This procedure is used for testing 

hearing disorders or at individuals that are not able to follow the measuring procedure (infants, 

mentally handicapped). 

3.1.3.2 Bird audiogram 

Based on the available research (e.g. [HEF98, [MAR04], [DOO02a], [DOO02b], [LAU07], 

[CAT08]), birds do not hear above 12 kHz. The basic principles of hearing are similar in birds and 

mammals [MAR04]. Sound causes the oscillation of air molecules, which is then transmitted to the 

inner ear where the hair cells invoke neuronal discharges. Sound processing in the bird brain is 

described in [CAT08]. 

An outdoor acoustic communication depends on many climatic factors. Rain, temperature 

differences, direction and strength of the wind affect sound speed, propagation, and attenuation. 

Another effect emerges in air masses with different temperatures. The masses cause sound reflections 

[MAR04]. The same effect occurs in water utilized by crews in U-Boats to hide the submarine from 

the destroyers. 

Additionally, it is possible to carry on measurement with humans theoretically at an infinite number 

of locations. With animals, the number of measured frequencies is significantly lower. Birds typically 

have audiograms with four to eight measured points. Thus, retrieval of audiograms of birds has met 

several obstacles.  

In case of birds, three main approaches exist [GRE98]. The first is a behavioural approach with the 

precondition that hearing is a behavioural response to sound; thus, researchers use behavioural 

techniques to training birds to peck the target when they hear the sound [DOO02a]. For instance, 

Okanoya and Dooling [OKA85] compared hearing abilities of two colonies of Canary Serinus 

canaries in a Belgium. They trained Canaries to peck one key when they do not hear a tone and 

second key when they heard it. The same operant technique was used to test high frequency hearing 

loss primarily above 2000 Hz of domestic Belgian Waterslager canaries (BWC) in comparison with 

normal hearing non-BWC [LAU07]. On one hand BWC had excellent frequency discrimination 

ability around 1000 Hz however their frequency discrimination in frequencies about hearing loss 

region was poor.  

Second, the neurophysiological approach is based on measures the neuron electrical impulses in 

response to sound [KON70].  Konishi [KON70] determined hearing thresholds by playing sounds to 

anesthetized birds and then recording directly from auditory neurons in the cochlear nuclei. 

According to his results based on experiments with six songbirds, vocal frequencies seldom falls 

down under 1 kHz but all species hearing sensitivity was well below 1 kHz. As well as the differences 

between the lowest and highest thresholds tend to be similar among different species (i. e. about 40-

50 DB). 

Third, a recent method is the auditory brainstem response (ABR) which is recorded by using 

subdermal needle electrodes. For example, adult Budgerigars (Melopsittacus undulatus) were 
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sedated with an intramuscular injection of ketamine and diazepam prior to electrode placement [6]. 

Birds stayed motionless for up to 75 minutes and electrodes recorded reactions to sound stimuli from 

a speaker – clicks and tones. After the experiment, the birds were placed in to therapy unit where 

they recovered from sedation. 

An audiologist typically performs test administration and interpretation. Although the ABR provides 

information regarding auditory function and hearing sensitivity, it is not a substitute for a formal 

hearing evaluation, and results should be used in conjunction with behavioural audiometry whenever 

possible. 

3.1.3.3 Bird vs human audiogram 

There are two basic differences between bird and human audiograms: 

1. Small number of measured frequencies 

2. Small number of measured individuals 

The fact that an audiogram is made up of a limited number of points leads to inaccuracies of the 

collected data. A line for better evaluations of the collected data usually connects the data points. 

Yet, in reality, the course between such points can be different from a smooth one. See the possible 

indication of such distortion in Figure 3.2. 

 

Figure 3.2 : An audiogram distortion example if one measures just a low number of frequencies. The black 

dotted line represents the ISO human equal-loudness curve for 40 dB. The blue solid line demonstrates how a 

human audiogram may look like if only six frequencies are measured:  

100 Hz, 500 Hz, 1 kHz, 3 kHz, and 10 kHz. 

Bird audiograms are based on a small number of respondents (i.e. tested birds) in contrary to human 

audiograms based on tens or even hundreds of interviewees. Evidently, the statistical error is high 

for small number of birds. 

One has to consider if there is also possibility that the examined bird has a hearing different from an 

average individual due to mechanical damage, insufficiently developed hearing, or malformation.  
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Also, the error rate setting is difficult because there are no available studies dealing with hearing 

disorders of birds or differences of hearing sensitivity.  

3.1.3.4 Bird and human hearing 

Human and bird ears are variously sensitive to different frequencies. Figure 3.3 shows 

the dependence of both human and bird hearing on frequency. 

 

Figure 3.3: Average audibility curves human and “average bird” [CAT08]. 

For humans, this dependence is described by the Fletcher-Munson curves. The curve relates to the 

frequency band of birdsong, their communication running between 0.5 kHz and 6 kHz in average. 

 

Figure 3.4: Harmonic complex discrimination [MAR04]. 

All birds are able to discriminate between harmonic complexes with much higher fundamental 

frequencies (800 to 1000 Hz) than humans; this requires temporal analysis over fundamental periods 

as short as 1 ms in duration. Humans are unable to discriminate between complexes with fundamental 

frequencies higher than about 250 Hz, i.e. about 4 ms in duration. Enhanced time processing of 
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complex sounds by birds, relative to humans, may be a general characteristic of the avian auditory 

system [MAR04]. 

Studies of bird hearing reveal that they do not hear well over the range of frequencies that embraces 

most of those used in their songs [DOO02a]. Within a narrower range of frequencies, where they 

hear best, the ability to discriminate between two sounds approaches the level of acuity often reported 

for humans. However, there is also a major difference. Birds excel in discriminating between two 

complex sounds, which differ only in the temporal fine structure [MAR04]. 

 

  

Figure 3.5: Audibility curves (a) of song sparrows (open circles) and swamp sparrows (filled circles) 

compared to the power spectra (b) of their songs [CAT08]. 

3.1.4 Vocalization 

Throughout the animal kingdom, vocalization is used for various purposes. For example, it can be 

used to inform about sex, condition and age of the signaller [REN04], [BOU13]. It could also be 

useful to recognize neighbours, kin or even a particular individual [BEE85], [BAL90], [REN96] or 

to distinguish reproductive or dominance status [YOS09], [HOE10]. Furthermore, vocalization is 

useful for synchronizing members of a group [BOI95] or for warning others against danger [SIL94], 

[MAN02].  

3.1.4.1 Bird song 

Song is the natural vocalization of the passerines. Basically we recognize two main purposes of bird 

song: to allure female and to mark (border, defend) territorially defined districts. Male birds are 

usually singing because their vocalization is augmented by the male sex hormone testosterone. There 

are more than 500 bird species in Europe, about 400 in the Czech Republic. Ornithologists have 

found singing females in about 100 species. Females normally have low levels of circulating 

testosterone, but if these are increased then females will also often produce song [CAT08]. 

Vocals produced by a bird are generally divided into two categories: 

 Call short signals, mostly meaning warning. 

 Song songs composed of syllables, mostly territory and allure meaning. 

Birds learn to sing when they are born, and as they grow, singing is greatly influenced by 

neighbouring bird singers. Since the 19th century, “contest canaries” have been trained by encaging 

a young canary near a so called “precentor”, a senior canary with a high quality song ability 
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(complicated songs, using many syllables, having a broad tonal range). The singing of the “learning” 

young canary rapidly improves thanks to the quality of the precentor. 

A bird’s repertoire highly depends on various influences such as bird mood, environmental 

conditions (normal, stress, and danger), day time, season, life phase (breeding season, building a nest, 

young bird care), temperature, and weather conditions. Moreover, a bird’s song differs from place to 

place because birds learn their whole life. Birds modify their song if they hear new syllables, new 

collocation, or a new song variation. In summary, every bird sings differently. 

Chiffchaff sing during spring, when courtship dances begin. These birds sing mostly at dawn. The 

explanation is that a female is still slumberous and the male can get closer easily and sound 

propagation is easiest thanks to favourable climate and low turbulences. 

3.1.4.2 Vocal tract 

For humans, the frequency associated with vocal tract dimensions is fundamental. Thus, the 

fundamental frequency it is lower for adults and highest for children. In animals, much greater 

variability of the vocal box can be found. Figure 3.6 shows the dependence on animal body mass and 

emphasized frequencies of vocalization. With a suitably chosen scale: a line with a slope of -1 added 

to the graph, describing this dependency. Small animals use high frequencies while larger animals 

lower frequency.  

 

Figure 3.6: Animal body mass and frequencies of vocalization [CAT08]. 

 

The dependence for both humans and animals is related to the basic relationship between wavelength 

and frequency 

 � =
�

�
 (1) 

where c is the speed of sound. The relation approximates dry air 

 � = (331.57 + 0.607�) [ms-1]. (2) 
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The syrinx is the principal organ of birdsong creation. Figure 3.7 shows divided structure with two 

sound generators. A syrinx of double-voiced singers is described in [KRA09]. 

 

Figure 3.7: Cross-section of the syrinx of a brown thrasher.  

(T) thermistors, (MTM) medial tympani form membranes. 

Unlike humans, animals are usually equipped with less noise harmonics. Some animals may produce 

purely sinusoidal (singers) or pure noise character (small rodents). Some birds produces the two-

voiced sound, for instance [KRA09] deals with double whistle of Centrocerus urophasianus. Just as 

the human vocal tract, the principal of sound generating in birds will be approximated by convolution 

both generating signal x(n) and impulse response h(n) of the vocal tract: 

 �(�) = �(�) ∗ ℎ(�) (3) 

where s(n) is song (speech signal), x(n) is an excitation (signal source) and h(n) is impulse response 

of vocal tract (vocal tract filter), see section 3.5.1. 

In general, the vocal tract of many species of animals is similar to humans: monkeys, some singers, 

cetaceans. Some birds may also sing in two-tone (lark, nightingale, thrush). Some types of sound 

production are completely different and operate without the use of vocal tract. For example, the 

oscillation of the wings (mosquito), using a special membrane (cicada), rubbing the wings together 

(cricket), in rodents banging his head against the wall hole (Lesser Bamboo Rat). 

3.1.4.3 Song hierarchy 

A spectrogram of chiffchaff song is shown in Figure 3.8. The bird song is divided into four levels: 

Song, Phrase, Syllable, and Element. The basic bird song stands between calls and songs. The calls 

are short squawks emitted by birds as an emergency or warning sound. The song consists of Phrases 

and Syllables. The syllable is then divided into the so-called Elements; see Figure 3.8 and Figure 3.9 
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Figure 3.8: One song of Chiffchaff. 

 

Figure 3.9: Two syllables divided into elements. 

3.1.4.4 Song analysis 

Ornithologists have been trying to analyse bird songs since the nineteenth century. Some tried to 

create a transcript of a song together with musicians, for an example see Figure 3.10. If necessary, 

special marks/notations can be used to describe bird song characteristics in more detail. 

 

Figure 3.10: Score of a Lazuli Bunting song. Created by composer Olivier Messiaen (Fr., 1908-1992). 

Since the last decade, ornithologists have used spectrogram as well as specialized software to analyse 

singing e.g. Avisoft-SASLab Pro (Bioacoustics, Germany) or Raven Pro (Cornell Lab of 

Ornithology, USA). So far, the achievement is that we are able to build up a song structure, similar 
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to a human word structure. An example of a song structure of Bengali Finch is reproduced in Figure 

3.11.  

 

Figure 3.11: Bengali Finch song structure [MAR04]. 

3.1.4.5 Differences 

Human voice recognition systems have been a concentration of study for many years. It is important 

to discover the differences between human and bird voices. List of differences taken into account are 

listed below: 

 Limited repertoire of sound 

The number of bird sounds is calculated from a few to tens of songs.  

 Spectral and time-base characteristics 

Approximate frequency range of human voice is 300 Hz – 3.5 kHz. The level of acoustics 

pressure is about 50 dB. Voice dynamic of the Czech language is about 30 dB for untrained 

voice. Animals produce simple sounds (squawk or croaks) or continuous sounds with some 

structure (bird song, whale song). The structure of a song is affected by many influences. 

Frequency bandwidth varies from tens of Hz (elephants) to tens of kHz (passerines). 

Chiffchaff produces songs between 3 and 7.5 kHz with dynamics about 20 dB. Just as a 

matter of interest the acoustic pressure of whale’s song is reported at about 160 dB. 

 Harmonics structure 

Human voice contains many harmonics, lying in close frequency band. 

 

Table 1 summarizes discovered differences between speech and bird song. Observed birds produce 

sound just with a few harmonics: two or three. Some animals even make pure sinusoidal or pure 

noise sounds (passerine, rodent). See following figures for the chiffchaff (Phylloscopus collybita) 

and tree pipit (Anthus trivialis) song. Notice the chiffchaff recordings were made by team of 
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Dr.Linhart (University of South Bohemia) and the tree pipit recordings by team of Dr.Tereza 

Petruskova (Charles University). 

 Human Voice Chiffchaff Tree pipit 

Frequency range 100 Hz - 3 kHz 2 kHz - 7kHz 2 kHz - 8kHz 

Bandwidth 3 kHz 5 kHz 6 kHz 

Average duration of one word/syllable 1 s 100 ms to 
200 ms 

40 ms to 200 
ms 

Number of Harmonics 2 - 20 1 - 3 1 - 3 

Duration the signal can be considered as 
stationary 

10 - 30 ms 5 - 20 ms 5 - 20 ms 

Table 1: Comparison of a human voice and chiffchaff song characteristics. 

 

 

Figure 3.12: Human voice. Studio record, women, Czech language, business news, impassive.  

Frequency range 0 – 4 kHz. 

 

Figure 3.13 Chiffchaff song, recorded in wood, morning. Band width 0 – 11,025 kHz. 
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Figure 3.14 Chiffchaff song, recorded in suburban areas, morning. Bandwidth 0 – 22,050 kHz 

 

 

 

Figure 3.15: Chiffchaff song detail, one syllable. Recorded in the woods, sample frequency 44.1 kHz. 

 



18 
 _______________________________________________________________________________  

  

 
Figure 3.16: Tree pipit song detail, one syllable. Recorded in the woods, sample frequency 22.05 kHz. 

 

 
 

Figure 3.17: One syllable spectrogram: Chiffchaff (left), and tree pipit (right).  

The vertical bar graphs illustrate a band energy. 
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3.1.5 Bird song propagation 

Unlike humans, birds communicate over long distances and signal transmission takes a longer time. 

Effects like phase shift, reflections, interferences and so on, play important role in comparison to 

human speech. Moreover, the direct sound wave is attenuated by its propagation through the air and 

by hindrances (trees, walls, houses, rocks, hills, leaves, etc.). The reflected sound waves may play 

important role. 

In summary an origin sound arrives to the bird-listener attenuated, distorted, delayed (echoes and 

reverberations), and phase shifted. 

3.1.6 Ringing 

One of the major challenges in ornithology is the task to differentiate bird individuals from each 

other. One of the currently used methods is bird ringing (banding). This procedure has some negative 

aspects: 

 It is necessary to capture the bird. 

 The bird is ringed for life. 

Firstly, the capture is a very stressful event. What is more, if the ornithologist does not wear gloves, 

the bird is exposed to human contact. The bird can be kept in a net for several hours, until the 

zoologist arrives. It happens especially when night birds are caught. Secondly, a bird receives a ring 

on the body, which changes its appearance, increases its weight and sometimes hinders its movement. 

Furthermore, the ring may not only bother the bird itself, but there is a question whether its colour 

and appearance does not distract the partners or other individuals from its community. 

The author of this work cooperates with ornithologists of University of South Bohemia, Faculty of 

Science, who have observed that Chiffchaffs which were caught, do not return to the same place so 

often as the other ones. The estimation of the return of the ringed birds is about 15%. Moreover, it is 

practically impossible to repeatedly catch a bird caught once before. The ornithologists conduct 

banding of warblers with one or up to three bands of different colours. They are placed on both legs 

to use as many combinations possible. The bands carry a unique code (1 letter and 5 digits) that 

enable a unique identification. In this case chipping is not possible because of the warbler’s petite 

body structure.   

It is obvious from the above mentioned that when monitoring the bird it is possible to identify 

individuals thanks to the bands colour combination, but only by using binoculars.  This identification 

is not faultless, because the colour can be identified incorrectly from the distance or there might be 

birds from another habitat with the same colour combination from another ornithologist, etc. Such 

accurate determination can thus be carried out only after the bird is caught in a net and the band code 

is read. 

3.2 Data recording 

Based on the localization, bird song recordings can be crudely divided into indoor and outdoor ones. 

Indoor recordings take place in a laboratory or in special environment where a bird lives (zoo, aviary, 

botanical gardens). Outdoor recordings differ in recording time which depends on the day cycle of 
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the target bird. The most suitable season for recording is spring, most birds are singing at dawn, 

contrary to owls, for instance, whose activity is strongest at or after sunset or even at night. 

When recording in the exterior it is not possible to get a recording that contains only the required 

songs. Birds are most active at dawn. That causes a worse quality of recordings, because they contain 

other songs as well, from the same, and also from different species. Mutual masking of songs is 

significant mainly at recordings made in the forest. In case the recording takes place near a 

conurbation, there are also noises of the city. The city “wakes up”, cars, trains, public transport are 

very noisy. Since the recording distance is up to several tens of meters, the surround noise is 

unavoidable. 

The fundamental disadvantage of morning recordings is the clarity of the record. A significant 

advantage is the light and thus an easier localization of the individual. Birds that sing at day are less 

timid than night birds. An ornithologist can try and approach to the distance of several tens or even 

just to several meters. Alternatively, it can be possible to catch the bird for a accurate identification. 

Birds singing during the day are not as shy as night singing ones so that ornithologist can get much 

closer (tens of meters). The main advantage of morning recording is sunlight and the possibility to 

visually identify the recorded individual(s). The main disadvantage of morning recording is: 

 In the forest, many birds are singing at the same time. 

 Near the town, there are urban noises.  

Day recordings are similar to morning ones. They only differ by the level of noise (town traffic, 

animals).  In addition, song activity is lower for most species during the day as compared to the 

morning. 

One of the most important problems of outside recording is the record quality. The bird is usually far 

from the microphone, many birds are singing at the same time, the level of surrounding noise is 

usually high and unwanted sounds propagate into the records. Furthermore, if the bird moves the 

song frequency changes by the Doppler Effect. This implies that the quality of outside records is 

worse than the laboratory ones because of worse 

 clearness of the singing, 

 signal to noise ratio, 

 ability to distinguish among the song of the target and other birds, 

 unwanted sounds. 

Despite these disadvantages, we prefer outside recording because the bird is recorded in a natural 

environment, which is crucial. 

At present, many articles focus on off-line recognition system (records are stored in PC and 

processed). However, any on-line system would be very useful for ornithologist when performing 

fieldwork. We believe that an on-line system would have good applicability, but so far, no research 

using such system has been to our knowledge published. 

While working at night, darkness is an obvious disadvantage. It disables the identification of an 

individual as well as its accurate localization for microphone setting. That is why stationary recorders 

are generally used. Another disadvantage is a smaller cadence of night birds songs and longer pauses 

between them. Significant parameters are also shyness and vast territories where they occur. On the 

other hand, the clarity of the recording tends to be better than of the morning data collection. Most 
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inhabitants are asleep so the level of surrounding sound is significantly lower. The recording contains 

only sporadic sounds of nocturnal animals and permanent sounds of the background such as rustle 

of the trees, insects, etc. The recordings also contain a noticeable sound of the recording device.  

When there are worse climatic conditions, the quality of the recording decreases rapidly.  

 

 

Figure 3.18: A voice of a Forest Owlet (Athene Blewitti). A wide spectrum noise from 500 Hz is visible,  

caused by a background noise and a recording machine. 

Records acquired in a laboratory are exceptionally clear and clean. These can sometimes even be 

obtained in an anechoic room. However, just some species can be recorded by this method, usually 

domestic passerines (canary, budgerigar, zebra finch, starling, and parrot). 

3.2.1 Masking  

Consistent experiments were performed to discover masking on birds. The experiments investigated 

how noise interferes with song hearing. This phenomenon is difficult to study in the field [DEN98], 

but laboratory studies, where both signals and noise can be controlled, can provide guidelines for the 

effect of noise on hearing in the real world. Laboratory studies with pure tones and white noise show 

how intense a pure tone must be relative to the background noise in order to be heard [DOO95]  

It was discovered that in the frequency region of best hearing for most birds, around 3 kHz, tone 

levels must be on average about 25 dB above the spectrum level of noise to be detected. Some 

principles regarding the masking of signals by noise were established. First, energy in the frequency 

region of the signal is the most effective in masking. Noise at other frequencies has much less effect. 

Second, the signal-to-noise ratio needed for detection stays relatively constant over a wide range of 

noise levels. Third, if the signal and the noise come from different directions, much less masking 

occurs. Finally, it is one thing to detect a signal such as a vocalization and quite another to 

discriminate between one vocalization and another, or to recognize a particular vocalization 

[MAR04]. 
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Unfortunately, no rigorous measurement of bird masking is available as there is in human voice 

measurement. Only the general principles are known, which describe how birds communicate in 

noisy environments in nature. 

3.2.2 Process automation and microphone arrays 

Automatic sound recordings in the nature represent new and very interesting area for bird song 

research. [POT14] deals with these recordings for species recognition. Perceptual Linear Predictive 

cepstral coefficients (PLP CC) are extracted, as well as MFCCs. The aim of [JAN11] was to 

investigate automatic detection and recognition of bird sounds in noisy environment. The detection 

was performed by a spectral shape method to identify sinusoidal components. Ehnes and Foote 

[EHN15] used automated recorders. Then they visually checked spectrograms to sort the recordings 

into categories high/low quality. The decision was based on the spectrogram darkness (contrast 

between song and background). The spectrogram cross-correlation was used to calculate similarity 

of songs. They used software Raven Pro (Cornell Lab of Ornithology, USA). 

Microphone arrays represent relative new approach for bird species and individual recognition. These 

tools enable precious source localization, which is impossible to achieve with one or two 

microphones. An essential overview of acoustic monitoring using microphone arrays is given in 

[BLU11]. Unfortunately, just a few researcher crews could use these tools because of its astronomical 

prices. Remote recording allows continuous area monitoring but the data evaluation is very difficult. 

[ULL16] deals with such type of recording using microphone array of 24 microphones. A detection 

system is based on spectrogram cross-correlation. Kwan et. al. [KWA06] deals with microphone 

array real-time monitoring system. The system automatically recognizes a large number of bird 

species but its accuracy highly depends on distance between bird and microphone. 

3.2.3 Data processing 

To work with a bird song means to work with a long recording. An ornithologist walks at the suitable 

position where can record for as long time as possible. The recording takes up to tens of minutes 

even if a stationary recorder or a tripod is utilized the duration can take hours. Theoretically, three 

methods are possible based on which type of recording is processed: 

 

1. Continuous record. Whole recording is used with no cuts, noise cancellation etc., so-call 
raw recording, see Figure 3.19. An automatic VAD is required to distinguish between song 
and non-song segments [PTA15a]. 

2. Single songs. Single songs are cut out from the recordings, see Figure 3.20. One uses an 
automatic software to cut out the songs from the raw recording, e.g. Avisoft or Raven. 
Although accurate software setup, some mistakes occur during the cut-off process: lost 
songs, non-song parts classified as song, etc. 

3. Combination of both. Single songs and continuous records are used together. Two 
different experiments run independently, merging the results. 

 



23 
 _______________________________________________________________________________  

  

 

Figure 3.19: Continuous Chiffchaff record (raw record), length 45 s. 

 

 

Figure 3.20: Single Chiffchaff song, cut off from the raw recording, length 5.5 s. 
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3.3 Speaker recognition 

Speaker Recognition (SR) can generally be divided into two tasks: Speaker Identification (SI) and 

Speaker Verification (SV). 

3.3.1 Speaker identification 

The task for SI is to assign a given speech record to a specific speaker from a database of speakers. 

The aim is to identify the speaker. A typical example of using SI is authentication of a person entering 

a building, or on the phone (e.g. mobile banking, ticket reservation). It is important to define whether 

the set of speakers to be identified is closed or open. For an open-set a new speaker can appear at any 

time. If closed-set is considered the speaker set is finite. 

First a speaker model of n-th speaker is defined as ��, and the set of all speaker models as � (see 

section 3.4.7, where we discuss the models in detail). Then for the closed-set case, models are created 

for all persons involved. The goal is then to identify a person by using speaker models selected from 

the finite set 

 

 
 (4) 

In the open-case set an unknown person may appear in addition to the known ones. Then the set of 

models is extended by the model-set of unknown persons 

 
 (5) 

   

However, the model of an unknown person cannot be defined as there is no data available. Instead, 

a speaker with the highest score is chosen. If some predefined treshold is not reached, it is 

concluded that no person of the given set has spoken. 

3.3.2 Speaker verification 

The aim of SV is to confirm or deny whether the speech record belongs to a particular speaker (to 

confirm the identity). The system has to infer an identity the speaker claims. An example of SV task 

is the authentication of a user logging into a system. There are some applications where the speech 

is the only biometric parameter useable, in a phone conversation for instance. Verification depends 

on what the speaker says. It can be text-independent (speaker says any word or phrase) or text-

dependent (speaker pronounces a pre-specified word or phrase, such as a digit or a code word.) 

Since we do not understand bird language and we cannot order the bird to sing (except in cases of 

trained singers). Thus, the most suitable approach for the automatic recognition system of a bird is 

the Speaker recognition text-independent task. 

3.3.3 Speaker recognition methods in ornithology 

Kuntoro et al. experimented with both song-type classification and individual identity clustering 

[KUN10]. The HMM was used for song-type classification with achieved accuracy of the song-type 

between 50% and 98.8%. The error rate of individual identification was from 2.9% to 50%, which 

 1,..., LΛ λ λ

 1,..., L UNKNOWNΛ λ λ Λ
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was evaluated by the author as unusable. They used recording from year 2000 as a training data, 

while recordings from 2001 was used for evaluation. 

Clemins dealt with classification of animal vocalization using MFCC and PLP parameters and HMM 

classifier implemented in HTK [CLE05]. The first part of the research dealt with a call-type 

identification, the second with an individual identification. It was recommended to use the 

Greenwood warping function (GWF). Achieved results for call type recognition were between 51% 

and 90%. The results were highly dependent on the type of used parameters and on the classifier. 

Tested species were frogs, elephants, and beluga whales. For all species, a particular GWF was 

computed. 

Fox described a call independent identification in birds [FOX08]. The records were divided, some 

parts were used for training and some for an identification. The length of the parts varied and the 

average length was about 10 s. MFCC was used, while the classifier used an ANN MLP implemented 

in the NN toolbox in Matlab. The network had one hidden layer with 16 neurons. Reached 

identification accuracies were for willie wagtails 72.9%, for canaries 97.1%; 54.3%; 98.6%, and for 

singing honeyeaters 75.7%; 96.5%. Accuracy dependence on noise was also tested. 

Selin focused on bird sound classification using wavelets [SEL05]. An ANN was used for automated 

classification of acoustic signals. MLP and self-organizing map (SOM) were used as classifiers. 

Eight bird species were tested with accuracy 96% and 93.8% for MLP and SOM respectively. 

[KOG98] compared both methods of Dynamic Time Warping (DTW) and HMMs for automated 

recognition of bird song elements. The experiment uses sound of zebra finches and indigo bunting 

(passerine). The article studied both the DTW and a HMMs methods, and summarizes pros and cons 

applied for bird song. 

Some authors deal with the animals sounds in order to identify (interpret) their meaning. Molnar et 

al collected more than 6,000 barks in an attempt to recognize the meaning of dog barking [MOL08]. 

Five kinds of barking were distinguished, named their meaning as: stranger, fight, alone, ball, play. 

Classification efficiency rises between 43% and 52%. 

[GRA10] dealt with optimization of feature extraction module to improve bird species recognition. 

Improvement was found after optimizing a bandwidth and a number of filter banks. Experiment used 

bird sounds from commercial Audio CD by Cornell Lab of Ornithology. 

[CHU09] proposed a Correlation-Maximization Filter to suppress background noise. They used 2246 

songs from five bird-ant species. The both GMM (256 Gaussians) and HMM (6 states, 256 

Gaussians) were used. The feature vectors were extracted by the MFCC with dimension 39, and by 

a de-noise filter output based on the Wiener/Correlation-Maximization. The lower classification error 

rates were 4.1 for HMM and 4.7% for GMM. 

We did not find any Czech researchers dealt with an automatic bird recognition.  

3.4 Recognition system overview 

This chapter deals with a speaker recognition system. We modified and applied it in order to solve 

the problem of automatic bird recognition. The research is mainly focused on the GMM-UBM 

method. Figure 3.21 displays an outline of the GMM-UBM recognition system, for iVectors 



26 
 _______________________________________________________________________________  

  

recognition system see section 3.4.11. Notice the shadowed boxes are discussed in detail in following 

sections. 

 

Figure 3.21: General outline of the GMM-UBM recognition system. 

The process flow is decomposed into: 

 Parametrization: recordings are parametrized to extract features, forming a set of feature 

vectors. 

 Training: UBM model and GMM model estimation. 

 Decision: probability comparison of unknown bird and trained models. 

 Score calibration: choice of a verification threshold. 

 Evaluation: based on EER, DET or any other method. 

Following sections give a brief overview of these steps. See sections 3.4.7 and 3.4.7. for more details. 

3.4.1 Parametrization 

Data are parametrized to extract features, forming a set of feature vectors. In order to extract multiple 

feature vectors a rectangular sliding window of length 
wl  given in samples is utilized. The samples 
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in the window are processed, subsequently the window is shifted to a next position usually by half 

of its length, and the extraction of feature vectors is repeated, see Figure 3.22. 

 

Figure 3.22: Samples in the rectangular window are weighted by the Hamming window, FFT is performed, 

filtration utilizing triangular filters is carried out, and a cepstral feature vector is extracted. Subsequently, the 

window is shifted to its new location and the extraction process is repeated. 

   

Samples in the sliding window are at first weighted by a Hamming window to suppress undesirable 

effects when the Fast Fourier Transform (FFT) is applied right after the windowing. Next, the power 

spectrum is computed in order to extract frequency characteristics of the signal present in the 

window, and since it is symmetric only the first half is kept – the interval /2][0, sf , where 
sf  is the 

sampling frequency. To smooth the spectrum a set of triangular shaped Filter Banks (FBs) – bandpass 

frequency filters – of height one is spread across the frequency domain. Number of filter banks 
FBN  

is set empirically by an expert and determines the "smoothness" of the power spectrum – the lower 

is 
FBN  the smoother is the spectrum, i.e. irregularities in the spectrum are suppressed in a higher 

extent. Triangular FBs are symmetric and they are defined by the location of their midpoints 

FB,1,=, Nimi  . The thi  FB starts from the midpoint 
1im  of the previous FB, reaches its maximum 

value at 
im , ends at 

1im , and is zero otherwise, see Figure 3.23. Hence the midpoints are located at 

frequencies  
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where 
maxf  is the frequency where the last FB ends. After the filtering, cepstral approach is carried 

out. More precisely, logarithm of the output of FBs denoted as 
FB,1,=, NiPi   is computed and a 

cosine transform is performed in order to decorrelate the features so that the cepstral coefficients  
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are extracted, where FBNK   is the number of cepstral coefficients, thus the dimension of extracted 

feature vector T
1 ],,[= Kcc c  is K .  

 

Figure 3.23: Triangular filter banks spread linearly in Hz scale. 

   

Finally, in order to incorporate also some dynamic information on the variation of the signal in time, 

often numerical approximations of the first derivative of cepstral coefficients are evaluated and added 

at the end of the cepstral vector [BIM04]. They are called delta coefficients and can be computed as  
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(8) 

 

where J  is the number of neighbours used to compute the numerical approximation of the time 

derivative, and t denotes the time index of extraction of the feature vector 
tc . 

The extracted feature vectors are called Linear Frequency Cepstral Coefficients (LFFCs). 

3.4.2 Gaussian Mixture Model (GMM) 

Once the feature vectors in the form of LFCCs were extracted, the next step consists in modelling of 

the probability distribution of the data. We will now focus on GMMs firstly introduced to the speaker 

recognition by [REY95] and widely used up to now [CAM06], [KEN07], [DEH10]. GMMs are 

generative statistical models, well suited for description of static (context-independent) data sources, 

where the time progress of samples is of no interest. The basic assumption is that feature vectors are 

i.i.d. (independent and identically distributed). 

For a D  dimensional feature vector x the GMM takes the form  
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where 
mmm C,,   denote the thm  mixture’s component weight, mean and covariance, respectively, 

M
mmmm 1=},,{= C  is the set of GMM parameters, M is the number of mixture components, and 

),;( mm Cx N is the probability density function of the normal distribution with mean 
m  and 

covariance matrix 
mC . In order to have a valid probability distribution restrictions of the form  
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(10) 

 

have to be laid on GMM weights. An example of a GMM is depicted in Figure 3.24.  

 

 

Figure 3.24: Given a set of one dimensional feature vectors (x-axis), the Gaussian Mixture Model with three 

mixture components which best describes the data set (in the sense of maximal likelihood (4)) is given by the 

solid line. Note that the GMM is formed from 3 normal distributions each weighted by the relative number of 

vectors it encloses.  

    

Generally, the covariance matrix 
mC  is considered full, nevertheless in most cases diagonal matrices 

are assumed, especially because of numerical stability reasons and computational costs.  

3.4.3 Training 

In order to train a GMM an iterative method called Expectation-Maximization (EM) can be exploited 

[DEM77]. It is based on the Maximum Likelihood (ML) approach and maximizes the probability 

)|(=)|,,(
1=1  t

T

tT pp xxx   of submitted training data },,{= 1 TxxX   given the model 

parameters  . 

Since EM algorithm is iterative it has to be initialized by some suitably chosen parameter 0 , which 

is then update in each iteration until convergence is reached. Also a number of mixture components 

M has to be set, among others it depends on the dimension of feature vectors D  and on the number 

of input vectors T . Thus it would be convenient to change the number of mixture components M 
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in the model of each speaker (or bird) in dependence on the value of T . Note that the number of 

parameters to be trained is equal to 1)(  DDM , hence the number of mixture components M 

multiplied by the number of parameters of the mean vector, number of non-zero elements in the 

covariance matrix (assuming a diagonal covariance matrix) and one additional parameter for the 

weight of the mixture component. To estimate the mean of each mixture component we would need 

at least M feature vectors, and to get a reliable estimate of the covariance matrix the required number 

of feature vectors would substantially increase. The lack of training data can lead to ill-conditioned 

models. However, imagine we would have a prior knowledge about the model parameters. This could 

be used to properly initialize the estimation algorithm (instead of a random initialization often used), 

moreover it could help suppress the ill-conditioning when only a low amount of training data is 

available. For this purpose Maximum A-Posteriori (MAP) adaptation of an Universal Background 

Model (UBM) is utilized [REY00]. 

UBM is a GMM trained using the EM algorithm on a huge amount of (background) data collected 

from a lot of speakers. Hence, it reflects actual operating conditions (e.g. channel, noise) presented 

in the background dataset. Since the amount of data is huge, the number of mixture components M 

can be set high. Rather than utilizing the EM algorithm to train the model 
s  of a speaker s from 

scratch, the MAP adaptation of the UBM is used, where  
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(11) 

 

ML  is the maximum likelihood estimate of model parameters given only the data of speaker s 
(computed utilizing the EM algorithm initialized by 

UBM ), T  is the amount of data available, and 

r  is a relevance factor set by the user. Thus, if enough training data are available ( goes to zero), the 

model based only on the ths  speaker’s data will be preferred, otherwise it will lean toward the 

universal background model 
UBM .  

3.4.4 Decision 

Given a set of 
sT  feature vectors },,{= 1 sTs xxX   and a model 

q , the score (log-likelihood or 

their similarity measure) is given as  
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where )|( qtp x  is the probability of a feature vector 
tx  given in (4), the logarithm is used to 

ensure numerical robustness. In the closed set identification scenario (see the discussion at the 

beginning of Section 4) the identity of s would be assigned according to 
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where Q  is the number of speakers in the reference set. Thus, the score (7) is evaluated for each 

model of each reference speaker q, and the identity of the speaker s is determined according to the 

maximal value of the score. 

In the case of verification, it is not enough to find the closest speaker given by the maximal value of 

the score (7), in addition we have to verify the identity of the closest speaker. Thus, we have to choose 

between two hypotheses:   

 
0H : 

sX  was spoken/sung by speaker/bird q, 

 1H : 
sX  was not spoken/sung by speaker/bird q. 

For this purpose the Log-Likelihood Ratio (LLR)  
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is evaluated [BIM04] and a threshold   has to be set and compared with LLR. If  > LLR  than 

0H  is accepted, otherwise 
0H  is rejected and 1H  is accepted. The threshold is in most cases set by 

the user and its value reflects the penalization for making errors. Note that hypothesis 1H  was 

connected with )|( UBMsXL  – likelihood that 
sX  belongs to the background population of 

speakers or to the environment exposures, which should be also part of the background data set. 

Therefore it is of importance to strictly distinguish between training, testing and background data. 

Loosely speaking, the background population must not include any of the training or testing data, 

otherwise the validity of (9) would be violated.  

3.4.5 Score calibration 

UBM plays a crucial role in the open set identification, since it defines the operating conditions and 

simplifies the choice of a verification threshold. The problem related to the choice of a proper 

verification threshold is often referred to as the score calibration [REY97]. In order to understand the 

main idea of the score calibration assume that we are given 2 models of 2 different birds and 1 test 

recording from each of the 2 birds. Next, let 
12  be the score of the test recording from the 1st bird 

given the model of the 2nd bird, analogically we can compute
11 , 

21 , 
22 . Obviously, having a 

good recognition system yields 
1211 >   and

2122 >  . In the closed set identification scenario we 

would assign the input recording to the bird, which model gave the best score given the input 

recording (i.e. if 
1211 >   then recording 1 would be assigned to the 1st bird represented by model 

1). However, in a verification scenario we have to compare the score to a unique threshold   in 

order to get the final decision (it is not clear whether the most similar bird really is the bird in 

question). Hence, if  >11
 then the same identity of the bird represented by the 1st test recording 

and the bird represented by the 1st model is confirmed, otherwise their identities are assumed to 

differ. The problem is if the values of 
11 , 

12  are significantly higher/lower than 
22 , 

21 . E.g. if 

21221211 >>>   then the value of the threshold   cannot be set so that simultaneously  >11
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and  >22  while at the same time  21  and  12 . In order to solve the problem an additive 

constant has to be subtracted from 11 , 12  and/or added to 22 , 21 . This is done by the UBM when 

evaluating LLR given in (10) and it is one of the possibilities how to calibrate the score, for a more 

detailed description of score calibration techniques see [STU05], [YIN08]. 

3.4.6 Evaluation 

Four different situations may occur during the verification, see Figure 3.25. 

 

 

Figure 3.25: Verification: False and correct decision. 

 

Incorrect acceptance error RFA(Θ) is defined as 

 

 
(15) 

where Θ is the threshold (see below), nFA is the number of cases when the system incorrectly accepts 

the impostor, and nIM is the total number of cases where an impostor has been tested.  

Incorrect rejection error RFR(Θ) is defined as 

 

 
(16) 

where nFR is the number of cases when the system incorrectly rejected the Target (right speaker/bird) 

and nTRGT is the total number of cases where the target has been tested.  

Setting the threshold Θ affects the total number of RFA and RFR. Increasing the threshold reduces the 

false acceptance error rate FA, but it simultaneously increases the false rejection FR error. This 

happens because the system requires a higher probability of similarity. On the contrary, if the 

threshold is lower, the FR error decreases, but the FA increases as the system needs lower probability 

of similarity to accept the speaker. This leverage effect is summarized in Table 2. Both errors are 

called operating point [PSU06]. 
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Highest Θ 
RFA(Θ) decrease 

RFR(Θ) increase 

Lowest Θ 
RFA(Θ) increase 

RFR(Θ) decrease 

Table 2: Level of threshold Θ value and error rates. 

The Equal Error Rate (EER) is used for single number evaluation of the system, which indicates the 

threshold value ΘEER at which RFA and RFR are equal. It is defined as 

 
. (17) 

In real experiments, however, a threshold Θ must be set first, where after the decisions the RFA and 

RFR errors can be calculated. Finding the threshold ΘEER can therefore be nontrivial. 

To express the system success rate with just one number, the curve DET (Detection Error Trade-off 

Curve) is used. Error rates are plotted as a function of the threshold [BIM04] at the DET. The 

advantage of the DET curve is a good readability especially for low differences between the errors. 

Another advantage is a good distinction in case that we plot many curves at the same time. It is 

particularly useful when the system parameters are fine-tuned. 

3.4.7 Probability model methods 

The probability model method is based on computing �(�|��), � = 1,2,… , � for each of � speakers, 

where � = {��, ��,… , �� } represents the feature vector of unknown individual composed by N 

parameters �� , and �� represents the model of i-th speaker. The method uses speaker models �� 

comparison instead of feature vectors. It radically decreases a dimension of compared data, and make 

the identification process feasible. We define the unknown individual feature vector � belongs to the 

j-th speaker just if the probability �(�|��) gives the highest value for � = �. 

The Hidden Markov Models (HMM) is usually used for text-dependent tasks where a content of 

speech is under research, and a prior knowledge of the speech is unknown [BIM04]. The Gaussian 

mixture model (GMM) is the common choice for text-independent tasks [BIM04] where the content 

of the speech is unimportant and the matter of problem is to identify a speaker. 

3.4.8 GMM-UBM Speaker verification system 

The definition of the speaker verification task is to determine if an utterance Y was spoken by speaker 

S. If we suppose that Y contains speech of only one speaker then we call the task a single-speaker 

verification. If not, the task becomes multi-speaker detection. With regard to the objectives of this 

work the task is defined as automatic bird identification: to determine if song Y was sung by a bird 

individual S.  

If we define two possible conclusions of a single-speaker verification 

 H0…Y was spoken/sung by S 
 H1…Y was not spoken/sung by S 

   EER FR EER FA EERR R R   
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then the goal of the task is to determine both probabilities 
 

 
(18) 

 
 

(19) 

 
These are called probability of hypothesis H0 and H1 respectively. If �(�|��)/�(�|��) ≥ � then H0 

is accepted (Y was spoken/sung by S), else if �(�|��)/�(�|��) < � then H0 is rejected (Y was not 

spoken/sung by S). The 	� represents a treshold, see section XXX. 

For techniques to compute values for the two probabilities, see [REY00]. Basic stages of the speaker 

verification system are shown in Figure 3.26.  

 
 

 
Figure 3.26: Probability ratio-based speaker detection system [REY00]. 

The input stage should contain a speech (song) of length t. The front-end processing stage extracts 

feature vectors, which contain speaker-dependent information 

 
 

(20) 

where N is the number of feature vectors. It depends on the length of a speech/song and the length 

of a frame, which the speech is divided into segments. Computing the probabilities H0 and H1 follows, 

based on the feature vectors.  

Probability of H0 is by a GMM with parameters model λ of the speaker. These probabilities 
represent the hypotheses 
 

Hypothesis Model Denotation 

H0 ����  
Hypothesized speaker S is in 
the feature space of  X 

H1 ���������� Alternative to H0 

Table 3: Two models of speakers. 

Probability ratio statistics of both models can be expressed as 

 

 
(21) 

The logarithm of this quantity gives the log-probability ratio 

 0 ,p Y H

 1 .p Y H

 1 2, ,..., .NX x x x

( )
.
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(22) 

The model  ����  of the H0 hypothesis will be well-established using the training data of S. On the 

contrary, model ���������� must include all of the possible alternative hypotheses covered by H1. To 

estimate model ���������� two approaches come into consideration: 

 Use models of all others speakers in order to cover all alternative hypotheses. The 
approach is known as background speakers (BS).  
 

 Merging speeches from several speakers to train a single model. The approach is known as 
the universal background model (UBM). 

 
GMM-UBM system for Speaker verification task is described in [REY00], [REY95], [DEH09]. The 

used system is referred to as the Gaussian Mixture Model-Universal Background Model speaker 

verification system (GMM-UBM) [REY95]. 

3.4.9 Expectation-maximization EM 

Estimation of model parameters (i.e. � = ���, ��, ��� for GMM) is commonly based on Maximum 

Likelihood (ML) criteria. The ML supposes we get a likelihood model �(�|�) with unknown 

parameter �; then we need to set up parameter values based on training data � = {��, ��, … , �� }.  

To find the estimate of parameter �� by ML maximizes the log-likelihood function 

 

 

(23) 

Notice that estimation of the UBM parameters is similar to the estimate of the Speaker model. For 

GMM training it is not necessary to use a high number of Gaussian mixtures at the beginning, but 

the number can be increased stepwise. The EM algorithm uses a log-likelihood function instead as 

an auxiliary function Q. Let us state a function Q which is defined as 

 

 
(24) 

for (�, �) and for the case of �(�, ��) it is defined as 

 

 
(25) 

Than we can express  

 

 
(26) 

 

The equation implies that if we select new parameters �� by replacing the previous parameters �, and 

a function Q increases simultaneously, then we obtain an increasing logarithm of the probability of 

log-likelihood function too. In other words, if we use “better” parameters for Q we obtain better 

parameters for model �(�|�). The solution of the EM algorithm then follows equations 2.44 - 2.45. 

A derivation of the function can be found in [MUL99] or in [PSU06]. 
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General solution. Based on previous equations 2.41 - 2.43 we can derive general solution of 

statistical model parameter estimation using EM algorithm: 

1. Initiate start parameter values 

 

2. Calculate the expectation over all values of y and over all observations xn 

 

 
(27) 

3. Select the parameters set �∗ from all of possible values of parameters sets ��, for which a 

maximization of a function Q occurs 

 
 

(28) 

4. Set up new parameter values 

 

5. Go to the step 2 and repeat the algorithm. 

 

In case of GMM we can express 

 

 

(29) 

and 

 
 (30) 

 

Note that the variable y is an index of particular Gaussian. 

 

Particular solution, GMM. Based on equations (27) - (30) the EM algorithm for GMM parameters 

estimation can be derived. The aim of the training step in GMM-UBM modelling is to estimate the 

parameters of the GMM �, which in some sense best matches the distribution of the training feature 

vectors [DEH09]. The parameters can be obtained iteratively using EM algorithm so that 

 
 (31) 

 

Let us suppose we have parameters of the UBM model. Now we have to estimate parameters of a 

new speaker. First, we initiate the start parameter values by known parameters of UBM model 
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Then the equation (29) is used and new parameters are calculated as follows [REY95]. For each 

updated GMM �� of the y-th Gaussian component the mixture weights ��	���� are defined as 

 

 
(32) 

means	��	����������⃗ as 

 

 

(33) 

and variances 	�� 	���� as 

 

 
 

(34) 

The mixture index y varies from 1 to C, 	��
����, ��, and	��  refer to elements of the particular 

vectors	Σ�⃗� , ���⃗�, and	���⃗� . The iteration of EM algorithm is repeated until some convergence threshold 

is reached, i.e. a significant change in parameters occurs. Notice an article [CHU12] describes the 

use of the so-called FBEM algorithm based on the EM algorithm used for bird classification.  

3.4.10 JFA 

The Joint Factor Analysis (JFA) was introduced by [KEN07]. It operates with a so-called GMM 

supervector, which is defined by concatenating the mean vectors associated with individual 

Gaussians in the GMM of the particular speaker S. The supervector distribution is assumed to be 

Gaussian [KEN07]. The JFA reduces the dimension of used supervector, which leads to a decrease 

of training data sources needed for modelling. In the GMM approach each speaker is represented by 

a model � composed by M Gaussians, each consists of weight w, mean vector � and diagonal matrix 

�. Contrary to GMM-UBM, which uses data with no differences between speaker and channel, JFA 

decomposes data in order to discover channel effects and the speaker identity component. It combines 

both eigenvoice adaptation and eigenchannel adaptation for modelling speaker- and channel- 

variability, respectively.  The JFA assumes that GMM supervector can be decomposed into a sum of 

supervectors 

 
 (35) 

where S is a supervector dependent on the speaker and C is supervector dependent on the channel. 

In context of GMM the supervector S can be expressed as  

 

where m corresponds to supervector constructed by concatenating the UBM means, V matrix 

represents the eigenvectors of between-speaker covariance matrix, and vector y is the channel 

independent speaker component. The supervector C depends on a channel and can be expressed as 
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where U matrix represents the eigenvectors of (channel) within–speaker covariance matrix, and 

vector x describes the channel component of given supervector. The result equation can be written 

as 

 
 (36) 

where the upper indexes “S” and “H” denote speaker and record identifier, respectively, and matrix 

D and vector z represent characteristics of some additional noise.  

The idea is based on finding speaker- and channel- dependent correlations among the data. JFA 

significantly reduces the supervector dimension, see [KEN07] or [DEH09]. 

3.4.11 i-Vector 

Another advanced technique reducing the dimension of the supervector is the so called i-vector 

described in [DEH09], [SEN10]. Dehak found that separation of channel and speaker dependent data 

is partailly successful. He proved that a large amount of data with high channel and speaker 

variability can give similar results as by using JFA. He modelled the GMM supervector as follows 

 
 (37) 

where m is a high-dimensional speaker- and channel-independent supervector which can be 

estimated using UBM. The rectangular matrix T is called the Total Variability Matrix. It is estimated 

by the EM algorithm using a high amount of speech data containing both speaker- and channel-

variabilities. The low-dimensional vector w is denoted the identity vector (so called i-vector) that 

depends on the speaker as well as on the channel of given speech recording. The matrix T is estimated 

on a large population of development data and once estimated it remains unchanged. We only have 

to calculate the w vector. However, computation of the T matrix is difficult and sources demanding, 

so simplification approaches are still under research; see for example [GLE11] or [DEH11]. 

For detail description of both the PLDA, and a Tool used in our experiments, see section 4.3. 

3.5 Feature extraction 

Feature vectors for particular segments are described as 

 
 (38) 

The variable T is a number of samples of particular speech. Clearly, T depends on length of the 

speech and number of windows (which depend on the window width and the overlap). Every 

feature vector consists of D parameters 

 
 

… 

 

(39) 

 

where D denotes their total number. Figure 3.27 illustrates basic framework for feature vector 

extraction and feature vector origination. 

,S H S   M Vy m Ux Dz

, M m Tw
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Mel-Frequency Cepstral Coefficients (MFCC), Linear Prediction Coding (LPC) [DEH09], and 

Perceptual Linear Predictive (PLP) analyses are the most important methods used for speech 

parameterization [BIM04].  

 

Figure 3.27: Parameter extraction and feature vectors origination. 

3.5.1 Vocal tract model, cepstral coefficients 

From the anatomical point of view, the vocal tract of a passerine is similar to humans, see section 

3.1.3.  Human vocal tract is shown in Figure 3.28. When air flows from the lungs the glottis stays 

open during breathing, and during speech production it is being opened and closed while it vibrates. 

The air flows through the vocal cord causing oscillation and producing sound. The vocal fundamental 

frequency F0 is based on these vibrations. When creating the voiced vowels the glottis is nearly 

closed. When the voiced consonants are produced the glottis is not closed so tight causing the sound 

of non-periodical (tonal, pure) character. When creating unvoiced sounds the vocal cords are almost 

open and the sound is created by modification of the air stream in the cavities. 

 

Figure 3.28: Human vocal tract. 

For a detailed description of the vocal tract a voice model was created using an equivalent circuit 

diagram. Since the real process of vocalization is very complicated, a so called stationary model was 

used for both human and bird voices. The voice producing process is divided into time frames. If the 

length of the frames is short enough we may presume that the vocal tract is in a stationary state within 
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the frame. Each of the states is described in detail, then the voice producing process can be described 

as the sequence of these stationary states and the process transforms into quasi-stationary. 

The aim of the modelling is to define the length of these time frames. For human voice it is usually 

about 30 ms. It is difficult to set a standard values for birds, see chapter 5.4. 

A circuit diagram of the vocal tract is shown in Figure 3.29. Two generators are connected to the 

circuit to process sound. Pulse generator is dedicated for voiced sounds and white noise source for 

unvoiced. 

 

Figure 3.29: Vocal tract, equivalent circuit diagram. 

After simplification, the whole process can be replaced by the source signal x(t) passing through the 

system with impulse response h(t), as shown in Figure 3.30 

 

 

Figure 3.30: Vocal tract, simplification. 

Human speech is then modelled by convolution of the excitation signal x(t) and the vocal tract with 

the impulse response h(t). This is used for speech synthesis purposes as well as for finding the speaker 

voice characteristics. In this thesis, the same approach is used to obtain bird vocal characteristics. 

Speech dependence on time can be described as a convolution of two signals 

 
 (40) 

and for a discrete signal 

 
 (41) 

In a frequency domain the convolution transforms into multiplication and we obtain 

 
 (42) 

and if Z-transform is used then 

( ) ( ) ( ),x t h t s t 

( ) ( ) ( ).x n h n s n 

( ) ( ) ( ),X f H f S f 
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 (43) 

To obtain vocal characteristics it is necessary to perform deconvolution, Figure 3.31. 

 

 

Figure 3.31: Deconvolution. 

The real cepstrum is defined as the Inverse Discrete Fourier transform (IDFT) of the logarithm of the 

amplitude signal spectrum. For the n-th cepstral coefficient c(n) is applicable  

 

 
(44) 

 

where S [k] is a signal spectrum of the discrete signal. We use the real cepstrum because c(n)=c(-

n)(even function).  So the real particular cepstral coefficients (speech, excitation and impulse 

response) can be expressed as 

 
 

(45) 

 
 

(46) 

 
 

(47) 

 

For automatic recognition it is necessary to obtain parameters x(n) and h(n) separately. It is assumed 

that the speech signal is given by the convolution of two input signals, then for the cepstral coefficient 

applies: 

 
 

(48) 

 
 (49) 

 

Equation 2.13 transforms into a sum of coefficients. In practice, separation is achieved by a so-called 

liftering. The lower coefficients represent the spectral envelope, i.e. the vocal tract, the higher are the 

excitation coefficients. Typically, for SR tasks about 20 cepstral coefficients are used. Notice that 

the MFCC algorithm uses the discrete cosine transform (DCT) instead of the Inverse Fourier 

transformation, see section 3.5.4. 

3.5.2 Hamming window 

The most commonly used window is Hamming or Hanning window. Both windows taper the original 

signal on the sides and thus reduce the side-effects [BIM04]. The Hamming window reduces leakage 

in the spectrum due to its side-effects. It is defined as 
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where 0 ≤ � ≤ (� − 1), and  N indicates the number of samples in length windows. 

 

   

Figure 3.32: Hamming window a) Time domain, b) Frequency.  

The length of the window is chosen so that the signal can be considered quasi-stationary. For the 

speech signal a Hamming window of length 30 ms with steps of 15 ms is usually used.  

3.5.3 Pre-emphasis 

During the progression of sound through the articulatory organs higher frequencies are normally 

suppressed. This suppression is compensated by the application of a first-order filter, which amplifies 

the higher frequency components. For modulating the filter shape 

  
 (51) 

   

where a is a predefined pre-emphasis coefficient. In discrete domain then 

 
 (52) 

   

Pre-emphasis coefficients are usually chosen in the interval from 0.95 to 0.99 [BIM04]. 

3.5.4 Mel frequency cepstral coefficients 

Mel Frequency Cepstral Coefficients (MFCC) are often used for speaker recognition systems. In this 

case, a sliding window is used to divide the speech into short segments. Each signal segment is then 

pre-emphasised. Next, the Mel-frequency filter is applied to better adapt signal to human hearing. 

Due to logarithmic calculation the multiplication of spectrum changes to addition. Finally, by 

application of the Discrete Cosine Transform (DCT), cepstral coefficients are obtained. The cepstrum 

is the so-called Mel-frequency cepstrum because a Mel-frequency filter is used within the process. 
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Figure 3.33: Mel-frequency cepstral coefficients computing, data diagram. 

The Mel-filter bank is adapted to human hearing. We designed a new so-called Bird Adapted Filter 

distribution (BAF) tailored to the bird’s song. In our experiments, we also used linearly distributed 

filters. So we compared results from the three filtering structure: BAF, Mel, and Linear. See section 

8. for details. 

3.5.4.1 Mel filter bank.  

It was empirically found that the human ear perceives frequency sound intensity signals with 

dependence on the frequency. Therefore, in applications of automatic speech recognition it is 

desirable to adjust the signal so that its distribution is near to the hearing. Mel filter banks are used 

for this correction. They convert the frequency f [Hz] into a so-called frequency fMEL [mel] which is 

based on human hearing. The conversion between f and fMEL is defined by the relationship 

 

 
(53) 

Figure 3.34 shows the behaviour of the function. 

 

Figure 3.34: Characteristic Mel-frequency [mel] and frequency [f] domains. 

For the reversed conversion the following relationship is valid 

 

 
(54) 

Mel filter banks are realized by a set of M bands. For instance, if the bandwidth is 4 kHz 20 banks 

are usually used. These filters have triangular shapes with bands overlapping by half, and they are 

distributed non-linearly in the frequency domain as depicted in Figure 3.35. 
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Figure 3.35: Mel filter bank. 

The use of triangular overlapping filters helps to modify the magnitude of the spectrum with respect 

to human hearing. 

3.5.4.2 Linear filter bank. 

A linear filter bank distribution is demonstrated on Figure 3.36. 

 

Figure 3.36.: Linear filter bank. 

3.5.5 Perceptual Linear Predictive analysis 

Perceptual Linear Predictive (PLP) method was introduced by [HER90]. It implicates three concepts 

based on the psychophysics of hearing to derive to an estimate of the auditory spectrum. The critical-

band spectral resolution, the equal-loudness curve, and the intensity-loudness power law [HER90]. 
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Unlike the Linear predictive analysis (LP), PLP analysis takes basic characteristics of human hearing 

into consideration, namely non-linear hearing, sound masking, and aural range. 

The block diagram of PLP is shown in Figure 3.37. Now will be described each step  involved in 

PLP speech analysis. 

 

Figure 3.37: Block diagram of PLP speech analysis. 

Spectral analysis. The signal is weighted by Hamming window. The Discrete Fourier Transform is 

then used to transform the signal (speech, song) segment into the frequency domain. Finally, a short-

term power spectrum is calculated from the spectrum �(� )of the segment 

 
 

(55) 

Critical Band. The PLP warps the spectrum �(� ) from frequency � 	���/�	into barks Ω(� ) by 

 

 

(56) 

where the angular frequency � = 2��	���/�. The resulting warped power spectrum is then 

convolved with the power spectrum of the simulated critical-band masking curve Ψ (Ω). The critical-

band curve is given by  

 

which is an approximation to the asymmetric masking curve. The filter band is cut off at -40 dB. 

Following discrete convolution of Ψ (Ω) and �(� ) gives 

 

 
(57) 

The convolution significantly reduces the spectral resolution of �(Ω) in comparison with the 

original �(� ). 

Equal-loudness pre-emphasis. The sampled �� (ω ) is pre-emphasized by the simulated equal-

loudness curve 

 
 (58) 

Function �(� ) is an approximation of the ear hearing different frequencies at different levels. Such 

approximations are known as the equal-loudness contours (Fletcher–Munson curves, Robinson–
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Dadson ISO 226).  An example of �(� ) for the level 40 Phon derived from equal-loudness contours 

[PSU06] is 

 

 
(59) 

where K is a parameter which normalizes to an equal loudness of 0 dB. 

Intensity-loudness power law. This power law is an approximation of the hearing law, which defines 

relationship between the intensity of sound and the perceived loudness and is the cubic-root 

compression of the pre-emphasized signal 

 
 

(60) 

This operation also reduces the spectral-amplitude variation of the critical-band spectrum so that the 

following all-pole modelling can be done with a relatively low model order [HER90]. 

Autoregressive modelling. The function Φ (Ω)	 is approximated by spectrum of an all-pole model. It 

uses autocorrelation method of all-pole spectral modelling using the Inverse Fourier Transform 

(IDFT) [HER90]. 

Weighted spectral summation. The passage of short-term spectrum through the m-th critical band 

filter can be formulated as  

 

 
(61) 

The sum limits � ��	and � �� 	are calculated as � �� = 1200�sinh	((Ω� − 2.5)/6)	 and � �� =

1200�sinh	((Ω� + 1.3)/6)	respectively. 

For detail derivation of auto-correlation function see [PSU06]. It is obvious that using PLP to analyse 

bird songs is limited by the impossibility to set up accurate parameters of a bird’s  hearing. In contrary 

to research on human hearing it is not possible to conduct an experiment where the test object (i.e. a 

bird individual) cooperates with the inquirer. Some sources bring basic knowledge of bird masking 

and hearing, see [CAT08], [MAR04]. That information is based on research of bird hearing 

concerning anatomy, impedance measurement, autopsy, and laboratory experiments. Other facts are 

based on reasonable presumptions. For example, [MAR04] says that bird has to hear what he sings.  

3.5.6 Linear prediction cepstral coefficients 

Linear prediction coding (LPC) predicts speaker parameters directly from a speech signal. The main 

stages of LPC calculation are shown in the Figure 3.38. 

 

 

Figure 3.38: LPC coefficients calculation stages [BIM04]. 
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The principle of LPC is computation of an s(n) sample of a voice as a linear combination of previous 

samples with excitation u(k) enhanced with the gain G, so 

 

 
(62) 

where G is the gain coefficient and Q is the order of the model. Transfer function H(z) can then be 

written as 

 

 
(63) 

where H(z) is defined as 

 

 

(64) 

Figure 3.39 shows the block diagram of cepstral coefficient extraction. The signal has to be weighted 

by a window short enough to be considered approximately stationary. This can be used to determine 

the parameters ai and G using the method of least squares. 

 

 

Figure 3.39: LPC, cepstral coefficients. 
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4 Development Framework 

The experimental framework was developed from the scratch, and it consists of Matlab procedures 

and functions (Mathworks Inc. 2010) as well as C++ modules. The author programmed the Matlab 

work as well as the Experiment Manager module see detail in section 4.1. My colleagues from 

Faculty of applied science implemented a SV tool programmed in C++ see detail in section 4.2. 

Main framework modules are: 

1. Experiment manager. The experiment process is fully automated. The user can start any 

number of experiments in one sitting. Parameters are set up individually for each experiment 

and is implemented in Matlab. 

 

2. Recording classification. The manager creates lists of files: gmm training, ubm training, and 

testing. It also generates the list of trials. The lists are clustered into so-called data sets. The 

process is fully automated with advanced features, i.e. file sequential or random sorting, file 

selecting, etc., all implemented in Matlab. 

 

3. Feature extraction. Extraction algorithms are implemented in Matlab as well as in SV tool. 

 

4. Support modules. New modules implemented in this work are VAD, BAF, and Data 

merging. All are implemented in Matlab, and the VAD is implemented in SV tool. 

 

5. Model estimation. GMM/EM module, the MAP adaptation module, and score calibration 

algorithms are implemented in SV tool. 

 

6. Verification. Decision algorithms are implemented in SV tool. 

 

7. Experiment evaluation. Resulting statistics and EER calculation are obtained. Evaluation is 

automatically processed and linked with data sets along with experimental parameters, all 

implemented in Matlab. 

 

All experiments described in this thesis were processed using these modules. 

4.1 Matlab 

The experimenter set up both the data and parameters for the required experiments, and he or she 

starts up the experiment manager module. Then the framework operates automatically.  Compared 

to the common methods (requiring data manual handling, visual check, software manual control, 

manual parameter setting, etc.) the system is very effective. 

4.1.1 Experiment manager 

See Figure 4.5 for the block diagram of the experiment modules flow. The experiments are controlled 

by the so-called experiment manager module which is able to automatically perform up to 999 
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sequential experiments. Notice we do not use parallel experiment performance because we do not 

have a particular Matlab license. 

 
 

Figure 4.1: Experiment manager, block diagram. 

Both the parameters and input data are defined independently of each experiment. Moreover, an 

experiment can use the data parametrized by a previous experiment to save computing time. For the 

relationships between experiment set up, result, parameters, and data see Figure 4.2. 

 

Figure 4.2: Experiment entities relationship. 

The experiment setup is defined by an experiment parameters definition Excel sheet, see Figure 4.3. 

Each row contains specific parameters for an experiment as well as a link to the particular data set. 

The Excel data are uploaded automatically into the Matlab during experiments initialization. 

 



50 
 _______________________________________________________________________________  

  

 
Figure 4.3: Experiment parameters definition. 

4.1.2 Recording classification, data set 

First, it is necessary to sort the data (i.e. recordings). An ornithologist usually provides the data with 

specific names due the bird identification. For instance, one of the origin file names may be:  

PC1107-110613-MZ000011.wav. The name, thus, consists of the following tags: 

 PC… Phylloscopus collybita (chiffchaff) 

 1107…bird id, 

 110613…ring id, 

 MZ000011…recording number, ornithology’s internal counting of recordings. 

However, it is not necessary to keep information about the bird_id and ring_id in our experiments. 

Therefore, we usually use simplified names. For instance, the file mentioned above was renamed to 

G09_005.wav, which implies: 

 G…bird id, 

 09…recording id, 

 005…song id.  

Notice, not all experiments need a song id information; therefore, we use a simplified name G09.wav.  

Four experiment file lists are prepared after data sorting and recording name unification. The list 

consists of the names of the files; thus, it defines which recording belong to the particular step 

(training, test, etc.). Each experiment needs a file list for the following steps:  

 Ubm 

UBM model estimation 

 

 Training 

GMM model(s) estimation. Sometimes we call the bird(s), to whom the recordings belong, 

target bird(s). 

 

 Testing 

Identification/Verification process (for differences between identification and verification 
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see Figure 5.4). Includes an unknown bird(s) recordings to be identified. It also usually 

includes the recordings of a target bird to calibrate the system, however different recordings 

has to be used than for the GMM model estimation. 

 

 Trials 

Pair of GMM and Testing recordings. 

 

In summary four lists of files have to be prepared: filelist_ubm, filelist_test, filelist_train, trials. 

These lists are clustered into one so-called data set. The classifying of records into the file lists as 

well as into the data set is fully automated with advanced features, i.e. file sequential or random 

choice, selection based on the song or recording number, sorting, validation check etc. The 

functionality is implemented in Matlab. A user defines the file matching conditions in an Excel sheet 

(see Figure 4.4) and then the recording classification module performs the files assignment 

automatically. 

 
Figure 4.4: File lists definition parameters. 

Finally, the experiment setup is linked to the data sets with relationship 1:N, see Figure 4.2, so we 
can use the same data repeatedly. 

4.1.3 Feature extraction 

This Matlab module provides the feature extraction just as is described into the chapter 2. The 
operator defines feature extraction parameters (windows length, shift, type, etc.), chooses from many 
optional functions (VAD, BAF, etc.), and selects settings (for instance FFT length) by the parameters 
defined in the Excel sheet (see Figure 4.3.). 
 

 

Figure 4.5: Feature extraction, block diagram. 

From the global point of view the experiment process consists of the three loops: Experiment, File, 

and Feature extraction. The relations among loops demonstrates Figure 4.5. 
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4.1.4 Support modules 

An additional functionality was implemented (VAD, BAF, Data merging, MEL filters overlap, etc.). 
Its setting and activation is defined by the parameters definition Excel sheet (see Figure 4.3.). 

4.1.5 Model estimation 

The module provides the GMM/EM, the MAP adaptation, and score calibration algorithms just as is 
described in chapter 2. 

4.1.6 Verification and identification 

The module provides the verification just as is described in section 5.3. and the second chapter. 

4.1.7 Experiment evaluation 

The experiment(s) result is saved into an Excel file. The result gives EER, FR, FA, and other values 
like number of true and false trials, see Figure 4.6. The DET curve draw is optional based on the 
experiment setting. Based on our experiences we also save the crucial parameters into the Excel 
because of easiest evaluation. 
 

 

Figure 4.6: An Excel file result. 

4.2 Speaker verification tool 

Aleš Padrta, Jan Vaněk, and Lukáš Machlica from the Department of Cybernetics, Faculty of Applied 

Sciences in Pilsen developed a Speaker Verification tool written in C++. The tool can perform whole 

SV process. The next chapters describe the whole tool’s functionality; however, we use just some 

modules in our experiments, see chapter 0 Introduction.  

4.2.1 Flow diagram 

The SV task is divided into four stages: 

1. PRM. Parameterization of all input files. 

2. UBM. Creation of an UBM model. 

3. GMM. Adaptation of UBM/GMM models. 

4. VERIFY. Test phase of a speaker verification task. 
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The following Figure 4.7. demonstrates the SV tool flow diagram. 

 

 

Figure 4.7: Function of SV tool, flow diagram. 

In the first stage the corresponding parameters are extracted for every input *.wav file. These 

parameters are saved into *.prm files. In the next stage, a model of UBM (ModelUBM) is computed 

and saved as a bg.gmm file. Then follows an UBM/GMM model adaptation based on the incoming 

data. At the last stage, named verification, defined pairs of songs are tested. The matching probability 

is computed for every couple and the results are written into result.txt. 

4.2.2 Input and output data 

Table 4 summarizes the input and output data of all process stages. The recorded *.wav files, listed 

in configuration files, are entered into the parameterization PRM stage. Further stages use data 

created here, and finally the last stage, verify, writes results into the results.txt file.  

Process Input 

directory 

Input 

files 

Output 

directory 

Output 

files 

PRM WAV\ *.wav UBM_DIR\ 

GMM_DIR\ 

TEST_DIR\ 

*.prm 

UBM PRM\UBM_DIR\ *.prm UBM\ bg.gmm 

GMM PRM\GMM_DIR\ *.prm models\ *.gmm 
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VERIFY PRM\TEST_DIR\ *.prm VERIFY\ result.txt 

Table 4: Speaker verification tool, inputs and outputs 

The described directory structure was designed to make data storage and manipulation easiest 

possible. 

4.2.3 Results 

The SV tool computes the probability of song/speech pair similarity. The probabilities are written 

into the file results.txt. Table 5 shows the SV tool output data. In the first column, result.txt 

probabilities are copied from the result.txt file. In the second column, couples of tested songs are 

placed, where the letter represents a bird individual while the number labels particular bird record. 

The last column describes the decision made by the supposed threshold Θ=0. If the result value is 

lower than threshold Θ, the result is rejected and vice versa. In this case, the threshold is Θ=0, 

however, the threshold value may differ for every particular task. 

Trial 
Calculated 

score 

Result 

action 

Correct 

result? 

A01-B01 -2.177158 reject yes 

A01-A21 0.49978 accept yes 

A02-A07 2.836717 accept yes 

A02-A22 1.461095 accept yes 

A01-B06 -2.14189 reject yes 

A01-A22 -0.012654 reject Error: False reject 

A02-B08 -3.909118 reject yes 

A02-D03 0.328327 accept Error: False accept 

A01-C07 -4.295674 reject yes 

A01-A04 4.007644 accept yes 

Table 5: Output file results.txt example. 

4.2.4 Using the SV tool 

The SV tool does not require an installation. It is ready for both 32-bit and 64-bit OS. The system is 

running on Windows Vista and Windows 7. Before starting the application, it is necessary to set 

up configuration parameters and to determine the input files. For details see Table 6.  The SV tool 

runs in CMD (Window Command Line). The program continuously prompts its status as well as the 

progress of the current operation.  
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File Assignment 

Param_KW.ini Set up the parameters of feature vectors extraction. 

For instance length of window, overlapping, number of MFCC 

parameters, switch on/off the pre-emphasis, etc. 

filelist_test 

 

List of *.wav files for testing.  

The files will be compared with trained speaker/bird (Target) 

during Verify/Test stage. 

filelist_train 

 

List of *.wav files for GMM model. 

The files will be compared with trained speaker/bird (Target) 

during Verify/Test stage. 

filelist_ubm List of *.wav files for UBM model.  

Model_KWGMM.ini Set up the parameters for an UBM model creating process. 

For instance Number of Gaussians, etc. 

Model_ADAPT.ini Set up the parameters for a GMM model creating process. 

For instance type of adapting (MAP, MLLR,…) , etc. 

Verify.ini Set up the parameters for verification (test). 

For instance Threshold, format of results written in results.txt, etc. 

Trials.ndx List of testing pairs. 

The final probability is computed for each trial and saved into 

results.txt file. 

Results.txt List of computed probabilities for each trial. 

Table 6: SV tool, configuration of the bird verification. 

4.3 iVector tool 

We used an iVector tool in our experiments developed by Jan Vaněk, Lukáš Machlica, and Zbyněk 
Zajíc from the Department of Cybernetics, Faculty of Applied Sciences in Pilsen.  The tool was 
written in C++, similarly as the SV tool. 
A speaker is represented by a supervector of accumulated statistics of speaker’s data with respect to 

the Universal Background Model (UBM). The Factor Analysis (FA) decomposition is used to reduce 

the huge dimensionality of the supervector to a low dimensionality space vector – iVector. An 

iVector could be a final representation of the speaker; otherwise, it is further processed by the 

Probabilistic Linear Discriminant Analysis (PLDA) model to maximize the ratio of between- to 

within-class covariance in order to increase separability of given classes. For a block diagram of the 

iVectors process, see Figure 4.8. 
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Figure 4.8: A block diagram of the Identity Vectors process. 

 

The training of both the FA decomposition and PLDA model requires a huge amount of data. 

Although ornithologists usually record a few hundreds or thousands of songs, FA and PLDA training 

requires millions or much more recordings. Moreover, the records have to be precisely annotated 

(species, individuals). Due to the lack of bird recordings the system was trained by the speech 

recordings. 
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5 Bird individual identification using as-is recordings  

5.1 Introduction 

A presented research differs from mentioned works, where identification run on the close set 

[CLE05], [FOX08], songs or syllables have been extracted, or records have been be pre-processed 

[TRA05], [CHE10], [BUD14], or even as-is recordings are used but for the species recognition 

[POT14], [VEN15]. [XIA11] deals with bird individual identification based on ANN and 

spectrographic cross-correlation. They generated spectrograms and measured some variables in 

Avisoft-SASLab software. Petruskova et. al [PET16] provided acoustic monitoring based on syllable 

repertoire. They proved it could be more efficient for individual recognition than colour ringing (for 

some species). They distinct elements of particular syllable types by visually checking of 

spectrograms in SW Avisoft. By contrast in the current work an advanced adaptive VAD is 

introduced. By this as-is recordings can be used independently on both its quality and length. Further, 

the system works on the open set (the number of birds is not known beforehand, a new individual 

may appear anytime). We realize that the introduced method cannot fully replace standard methods 

for bird identification (ringing, DNA) nowadays. However, it can be used alone if an absolute 

identification is not required, or as a support tool for these methods. 

Although the GMM method was used in some previous works [CHE10], [GRA11] it meets the real 

condition requirements in this work thanks to the implementation of both an UBM and the VAD. To 

our knowledge this is the first application of individual identification of birds on the open set by 

processing raw recordings, fully-automated and without pre-processing.  

The aims of this research are as follows: 

 To demonstrate the feasibility of using the GMM-UBM with an advanced VAD algorithm 

for bird individuals identification in real conditions on the open set. 

 To determine whether using as-is records without any pre-processing can give a reasonable 

accuracy. 

We begin by introducing the recorded data and a description of the goal of the experiment followed 

by a description of the system from both the theoretical point of view and the system implemented. 

Then the experiment evaluation is described including error type and accuracy calculation. We end 

with a discourse on the results and open questions. 

5.2 Bird song data  

5.2.1 Chiffchaff 

With estimated population of 90-180 mil. Individuals, chiffchaff (Phylloscopus collybita) belongs to 

most common European songbird species, see . It is a migrating bird wintering in Mediterranean and 

North Africa. It is small, (c. a. 8 g), inconspicuous but very vocal species with a distinct song. Males 

are territorial and defend their territory vigorously. They start to advertise their territories by singing 

soon after the spring migration at the end of March and beginning of April and continue to sing over 

the breeding season. The song of the chiffchaff is simple consisting of varying number of 

rhythmically repeated syllables transcribed as “chiff” and “chaff” (see Figure 5.2). Nevertheless, 
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each male can have over 10 different syllables in its repertoire that can be organized into “song types” 

(specific groups of syllables occurring together within a song).  

 

Figure 5.1.: Chiffchaff (Phylloscopus collybita). © Kristyna Felendova. 

According to our recordings the Chiffchaff sings, on average, 7.3 songs per minute. The average 

length of the song is approximately 12 syllables, equal to approximately 4 s [LIN12b]. The average 

syllable duration is 117 ms and the average inter-syllable interval is 234 ms [LIN13]. The band-width 

of the chiffchaff song lies between 2.5 and 7 kHz with most of sound energy concentrated around 

4350 Hz [LIN12b].   

 

Figure 5.2: Single song of a chiffchaff male with the “chiff“ and “chaff“ syllable type examples highlighted. 

5.2.2 Recording 

We recorded males at a former military training area in close proximity to Ceske Budejovice 

(100,000 inhabitants), South Bohemia, Czech Republic. The area stretches over 1 km
2
 and consists 

of wooded marshland with ponds and stands of willow (Salix spp), birch (Betula spp), and aspen 

(Populus spp) trees, and some old oak (Quercus spp) avenues. At the edges of the area considerable 

traffic noise comes from the two busy roads which pass the territory. Chiffchaffs have optimal 

conditions here resulting in relatively high breeding densities. Each year, about 70-90 breeding pairs 

can be found in this area [LIN12b]. Rather than aiming for high quality recordings, we followed the 

recording procedure that could be easily applied at large scales by professional or amateur 
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ornithologists. We recorded 13 males between the 3rd and 30th of June, 2011. Songs were recorded 

over a considerable, two-day time span in order to have the individuals recorded with various 

background soundscapes (e.g. traffic noise, other birds singing, leaf rustling, etc.). We followed each 

focal male over four hours from 6:00 am to 10:00 am on one day and also for half an hour from 5:30 

am to 6:00 am on the next day. We always tried to get as close as possible to the singing male, but 

the distance varied depending on the males’ boldness and the habitat structure (e.g. tree height).  

Recordings were made using Marantz PMD 660 solid state recorder and Sennheiser ME67 

directional microphone equipped with the Rycote Softie windshield and sampled at 16 bit and 44.1 

kHz. The recordings were down-sampled to 22.05 kHz before processing. We usually recorded 

within a distance of 5-15 meters from the singing male with no obstacles between the male and the 

microphone. Recorded material is summarized in Table 7. 

Bird ID 
Recording 
number 

Recording 
quality 
(Poor, 

Average, 
Good) 

Total 
length 
[min] 

Min 
number 
of songs 
in one 

recording 

Max 
number 
of songs 
in one 

recording 

Total 
number 
of songs 

Average 
number 
of songs 
per one 
minute 

of 
recording 

A 12 G 50 13 89 487 10 

B 4 P 26 37 125 329 13 

C 12 A 43 4 48 332 8 

D 10 A 38 3 39 226 6 

E 9 P 39 10 70 170 4 

F 22 G 108 3 90 788 7 

G 11 G 80 22 103 546 7 

H 13 P 68 7 99 599 9 

I 8 A 99 6 200 713 7 

J 9 P 48 7 63 304 6 

K 4 G 22 3 52 98 5 

L 9 A 43 6 88 293 7 

M 4 G 37 24 115 221 6 

Sum 127  698 - - 5096 - 

Avg 41860  53.7 41681 90.8 392.0 41705 

Table 7:  The Chiffchaff recording. The rating of quality is an aggregate value based on the subjective 

opinion of the operators based on coefficients: noise, masking by other birds, distance, and song clearness. 

5.2.3 Recording quality 

Besides the singing of a target bird, the recordings used contain many other unwanted sounds, as 

commonly found in nature, for instance:  anthropogenic traffic noise: coming from neighbouring 

roads and urban areas; sounds of animals and other bird species: e.g. barking, meowing, calling and 

singing of other bird species; different chiffchaff individuals: can mask the song of the target bird; 

variable volume of singing: the level varies with the distance to the targeted male, with position (e.g. 

head turning) and with barriers; background noise: wood cracking when the ornithologist moves, leaf 

rustling, ornithologist’s spoken commentaries, etc.  
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Because our recordings were obtained during a long period (almost one month) the amount of the 

abovementioned unwanted sounds and noise naturally differs record by record. 

Previously described unwanted sounds contained in the recorded songs are common to the majority 

of field recordings. Therefore, the song and syllables are usually cut off from the recordings before 

use in experiments to eliminate most of the mentioned disturbances, and/or visual check is required 

[KOG98], [POT14], [VEN15]. 

The Figure 5.3 shows a spectrogram of a recording used in the experiment. It demonstrates the as-is 

quality, just as they were recorded by the ornithologists. 
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Figure 5.3: Spectrogram of real recording used for the experiments without any pre-processing (cut off songs, 

de-noising, etc.). The Chiffchaff song is masked by another male, different species, wind blowing noise, 

continuous traffic noise, etc. 

5.3 Task definition 

Based on the [BIM04] the task of bird (or speaker) recognition can be split into bird verification and 

identification. The technical solution depends whether the set of the individuals is open or closed. In 

the case of the Closed set, the unknown bird is assigned just to one of the trained GMM models 

where each represents a known bird. In the Open set, any number of new birds (without 
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corresponding trained GMM models) may appear anytime during the process. So, there is possibility 

that the unknown bird is a new one for which a GMM model does not exist.  

Identification.  In the identification scenario a set of reference birds with known identities is given. 

In the closed set, only one from the set of known individuals is selected based on the highest 

likelihood. The trained model with highest score is chosen. In the open set, either one of the trained 

birds is selected or a decision is made to investigate a new bird. This occurs if the likelihood does 

not exceed a threshold for any of known models. In most cases, the threshold is set by the user, and 

its value reflects the penalization for making errors.  

Verification. The verification scenario is a one-to-one matching. Here, just one of the two decisions 

can be made: the bird either belongs to the compared model or not at all. As seen in Figure 5.4, the 

verification can be considered as a special case of identification on the open set where just one known 

bird is trained. Relating the identification on the open set, the unknown individual belongs to the one 

of known birds (models GMM 1 ÷ GMM 4) or to a new identity (UBM model). The model with 

highest likelihood is selected: any of the GMMs or UBM respectively. Verification, a one-to-one 

comparison, represented by just the one trial. Notice the similarity with identification which can be 

split into N trials. Basically � = � + 1 where n is a number of a trained birds, and one more trial is 

needed to calculate a new identity. In real experiment the N is much higher than n. 

Essentially the identification task consists of n verifications, so called trials where n is a number of 

trained birds. Total number of trials N is required to accuracy score calculation, see equation (67). 

        

Figure 5.4: Identification and verification. 

From the technical point of view, the processing of the closed set is easier than an open set, and it 

usually also gives better results. Using the closed set is usual for laboratory tests or in cases when 

the ornithologist can be sure of the number of singing birds. On the contrary, the open set reflects 

situations common in the nature. Obviously, it gives lower accuracy because it includes the 

uncertainty of a new individual appearance. 

The main problem of individual identification on the open set is recognizing a new singer. Although, 

GMM models of all singers are known and trained, a GMM model of a new individual is evidently 

unknown. Thus, it is essential to use the UBM because it represents a model of the background: 

unknown singers, background noise, channel influence, etc.  

5.4 System description 

The GMM-UBM method described here is adopted from the well-known Speaker Recognition task, 

which is ordinarily used in human speech, as well as in animal recognition research. The introduced 
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system is tailored for individual identification on the open set, even when using non pre-processed 

recordings. The system performs identification with a sequence of particular verification trials. It is 

decomposed into: Parametrization, Voice Activity Detection (VAD), Model estimation, UBM model 

training, GMM model training, and Identification/Verification. For whole process see Figure 3.21. 

An advanced VAD algorithm was designed and evaluated to ensure only the frames contain a song 

are using for the parametrization. As-is bird song recordings vary enormously in quality and therefore 

both short- and long-term energy parameters are estimated. A VAD’s decision (signal/noise) follows 

from adapting VAD to particular record quality. Figure 5.5 shows an outline of the VAD, and Figure 

5.6 demonstrates detection result on an as-is record. The global (whole recording) Signal-to-Noise 

Ratio (SNR) is firstly adapted from i-th frame SNR which follows from particular filters SNR 

estimations (so-called local estimations). The decision process is then adapted from both the frames- 

and the global- SNR estimations. This is crucial to balancing the global SNR to recording quality. A 

frame is labelled as a song if it’s Signal-to-Noise Ratio (SNR) is higher than an overall SNR. 

 

Figure 5.5: Outline of the VAD detector. 

 

Figure 5.6: Spectrogram of a recording and a result of VAD. See false songs detections at 0:14.7, 0:15.05 and 

a segment containing an ornithologist speech (from 0:17.2 to 0:18.0).  

VAD is based on detection of energies in both time (frame-by-frame) and frequency (filter outputs) 

domains while the result is given by their merging.  At first a noise level estimate aij for each 

frequency filter is included where i represents frame index and j is a frequency filter. This estimate 
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aij is independently adapted for each frame just when an actual signal energy xij is not higher than a 

relative threshold an empirical constant β. The adaptation is then realized by so-called exponential 

forgetting function as 

 
 

(65) 

where α is an empirical constant which controls dynamic of the adaptation. We discovered that α = 

0.94 and � = (2 ∙���) gives the best results for the bird records.  

Then the local SNRs (Signal to Noise Ratio) are estimated for i-th frame as a mean value of SNRs in 

each of the filter-banks as 

 

 

(66) 

where M is the number of filters.  

Finally the VAD decision process compares the SNR of i-th frame to a global SNR. The global SNR 

is represented by a mean value of local SNRs computed across the entire recording. A frame is 

marked as non-song if the SNR of j-th frame is lower than the global SNR and vice versa. For feature 

processing with inbuilt VAD see Figure 5.7. 

 

 

Figure 5.7: Parametrization of the recordings. The output parameters are formed into feature vectors. 

5.5 Experiment evaluation 

As explained above the experiment was conducted under the content independent bird identification 

on the open set scenario. It was performed by a sequence of particular verification trials. The main 

advantage of this approach is that we get not only the overall accuracy but also the particular accuracy 

for each single model. Thus, the results can be better understood and explored in detail. 

For testing the system the three experiments were prepared. The recordings were randomly sorted 

into halves. The first experiment utilized the first halve, the second experiment used the rest. Finally, 

the third experiment used all of the records.  

It is crucial for each experiment to separate recordings into the three strictly distinguished sets:  

1. Training. The set is used for computing GMM model(s) of known bird(s).  

2. UBM. Used for computing the UBM model. Contains as many bird recordings as possible. 
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3. Testing. Contains unknown birds which validation is supposed to be tested. During the 

system design phase the set contains both unknown and trained bird records (notice, the 

particular recordings used in the Training set must not be used).  

After the three sets of recordings are prepared the testing trials must be matched. They consist of 

recording pairs where the first element is selected from the Training set, and the second from the 

Testing set. During trial performances the testing pairs are compared and the results are obtained. 

If there are, for instance, 20 records for the Training set, and 50 records for the Testing set (say, 40 

of them belong to unknown birds and 10 to trained), then N=1,000 trials are preformed (=20*50) 

where 200 are true trials (=20*10) and 800 are impostor trials (=20*40). For accuracy calculation 

see equation (5). 

We distinguish two types of error: False Acceptance (FA) and False Rejection (FR). The first type 

occurs when an unknown bird is evaluated as identical to the tested bird when, actually, they are 

different. The FR occurs when the identical birds are not recognized, see Figure 5.8. 

 

Figure 5.8: Two types of errors: False Acceptance and False Rejection. 

The total number of errors is the sum of both FR and FA. The accuracy ranges from 0% to 100% and 

it is calculated as  

 
�������� = �1 −

��� + ���

�
�∙100 (67) 

 

where N is the total number of trials, 
FAN  is the number of the FA, and 

FRN  is the number of FR. 

These errors depend on the choice of the verification threshold.  

5.5.1 Parameters  

At first, the suitable parameters were analysed. For example, Table 8 shows two of the parameters, 

Hamming window length and Shift Window iteration, used in this analysis. Each combination of 

Hamming window length and Shift Window parameters was tested by seven different randomly 

selected data-sets.  Because of high among of results rather than state concrete numbers the accuracy 

was categorized into groups: high (90-100%), mid (80-90%), low (70-80%), very low (<70%). The 

fifth parameter settings up was finally selected for its suitable ratio between accuracy and computer 

performance. 
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Other parameters were explored similarly. Table 9 gives the final parameters set up. 

Iteration 1 2 3 4 5 6 7 8 9 10 11 12 

Window 
length 
[ms] 

20 20 10 10 30 30 40 50 50 80 200 400 

Shift 
Window 

[ms] 

20 10 5 10 15 30 20 25 50 40 100 200 

Success 
rate 

high high low mid high mid high mid low low low very 
low 

Table 8: Parameter iteration example.  

 

Parameter Value 

Window type Hamming 

Window length 30 ms 

Window overlap 15 ms 

Scale of triangular filters  linear 

Number of filters 25 

Number of cepstral coefficients 20 

Compute zero coefficient logE yes 

High pass filter 2.5 kHz 

Low pass filter not used 

Delta coefficients yes 

VAD detector yes 

Preemphase 0.97 

Linear/MelFilter scale Linear 

Table 9: Parametrization set up values. 

 

The low-pass filter was set to 2.5 kHz because of the bandwidth of the chiffchaff song. The low-pass 

filter was not used. Since the delta coefficients were also extracted, the number of dimensions of 

feature vector was 40 (2 times number of cepstral coefficients). A linear distribution of filters was 

chosen as a basic approach. This is in accordance with experiments conducted in [GRA11], where 

no significant differences in the performance of an automatic bird recognition system were observed 

when utilizing linear and Mel scale.  

5.6 Results 

The main result of the experiments is given in Table 10 where 16,480 trials were performed. First 

two experiments used a different half of the data, in the third experiment, all available records were 

used. General accuracy of identification across all experiments is 78.5%.  

 Round 1 Round 2 Round 3 Overall 

# trials 3975 4265 8240 16480 
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# errors 754 1011 1782 3547 

general accuracy 81.0% 76.3% 78.4% 78.5% 

Table 10: General experiment result for all three experiments. 

The detailed result of the experiments is given in Table 11 and visualised in the graph, see Figure 

5.9. Each column of the table represents the identification accuracy which belongs to a particular 

bird. The highest variance between maximum and minimum accuracy belongs to the birds B, D, and 

E with 17.5%, 18.1%, and 20.8%, respectively. On the contrary, the birds A, C, F, G, I, J, and M 

have lowest variance from 0.3% (bird C) to 3.8% (bird G). The birds H, K, and L have variance 

11.3%, 7.7%, and 9.8%. 

 Bird A B C D E F G H I J K L M Overall 

Round 
1 

# trials 324 124 324 325 215 781 324 462 224 320 116 320 116 3975 

 # errors 76 35 66 70 35 147 14 81 48 65 19 81 17 754 

 Accuracy 76.5% 71.8% 79.6% 78.5% 83.7% 81.2% 95.7% 82.5% 78.6% 79.7% 83.6% 74.7% 85.3% 81.0% 

                

Round 
2 

# trials 438 130 324 310 415 616 432 420 284 310 138 310 138 4265 

 # errors 100 14 65 123 154 138 35 121 64 56 12 109 20 1011 

 Accuracy 77.2% 89.2% 79.9% 60.3% 62.9% 77.6% 91.9% 71.2% 77.5% 81.9% 91.3% 64.8% 85.5% 76.3% 

                

Round 
3 

# trials 762 254 648 635 630 1397 756 882 508 630 254 630 254 8240 

 # errors 178 50 132 196 185 292 49 207 111 119 31 191 41 1782 

 Accuracy 76.6% 80.3% 79.6% 69.1% 70.6% 79.1% 93.5% 76.5% 78.1% 81.1% 87.8% 69.7% 83.9% 78.4% 

Table 11: Detailed result. Accuracy for particular bird. The lowest value is 60.3% (round 2, bird D) the 

highest 95.7% (round 1, bird G). 

 

 

Figure 5.9: Detail result. Accuracy for each particular bird, see Table 5. 
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The Table 12 gives another view to the experiments. It summarized results from all three rounds, 

moreover it reveals both the FA, and FR errors. See the true trials accuracy of the bird “I” which 

gives 46.9%; it is the lowest result. In opposite the false trials accuracy of the bird “G” reaches 96.1% 

which is the higher obtained result. 

 A B C D E F G H I J K L M Over

all 

# true trials 146 16 144 100 80 484 120 168 64 80 16 80 16 1514 

# FR errors 30 4 14 24 24 101 44 41 34 32 2 16 4 369 

accuracy 

true trials 

79.5

% 

75.0

% 

90.3

% 

76.0

% 

70.0

% 

79.1

% 

63.3

% 

75.6

% 

46.9

% 

60.0

% 

87.5

% 

80.0

% 

75.0

% 

75.6

% 

               

# false trials 1378 492 1152 1170 1180 2310 1392 1596 952 1180 492 1180 492 1496

6 

# FA errors 324 95 249 365 350 476 54 368 189 208 60 365 74 3178 

accuracy 

false trials 

76.5

% 

80.7

% 

78.4

% 

68.8

% 

70.3

% 

79.4

% 

96.1

% 

76.9

% 

80.1

% 

82.4

% 

87.8

% 

69.1

% 

85.0

% 

78.8

% 

               

# sum trials 1524 508 1296 1270 1260 2794 1512 1764 1016 1260 508 1260 508 1648

0 

# sum errors 354 99 263 389 374 577 98 409 223 240 62 381 78 3547 

general 

accuracy 

76.8

% 

80.5

% 

79.7

% 

69.4

% 

70.3

% 

79.3

% 

93.5

% 

76.8

% 

78.1

% 

81.0

% 

87.8

% 

69.8

% 

84.6

% 

78.5

% 

Table 12: Results summary. Includes a data from all experiments, and reveal the FA and FR errors in detail. 

 

Distribution of results into accuracy levels is given in Table 13. Thus, it follows that 90% of 

experiments have accuracy higher than 70%, and 51% experiments even higher than 80%. 

Result 
category 

Number of 
results 

Percentage 

60-70% 5 13% 

70-80% 18 46% 

80-90% 12 31% 

90-100% 4 10% 

Total 39  

Table 13: Distribution of the experiment results. The results were first rounded and then  

assigned to a particular level.  
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Finally, Table 14 shows the dependence of the accuracy on the both number and quality of songs of 

a bird.  It combines the data from Table 7 (recording description) and experimental results. 

Success rate 60% - 74% 75% - 84% >85% 

Number of songs 170 to 293 304 to 788 98 to 546 

Quality of recordings 
(Poor, Average, Good) 

P,A P,A,G G 

Table 14: Number of songs in dependence on the accuracy and the recording's quality. 

 

5.7 Contribution 

A GMM-UBM based Automatic System for Recognition of Bird Individuals (ASRBI) was described 

with the added VAD algorithm. The aim of our work was to show that the individual identification 

on the open set using real recordings without pre-processing is feasible, and could be used by 

ornithologists under real conditions. The use of the UBM is of great importance since it identifies 

the environmental conditions of the recognition task, calibrates the verification score, and facilitates 

the choice of the verification threshold yielding a superior performance of the ASRBI. To our 

knowledge, this is the first experiment dealing with bird individual identification in real, open set 

conditions and, moreover, on real recordings without any pre-processing. The research is described 

in more detail in [PTA15a].  

5.8 Summary 

We report a method for bird individual identification, content-independent, working on the open set, 

processing as-is (raw, long real-field) recordings. The method can be used in real conditions, e.g. 

situations when ornithologists have targeted recordings of individuals (i.e. they recorded one 

individual for some time) from a population and they would like to know if the new recordings belong 

to birds previously recorded (and what is the birds identity in that case) or if it is a new bird. This 

approach modifies the traditional capture-mark-recapture approach but without the necessity of 

capturing and marking the subjects.  

Our work was motivated primarily by the need of ornithologists, from the Institute of Animal Science 

and University of South Bohemia, Department of Zoology in Czech Republic, who were looking for 

a system that could replace the ringing of chiffchaffs by some other less invasive technique. Achieved 

accuracy is 78.6% and is understandable due to the more realistic recording setup. Accuracy 

improves substantially if only the songs with the best recording quality are used.  

We are aware of the fact that the chiffchaff song represents rather ordinary singing style and the 

methods should be evaluated in species with more varied songs as well.  However, chiffchaffs 

apparently change more call types within one recording. Therefore, several song types can be present 

in the training set as well as in the test set. Our approach mimicked the task expected in real content-

independent situations, without any prior knowledge about the number of song types (and their prior 

classification).  
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The question of high importance is how many recordings are needed for reasonable accuracy. The 

result presented here reveals that recognition, even for birds with lower number of recorded songs 

(the case of the birds K and M), can be made with very good accuracy. From this question originates 

the idea to split recording into the halves to have the possibility of measuring accuracy independently 

for each half as well as for all the data in the third experiment. The results cue the amount of data 

should not be a crucial problem. 

The identification accuracy not just depends on data quality and information content. The successful 

UBM has to cover a wide background not just contain as much records is possible. Upon evaluation 

of our results, it is our opinion that the accuracy of the experiment depends also upon the UBM set. 

It is also confirmed by our current experiments which are not described in this paper as they are still 

in progress.  

 

  



71 
 _______________________________________________________________________________  

  

6 Identification Vectors 

6.1 Introduction 

As stated in section 3.4.11 iVectors are State-of-the-Art method in Speaker Recognition. Because we 

had not enough of bird recordings to train the system, we used a system trained on the human-speech 

data provided by National Institute of Standards and Technology (NIST) in the experiment. The main 

scope of the evaluation was to prove iVectors can be used for Bird Individual Identification on the 

Closed Set. 

6.2 Experiment evaluation 

We used 5,176 bird song records from thirteen chiffchaff individuals. The songs were cut from the 

raw recordings, described in section 0; for examples, see the figures below. We decided just for basic 

parametrization optimization to consider the main experimental scope. Then the recording 

preparation involved meaning sorting and labelling. Moreover, we provided a visual check and 

listening of the training data. 
  

 

Figure 6.1: An example of a song extracted from the raw recordings. Low overlap level, standard noise, 

duration 4.8 sec. 
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Figure 6.2: An example of a song extracted from the raw recordings. High overlap level, high noise,  

duration 3.7 sec. 

 

Figure 6.3: An example of a song extracted from the raw recordings. Low overlap level, low noise, 

duration 2.5 sec. 

6.3 Results 

Table 15 gives the experiment results. The birds in the first line (column heading) represent those for 

which the system was trained. Columns contain the corresponding probability of a particular bird. 

The grey coloured cells have the expected highest score (intersection of the column bird and the line 

bird). An orange colour highlights the highest score of incorrectly identified birds; for instance, bird 

F was identified as a bird D with highest score 0.745, whereas the true cell (grey coloured intersection 

cell of Bird F column and Bird F line) gives just a second highest score (0.591). The identification 

accuracy varied between 61.9% and 85.8%. 
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 Bird 
A 

Bird 
B 

Bird 
C 

Bird 
D 

Bird 
E 

Bird  
F 

Bird 
G 

Bird 
H 

Bird  
I 

Bird  
J 

Bird 
K 

Bird  
L 

Bird 
M 

Bird A  0.802 0.388 0.482 0.632 0.524 0.482 0.434 0.516 0.371 0.337 0.571 0.465 0.481 

Bird B 0.364 0.795 0.318 0.543 0.421 0.440 0.286 0.369 0.329 0.185 0.308 0.294 0.386 

Bird C 0.446 0.400 0.633 0.507 0.548 0.495 0.474 0.307 0.363 0.396 0.496 0.599 0.385 

Bird D 0.704 0.644 0.598 0.858 0.734 0.745 0.574 0.632 0.476 0.408 0.622 0.699 0.576 

Bird E 0.459 0.320 0.504 0.394 0.797 0.422 0.350 0.478 0.263 0.296 0.639 0.501 0.318 

Bird F 0.335 0.238 0.284 0.452 0.275 0.591 0.374 0.267 0.236 0.215 0.212 0.301 0.271 

Bird G 0.230 0.064 0.164 0.113 0.176 0.168 0.476 0.147 0.146 0.182 0.257 0.224 0.221 

Bird H 0.568 0.369 0.381 0.645 0.399 0.456 0.398 0.564 0.336 0.218 0.316 0.432 0.400 

Bird I 0.275 0.152 0.205 0.192 0.244 0.180 0.215 0.183 0.216 0.206 0.320 0.212 0.219 

Bird J 0.517 0.271 0.496 0.422 0.557 0.497 0.513 0.344 0.341 0.644 0.560 0.550 0.525 

Bird K 0.548 0.139 0.452 0.200 0.620 0.205 0.369 0.333 0.180 0.317 0.848 0.444 0.287 

Bird L 0.556 0.346 0.609 0.571 0.697 0.529 0.588 0.440 0.328 0.497 0.646 0.856 0.536 

Bird M 0.605 0.293 0.491 0.418 0.479 0.392 0.554 0.403 0.407 0.448 0.579 0.535 0.619 

Table 15: iVectors confusion matrix. 

6.4 Contribution 

Based on our knowledge these are the first experiments regard bird individual identification by 

iVectors. Though the scope of the experiments was small, we proved our ability to identify iVectors 

by T (Total Variability Matrix), estimated not by animal data but speech (human speech and channels 

matrices). We introduced and discussed the research in [PTA15b]. 

6.5 Summary 

The experiment tested the identification of thirteen bird individuals. The system correctly identified 

nine birds of the thirteen bird (i.e. 69.2%), and for four birds an error occurred (30.8%). However, 

three of these four errors occurred with the bird D data (line four, birds F, H, and I). If, hypothetically, 

we do not involve the bird D into experiments, just two birds would be identified incorrectly (Bird 

G, and Bird I).  

Because iVectors promise a high potential for individual identification, we are considering to use 

iVectors in the future in the next stages of our research. 
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7 Bird Audiogram Unified Equation 

7.1 Introduction 

While working with an automated system for an individual or species recognition one should use a 

feature extraction matching the bird’s vocalization, particularly the signal filtering which preceed the 

parametrization. There are two basic types of filter arrangements. The MFCC is used in many papers 

focused on this topic ([TRA05], [CLE05], [FOX08], [TRI08], [CHE10]). Another possibility is to 

use the linear distribution. MFCC corresponds with the human hearing properties [BIM04], and 

comparison of the linear with MFCC arrangements reveals the similar results for bird [GRA11], 

[PTA15a].  

The original plan of our work was to create a bank of filters adapted to bird songs. During the design, 

we took into consideration the research of available bird audiograms. After preliminary tasks, we 

had decided to divide our research into two parts because of amount of work for each part. The first 

part, described in this chapter, deals with bird audiogram. The second part, described in chapter 8, 

deals just with a bank of filters adapted to bird songs based on bird audiograms. 

Currently, there are audiograms available for about 60 bird species ([HEF98], [DOO02b], [KON70], 

[OKA85], [CAT08], [LAU07], [MAR04]). The audiograms’ common characteristic is that they were 

measured only for a small amount of frequencies with a small sample of individuals. For clarity, 

these audiograms are usually illustrated in a graphic form, with lines connecting the measured points. 

However, a chart containing measured values is often missing.   

7.2 Audiogram equation definition 

We propose five types of functions, each one of which may be selected based upon how well it fits 

available audiograms [PTA16]. Only a few articles directly address bird audiograms, e.g. [HEF98]. 

Unfortunately, these papers often reference other articles, which are not available (origin from 

seventies, sixties, even fifties). Finally, [DOO02b] was selected as a principal article not only because 

it collects many audiograms in a unified form, but the author, Prof. Dooling, is known as a pioneer 

and one of the highest authorities in bird hearing research. The article [DOO02b] contains 47 

audiograms2. Notice we use prof. Dooling’s short cuts (B-04, B05, etc.) when specifying an 

audiogram from [DOO02b]. 

The goal was to discover just the one function (i.e. equation) for known bird audiograms in order to 

allow its implementation in automated systems. Notice we call this equation as Audiogram Unified 

Equation (AUE). Then, only setup of parameters belonging to a particular bird is necessary for use 

of the AUE in ARSBI or ARSBS. 

First, we extracted from the original paper [DOO02b] the datasets describing individual curves. 

Notice, all data was available in PDF graphical format no source text is available. See an example of 

original data at the Figure 7.1, audiogram of Emu (Dromaius novaehollandiae). 

                                                      
2 We discovered that two pairs are similar: B-05 (Pedionomus torquatus) and B-06 (Columbia livia); B-08 
(Accipiter nisus) and B-09 (Colinus virgianus). We sent an email to prof. Dooling to be assured the pairs 
similarity is a mistake or not, but we have received no answer until publishing of this work. 
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Figure 7.1: Original data example: Audiogram, B-04, Emu (Dromaius novaehollandiae) [DOO02b]. 

Table 16 summarizes basic parameters of the audiograms. For an explanation of these parameters, 

see Figure 7.2. 

# Name Genus and Species BI  
[dB 
SPL] 

BF 
[kHz] 

LF 
[kHz] 

HF 
[kHz] 

CF 
[kHz] 

30dbB 
[kHz] 

1  Mallard Duck Anas platyrhynchos 15.57 2.00 0.32 5.22 1.28 4.91 

2  Australian Grey Swiftlet Collocalia spodiopygia 20.31 2.00 0.49 5.71 1.66 5.23 

3  Oilbird Steatornis caripensis 20.31 2.00 0.49 5.71 1.66 5.23 

4  Emu Dromaius novaehollandiae 17.39 1.41 0.20 4.04 0.88 3.85 

5  Plains Wanderer Pedionomus torquatus 33.80 0.71 0.05 3.56 0.44 3.50 

6  Pigeon Columbia livia 16.90 1.41 5.67 0.13 5.80 5.67 

7  American Kestrel Falco sparverius 2.42 2.00 0.36 5.25 1.37 4.89 

8  European Sparrowhawk Accipiter nisus 4.27 2.00 0.35 5.39 1.37 5.04 

9  Bobwhite Quail Colinus virgianus 13.15 2.00 2.13 8.70 1.35 6.57 

10  Chicken Gallus gallus 7.37 1.41 0.20 4.10 0.91 3.90 

11  Japanese Quail Coturnix coturnix japonica 1.40 2.00 0.47 5.90 1.66 5.43 

12  Turkey Meleagris gallopavo 15.43 2.00 0.29 5.25 1.22 4.96 

13  American Robin Turdus migratorius 7.49 2.83 0.34 8.73 1.72 8.39 

14  Blue Jay Cyanocitta cristata 14.46 2.00 0.28 6.31 1.33 6.03 
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15  Brown-headed Cowbird Molothrus ater 11.50 2.83 0.35 8.50 1.72 8.15 

16  Bullfinch Pyrrhula pyrrhula -0.50 2.83 0.48 10.20 2.21 9.72 

17  Chipping Sparrow Spizella passerina 2.06 4.00 0.59 12.90 2.75 12.31 

18  Common Canary Serinus canarius 15.98 2.83 0.47 9.37 2.08 8.90 

19  Common Crow Corvus brachyrhynchos -16.41 2.00 0.47 4.57 1.46 4.10 

20  European Starling Sturnus vulgaris 8.00 2.00 0.23 6.43 1.20 6.20 

21  Field Sparrow Spizella pusilla 9.61 2.83 0.32 8.65 1.65 8.33 

22  Fire finch Lagonosticta senegala 10.89 2.00 0.50 6.49 1.79 5.99 

23  Great tit Parus major 3.07 2.00 0.32 8.17 1.60 5.02 

24  House finch Carpodacus mexicanus 14.55 2.00 0.44 6.00 1.61 5.56 

25  House Sparrow Passer domesticus -8.31 1.41 0.29 4.55 1.13 4.27 

26  Pied Flycatcher Ficedula hypolueca 11.70 2.83 0.44 7.34 1.79 6.90 

27  Red-winged Blackbird Agelaius phoeniceus 11.85 2.83 0.33 8.20 1.64 7.87 

28  Slate-colored Junco Junco hyemalis -5.29 2.83 0.68 8.25 2.36 7.57 

29  Song Sparrow Melospiza melodia 4.98 2.83 0.33 8.76 1.69 8.43 

30  Swamp Sparrow Melospiza georgiana 6.05 2.83 0.37 9.00 1.82 8.63 

31  Western Meadowlark Sturnella neglecta -3.06 2.00 0.37 5.55 1.42 5.18 

32  Zebra Finch Taeniopygia guttata 17.98 2.83 0.44 8.24 1.89 7.81 

33  Bourke's Parrot Neophema bourkii 17.36 2.00 0.23 6.50 1.22 6.27 

34  Budgerigar Melopsittacus undulatus 0.80 2.00 0.36 5.97 1.45 5.62 

35  Cockatiel Nymphicus hollandicus 8.60 1.41 0.22 5.22 1.08 5.00 

36  African Wood Owl Strix woodfordii -13.40 2.40 0.33 7.90 1.60 7.58 

37  Barn Owl Tyto alba -16.20 2.83 0.32 12.00 1.95 11.68 

38  Brown Fish Owl Ketupa zeylonensis -1.60 1.00 0.08 4.00 0.57 3.92 

39  Eagle Owl Bubo bubo -23.48 2.00 0.21 6.52 1.18 6.31 

40  Great Horned Owl Bubo virginianus 4.31 0.71 0.03 4.15 0.35 4.12 

41  Long Eared Owl Asio otus -25.05 2.83 0.41 8.06 1.81 7.65 

42  Mottled Owl Strix virgata -9.54 1.41 0.06 8.20 0.72 8.14 

43  Scops Owl Otus scops -14.29 2.00 0.34 6.65 1.50 6.31 

44  Snowy Owl Nyctea scandiaca -25.25 2.00 0.63 5.88 1.91 5.26 

45  Spotted Wood Owl Strix seloputo -17.89 2.00 0.21 6.55 1.17 6.34 

46  Tawny Owl Strix aluco -24.62 2.00 0.22 6.62 1.19 6.41 

47  White-faced Scops Owl Otus leucotis -23.26 2.00 0.28 6.04 1.29 5.76 

Table 16: Main parameters of 42 audiograms. Legend: BF (Best frequency) is the frequency with the best 

sensitivity BI (Best Intensity). LF (Low frequency) and HF (High frequency) define the bandwidth of an 

audiogram. CF (Center frequency) is the frequency in the middle of an audiogram. 30 dB defines the 

frequency an audiogram reaches 30 dB SPL sensitivity. For graphical legend, see Figure 7.2. 
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Figure 7.2: Table 16 graphical legend. 

Each dataset was then fitted by the nonlinear least squares Marquardt-Levenberg algorithm (MLA) 

[MAR63] implemented in GNUPlot software (© 1986 Thomas Williams, Colin Kelley) via one of 

the five proposed functions. The goal was to select the one, which gives the best results. We proposed 

these five functions for the fitting: 

 ��(�) = � ∙��∙� + � ∙��∙� + � (68) 

 ��(�) = � ∙��∙� + � (69) 

 ��(�) = � ∙�� + � ∙�� + � ∙� + � (70) 

 ��(�) = � ∙�� + � ∙�� + � ∙�� + � ∙� + � (71) 

 ��(�) = � ∙�� + � ∙�� + � ∙�� + � ∙�� + � ∙� + � (72) 

 

Notice the preliminary functions, sin x and sin2 x, were also tested, but the fitting error was too high. 

Therefore, we decided do not involve them into the final pool.  

Then we searched for the parameters a, b, c, d, f, and k by the fitting procedure. These steps were 

repeated for each function; for an example see Figure 7.3. The purple crosses represent localization 

points we put on the original audiogram. The colored line is the graph of f1. 
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Figure 7.3: An example of the fitting (Mallard Duck). 

The final sum of squares of residuals was minimal for the f1 (exp-exp) function for all datasets (see 

Figure 7.4) with the exception of five ones (B-05, B-18, B-30, B-35 and B-41) for which the function 

f5 was the best. On the other hand, the approximations via f1 function consumed the longest 

computational time, as the number of approximation steps was the highest among all kinds of selected 

fitting functions. Approximation via f1 led not only to the least sum of residuals after reaching the 

stop-criterion, which was the minimum relative change of the sum of residuals, but it also showed 

the largest relative change during the last iteration, which indicates that there is still some possibility 

to improve the final approximation of parameters we were looking for. On the contrary, functions f3 

- f5 showed the relative change during the last iteration to be considerably small leading to the 

conclusion that there is not so much space for further improvement. 

 



79 
 _______________________________________________________________________________  

  

 

Figure 7.4: Final sum of squares of residuals for all five functions. Legend: f1 Purple, f2 Green, f3 Blue, f4 

Orange, f5 Yellow. Notice the yellow is even lower than purple for just five points. 

Furthermore, we divided the datasets into three groups: 

 Non-Passeriformes (B-01up to B-12 and B-33 up to B-35), 

 Passeriformes (B-13 up to B-32), and 

 Strigiformes (B-36 up to B-47). 

For each group we calculated the average coefficients, which was later fitted via the same functions 

f1 to f5 for the graphs of individual species. Moreover, we also calculated the averaging data for the 

data set, i.e. for all birds. 

Let us remark, that the doubled values B-06, as well as B-09, were removed before we calculated the 

average threshold-values. Most of the original datasets were drawn to match the same values of 

frequency on the x-axis. For those 6 exceptional datasets, we interpolated and extrapolated the graphs 

(the inter- and extrapolation was performed via function f1) in order to ultimately obtain the average 

threshold-values for the same frequency-values. 

7.3 Result 

We propose f1 as the final, universal equation for bird audiograms (AUE) after considering the fitting 

errors: 

 ��(�) = � ∙��∙� + � ∙��∙� + �. (73) 

Let us recall that the fitting procedure tries to minimize a sum of squares of residuals, i.e. the function 
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WSSR(f) = �(�(�� − ��)�

�

���

 
(74) 

by finding “optimal values” of all parameters appearing in the given function f. Here, (�� , �� ), where 

n=1 up to N, are the points being fitted, and the weights of all points are equal to one. Since the data 

show a non-linear dependence, we used a non-linear fitting method. Therefore, we obtained only an 

approximation of the optimal parameter values via a step-by-step iteration process. The stop-criterion 

remained the implemented the default, i.e. when the sum of squared residuals changes between two 

successive iteration steps by a factor less than 1e-5, the fit is considered to have 'converged'.  

The fitting errors are defined 

 
��� = �

����

���
, 

(75) 

and   

 ������ =
����

���
, (76) 

where rms represents the remains of residuals, rmsVAR is a variance of residuals, and ndf represents 

the number of degrees of freedom. The final statistical values for f1 over all birds are: 

 ��� = 0.00985,  

 ������ = 9.7023�− 05,  

∑ ��� = 0.016355, 

���� = −7.10079�− 06, 

where ∑ rms is the final sum of squares of the residuals, and Lapp is the relative change during last 

iteration.  

After 5 or 6 iterations, the fit converged for polynomial functions (f3, f4, and f5). For all birds ���� =

−1.15631�− 14 and ∑ rsm = 0.123618. The exponential functions (f1 and f2) needed 1442 

iterations, for all birds, in order for the fit to converge. Although their final sum of residuals is similar 

to polynomials ∑ rsm = 0.1188, the relative change is much higher: ���� = −6.85045�− 06.  

In summary, computing time is much longer for exponential functions than for polynomials, but the 

fit accuracy can still increase upon addition of iterations, if required. Table 17 contains the final 

parameters for all 47 birds, using fit function f1. 

 

# Name Order a b c d k 

1  Mallard Duck Anseriformes 4.31 0.74801 166.40 -0.03923 -155.87 

2  Australian Grey Swiftlet Apodiformes 5.12 0.72541 722.61 -0.01213 -709.73 

3  Oilbird Caprimulgiformes 3.03 0.72096 555.64 -0.00995 -544.39 

4  Emu Struthioniformes 4.93 0.76381 94.71 -0.05690 -85.47 

5  Plains Wanderer Charadriformes 5.28 0.71786 269.61 -0.01264 -256.23 
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6  Pigeon Columbiformes 5.28 0.71786 269.61 -0.01264 -256.23 

7  American Kestrel Falconiformes 5.20 0.71901 773.27 -0.00976 -767.12 

8  European Sparrowhawk Falconiformes 4.98 0.72022 686.06 -0.01059 -679.18 

9  Bobwhite Quail Galliformes 4.98 0.72022 686.06 -0.01059 -679.18 

10  Chicken Galliformes 5.24 0.74625 129.75 -0.04339 -123.75 

11  Japanese Quail Galliformes 4.88 0.72212 808.10 -0.01038 -800.67 

12  Turkey Galliformes 4.22 0.74520 162.55 -0.03794 -152.20 

13  American Robin Passeriformes 2.57 0.72342 560.77 -0.00961 -549.50 

14  Blue Jay Passeriformes 3.65 0.72056 564.62 -0.01004 -553.53 

15  Brown-headed Cowbird Passeriformes 2.68 0.72258 541.25 -0.01020 -528.91 

16  Bullfinch Passeriformes 2.29 0.72620 612.80 -0.00973 -602.20 

17  Chipping Sparrow Passeriformes 1.77 0.72844 626.83 -0.00938 -613.52 

18  Common Canary Passeriformes 1.93 0.77461 131.32 -0.04369 -115.68 

19  Common Crow Passeriformes 3.65 0.84982 55.85 -0.14035 -53.08 

20  European Starling Passeriformes 3.40 0.71989 495.43 -0.01019 -486.38 

21  Field Sparrow Passeriformes 2.55 0.72329 525.87 -0.00988 -514.20 

22  Fire finch Passeriformes 4.35 0.72216 851.44 -0.00967 -840.20 

23  Great tit Passeriformes 2.84 0.72198 533.27 -0.01014 -524.10 

24  House finch Passeriformes 4.64 0.72086 821.00 -0.00957 -809.68 

25  House Sparrow Passeriformes 4.97 0.74783 157.05 -0.04175 -154.77 

26  Pied Flycatcher Passeriformes 3.63 0.71599 1611.10 -0.00436 -1599.17 

27  Red-winged Blackbird Passeriformes 2.83 0.72217 603.29 -0.00920 -591.26 

28  Slate-colored Junco Passeriformes 3.47 0.72581 868.48 -0.00993 -858.83 

29  Song Sparrow Passeriformes 2.63 0.71710 1055.87 -0.00503 -1045.56 

30  Swamp Sparrow Passeriformes 2.39 0.73464 589.90 -0.00929 -578.57 

31  Western Meadowlark Passeriformes 4.91 0.71937 752.96 -0.00985 -747.94 

32  Zebra Finch Passeriformes 3.00 0.72377 638.74 -0.01001 -624.11 

33  Bourke's Parrot Psittaciformes 3.42 0.71947 525.21 -0.00971 -513.36 

34  Budgerigar Psittaciformes 4.30 0.71979 712.44 -0.00959 -705.55 

35  Cockatiel Psittaciformes 4.51 0.71872 546.44 -0.01033 -538.82 

36  African Wood Owl Strigiformes  2.93 0.72179 567.49 -0.00977 -563.23 

37  Barn Owl Strigiformes 1.69 0.72489 494.89 -0.00895 -489.41 

38  Brown Fish Owl Strigiformes 5.15 0.71383 -570.65 0.00701 573.70 

39  Eagle Owl Strigiformes 3.31 0.71952 508.69 -0.00956 -509.03 

40  Great Horned Owl Strigiformes 4.27 0.70748 -353.80 0.00769 356.86 

41  Long Eared Owl Strigiformes 3.03 0.72271 650.37 -0.00959 -648.88 

42  Mottled Owl Strigiformes 2.03 0.72161 201.92 -0.01329 -197.65 

43  Scops Owl Strigiformes 1.84 0.84928 37.69 -0.13088 -32.77 

44  Snowy Owl Strigiformes 5.65 0.72275 1029.44 -0.01038 -1029.17 

45  Spotted Wood Owl Strigiformes 2.86 0.74366 124.33 -0.03647 -122.58 

46  Tawny Owl Strigiformes 3.26 0.71946 537.69 -0.00902 -538.25 

47  White-faced Scops Owl Strigiformes 3.91 0.72062 568.18 -0.01025 -568.72 

Table 17: Function f1 coefficients for 47 species. 
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As mentioned above, we aggregated the birds into three groups based on the orders. Final groups and 

overall coefficients are presented in Table 18. 

# Group a b c d k 

1 Non-Passeriformes 18.7657 0.692153 -2884.21 0.0076418 2881.98 

2 Passeriformes 12.0993 0.712241 1904.88 -0.0110408 -1901.79 

3 Strigiformes 12.2142 0.710617 1379.51 -0.012282 -1402.81 

4 All Birds 11.8718 0.734457 524.5 -0.0360242 -527.81 

Table 18: Species group aggregate. Final f1 coefficients for four group, based on the order. 

Figure 7.5 contains the final group audiograms from Table 18. All particular species audiograms are 

addressed in the Attachment section together with an error value calculation. 

 

Figure 7.5: Final bird audiograms. The graphs display audiograms aggregated by order. Non Passeriformes 

(up left), Passeriformes (up right), Strigiformes (down left),  

and all birds (down right). All species audiograms see in Attachment. 

7.4 Contribution 

Both automated systems as for an individual identification as well as for the species recognition 

should use the introduced unified audiogram equation together with particular coefficients setup. 

One could automate and tailor the signal processing toward, for example, a filter bank distribution, 

pre-emphasis, or band weighting respecting species hearing sensitivity.  
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We could also use AUE when we are handling with bird audiograms (researches, comparative 

studies, etc.). Until now, we depend on scanning of the audiogram figures. Similarly, the audiogram 

values reading is more accurate thanks the AUE equation. However, as we stated above, we should 

keep in mind the bird audiogram source data is more rare than as for the human data. 

We plan to introduce the bird audiogram unified equation in [PTA16a]. 

7.5 Summary 

From a technical point of view, the audiograms are just pictures. As audiograms are not determined 

by mathematical expressions, it is impossible to work with them any further (e.g. in the Matlab, C++, 

ARSBI, ARSBS, etc.).  

The presented Bird AUE describes the bird audiograms by one equation. We alternate audiogram 

types just by substituting particular coefficients of specific bird. We discovered coefficients for forty-

seven species and for four aggregated audiograms (all birds, Non-Passeriformes, Passeriformes, and 

Strigiformes). 

A new coefficient’s setting can be discovered for a new species in the future to extend the equation’s 

range of use, that is, not just for the birds but theoretically for any animals including exotic ones 

(meaning in hearing range) such as a bat or a whale. 
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8 Bird Adapted Filter 

8.1 Introduction 

The Mel filter bank is the common filter distribution (see sections 3.5.4.1. and 7.1), but it is optimized 

for human speech. A bird song differs in both the time domain and frequency features compare to 

speech. We aimed to discover a feature extraction setup optimized for bird song.  

At first, we determined the basic parameter setup. Then we developed and tested a new so-called 

Bird Adapted Filter (BAF) filter distribution based on the results of the chapter 7. In the last section, 

we compare the common filter distributions, namely the linear, and MEL with BAF for a bird 

individual identification. 

8.2 Parameters optimization 

There is not any recommended parameters set up for a bird song unlike for human speech (for 

instance, window length 30 ms, overleap 15 ms, pre-emphasis 0.97, etc.). Actually, the setup has to 

be evaluated from the scratch for each research. It follows from the differences among 

 species (frequency, dynamic, duration), 

 bird individuals (syllables rate, lazy/diligent singers), 

 recordings (noise level, background type and level, weather conditions). 

At first, we determined the optimal parameters setup. The Framework cannot perform a multi-

dimensional optimization. Therefore, this process was complicated because there are many crucial 

parameters, which have to be tuned one at a time.  

In total, 267 experiments were executed, consisting of 165.4 million trials. See Table 19 for the 

optimized values of the main parameters. 

 Test range Optimized values 

 From To  

Min frequency 0 Hz 2 kHz 800 Hz 

Max frequency 5 kHz 11.025 kHz 10 kHz 

Window length 10 ms 50 ms 20 ms 

Window shift 10 ms 50 ms 10 ms 

Window type 
Triangle, Hamming, 
Blackmann, Hanning 

Hamming 

Number of band filters 10 25 20 

Band filters distribution Linear, MEL Linear 

Filter shape 
Triangle, Hamming, 

Blackmann, Rectangle 
Triangle 

Pre-emphasis 0.80 1 
0.97 

(no effect) 

Number of cepstral coefficients 10 30 20 

Number of delta coefficients 0 30 20 

Number of delta-delta coefficients 0 30 0 
Table 19: List of optimized parameters. 
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8.3 Filter distribution definition 

The audiogram equation (73) is taken as the initial function. Each audiogram is defined from a LF 

(low frequency) to HF (high frequency). Both frequencies HF and LF depend on the particular bird 

see Table 16. We adapt the equation (73) to calculate discrete variables as 

 �� = � ∙��∙�� + � ∙��∙�� + �. (77) 

It is also valid that 

 ��	 ≤ 	 �� 	 ≤ 	�� , (78) 

for � = {1,2,… , �}, where F is the total number of frequencies. We now define a cumulative sum z 

as 

 
�� = �[max(�) − ��]

�

���

, (79) 

where zi is the i-th coefficient of the cumulative sum. Finally, we use z as the distribution function of 

BAF triangle filters fitting a bird’s hearing sensitivity. Figure 8.1 displays an example of cumulative 

sum z function. 

We can also normalize zi, if an application required, as 

 
�̃� =

�� − ��

��

(�� − ��) + ��, (80) 

where �̃� represents the normalized cumulative sum of z. 

 

Figure 8.1: Example of cumulative sum z function.  

Further, we can change the filters’ overlap to increase a particular band sensitivity. Let us consider 

set of N triangle filters with linear distribution. We could compute a half of the filter length a as 

 
� =

�� − ��

� + 1
, (81) 
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where N is the filter’s number. We state an overlap ratio b that is a simple difference between overlap 

and a. Then �� = (� + �), where L2 is the starting point of a second filter. Based on both a and b 

there are three variants of the overlapping, see Figure 8.2: 

 b=0 Overlap and a are the same. 

 b<0 Overlap is higher than a half. 

 b>0 Overlap is lower than a half. 

 

 

 

 

 

 

Figure 8.2.: Linear filter distribution with different overlap. A) Overlap is just a half of triangle length a. The 

overlap ratio b=0. B) Overlap is higher than a half. The overlap ratio b<0. C) Overlap is lower than a half. 

The overlap ratio b>0. Legend: Lx…Triangle x left point, Rx… Triangle x right point. 

Finally, we can express the filter’s starting and ending points Lx, Rx  
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 �� = �� + �(� − 1)(1 + �), (82) 

 �� = �� − �(� − �)(1 − �). (83) 

 

Notice, one variant typically defines the ratio between overlap and filter length in percent; for 

example, if b=0 then the overlap is 50%. 

8.4 Experiment evaluation 

We experimented with the BAF distribution to reveal any improvements by changing b value: 

� = �−
�

�
, −

�

�
, −

�

�
, −

�

�
, 0,

�

�
,
�

�
,
�

�
,
�

�
�. 

For the � = −
�

�
, the accuracy did not rise significantly, but the computation time was affected. 

Higher values � > −
�

�
 did not improve the accuracy; even � > 0 worsened it. Therefore, � = −

�

�
 

was chosen after these preliminary experiments as a balanced value. 

We chose four types of filter distributions for our experiments: 

 Linear (� = 0) 

 MEL (� = 0) 

 BAF (� = 0) 

 BAF 1/3 (� = −
�

�
). 

We use the terms BAF and BAF 1/3 to distinguish between BAF with overlap � = 0 and � = −
�

�
. 

For BAF Passerine distribution see Figure 8.3. Figure 8.4 displays the Passerine BAF 1/3.  
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Figure 8.3.: BAF distribution for Passerine. Standard overlap � = 0.  

Number of filters N=20. 

 

Figure 8.4: BAF 1/3 filter distribution for Passerine. Overlap � = −
�

�
. Number of filters N=20. 
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8.5 Results 

Table 19 contains the system parameters setup. We chose 15 testing sets for the experiments. Each 

set consists from 1400 to 3150 files. In total, 405 experiments were performed, which required 637.2 

million trials. Table 20 gives the result of comparing Linear, MEL, BAF, and BAF 1/3 filter 

distributions. Graphical results are shown in Figure 8.5. We used EER (see section 3.4.6) as the main 

decision value. 

 

 Lin Mel BAF BAF 1/3 

DataSet 01 13.06% 15.38% 13.13% 10.56% 

DataSet 02 12.38% 16.11% 15.55% 11.61% 

DataSet 03 13.54% 18.44% 13.00% 9.26% 

DataSet 04 13.13% 16.31% 12.00% 9.36% 

DataSet 05 13.53% 21.38% 12.63% 9.69% 

DataSet 06 23.44% 24.26% 23.25% 20.23% 

DataSet 07 25.63% 23.86% 21.92% 18.31% 

DataSet 08 14.85% 15.09% 14.55% 13.47% 

DataSet 09 12.50% 14.70% 12.70% 12.42% 

DataSet 10 13.25% 14.48% 12.29% 11.29% 

DataSet 11 15.56% 16.88% 12.19% 11.54% 

DataSet 12 16.96% 18.85% 14.99% 12.13% 

DataSet 13 16.25% 22.52% 15.13% 12.14% 

DataSet 14 18.88% 22.56% 15.31% 13.05% 

DataSet 15 20.56% 19.88% 17.94% 15.13% 

     

Average 16.23% 18.71% 14.29% 12.68% 

Min 12.38% 14.48% 10.38% 9.26% 

Max 25.63% 24.26% 23.18% 20.23% 

Table 20: EER for different bank filter distribution: Linear, Mel, BAF (� = 0), and BAF 1/3 (� = −
�

�
). 
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Figure 8.5: EER of different bank filter distribution: Linear, Mel, BAF (� = 0), and BAF 1/3 (� = −
�

�
). 

 

Table 23 contains the accuracy improvement in detail. A positive improvement was reached in all 

cases with just one exception (BAF to Lin, Data set 02). For graphs, see Figure 8.6. 

 

 BAF to Lin BAF 1/3 to Lin BAF to MEL BAF 1/3 to MEL 

DataSet 01 1.06% 2.50% 3.38% 4.81% 

DataSet 02 -0.58% 0.77% 3.15% 4.50% 

DataSet 03 1.11% 4.28% 6.01% 9.18% 

DataSet 04 2.74% 3.77% 5.93% 6.96% 

DataSet 05 1.46% 3.84% 9.31% 11.69% 

DataSet 06 0.26% 3.21% 1.08% 4.03% 

DataSet 07 2.63% 7.31% 0.86% 5.54% 

DataSet 08 2.56% 1.38% 2.80% 1.63% 

DataSet 09 0.44% 0.08% 2.63% 2.28% 

DataSet 10 0.76% 1.96% 1.99% 3.20% 

DataSet 11 2.31% 4.03% 3.63% 5.34% 

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Mel
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DataSet 12 3.24% 4.84% 5.13% 6.72% 

DataSet 13 3.69% 4.11% 9.96% 10.38% 

DataSet 14 3.43% 5.82% 7.12% 9.51% 

DataSet 15 4.00% 5.44% 3.31% 4.75% 

     

Average 1.94% 3.56% 4.42% 6.03% 

Min -0.58% 0.08% 0.86% 1.63% 

Max 4.00% 7.31% 9.96% 11.69% 

Table 21: Accuracy comparing. Positive value represents improvement and negative, worsening. The table 

gives EER differences among particular filter distributions. For source data, see Table 20. 
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Figure 8.6: Different bank filter distribution accuracy improvement. For source data, see Table 23. 

8.6 Contribution 

Experiments revealed a BAF distribution improved an accuracy of bird individual identification for 

the tested data. A BAF filter distribution was based on the passerine hearing sensitivity, see details 

in chapter 7, and Table 18 respectively. Because the BAF distribution respects a hearing sensitivity 

of a particular species, it can be also used by an automation system for species identification. We 

plan to introduce the BAF in [PTA16b]. 

8.7 Summary 

A BAF filter distribution improved the accuracy in all experiments except for one (BAF to Lin, Data 

set 02). The average EER value for Linear was 16.23%, and for MEL 18.71%. The BAF gave 

14.29%, and BAF 1/3 12.95%. The lower EER improvement occurred between BAF and Linear with 

1.94% on average and the greater improvement of 6.03% between BAF 1/3 and MEL. The highest 

improvement was 11.69% (Data set 5, BAF 1/3 to MEL). 

A statistical analysis was performed to compare the results of the Linear and BAF distribution 

methods while the results were obtained by the standard (baseline) MEL method. The results of the 

statistical tests revealed that both the Linear and the BAF method yield a statistically significant (p 

< 4.9e-04 and p < 3.1e-05 respectively) improvement over the baseline. All comparisons were 

performed using the one-sided Wilcoxon signed rank test; the results with p values less than 0.05 

were considered statistically significant. The computations were done with the MATLAB Statistics 

Toolbox. 

We plan to use a BAF for different bird data to verify an identification accuracy improvement. We 

also intend to integrate a BAF into some species recognition system to check the assumption a BAF 

should even improve a species identification accuracy. 
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9 Improving automatic bird identification by data merging 

9.1 Introduction 

We were considering first a data merging idea by the time we processed a small amount of animal 

recordings. The basic idea of this method is to make a model more robust and siutable by joining 

data even when there is no chance to obtain more songs. 

Section 3.2.3 exhibits essential variants of the bird songs experiments involving work with raw 

recordings or with songs extracted from the recordings. This merging method deals with a kind of a 

midway approach. We used neither simple songs nor joined the recordings, but we tried to merge 

just a few songs into the one. The main motivation for the experiment was to handle only the cases 

when a limited amount of recorded data is available. 

9.2 Method principle 

In the nature, ornithologist battle with overlap, background noise, and a long distance between 

recorder and singer. [SED15] deals with species recognition over as-is recordings by comparing two 

methods: spectrogram point counting and automated processing. Swiston and Mennill [SWI09] 

compared manual and automated methods for identification of specific sounds (i.e. particular type of 

syllables) in continuous recordings. For manual method, the authors manually checked spectrograms. 

For automated, they used Data Template Detector software (Harold Figueroa, Ithaca, NY) for 

tracking “lerned” song types. The Data Template Detector was based on signal thresholds level 

setting. The result indicates the manual scanning outdo an automated method. Nevertheless, there is 

in question if authors selected the right automated method for the application. 

One has to choose an efficient strategy to work with long-lived recordings (provided by an 

ornithologist) dealing with either bird individual identification or species recognition systems. Let 

us suppose we cut off the songs from the recordings. Then there are two options: at first, we join all 

songs, which belong to the one bird individual, into the one recording and then we extract features 

from this big song data. The second option is to extract features, one by one, from the single songs.  

One such data merging method combines both approaches. Instead of joining all recordings into the 

one bulk, we merge just a defined number of data, and a so-called merging level defines a number of 

joined songs. After the data merging we extract features from this data (i.e. merged recordings, 

merged songs). The principal idea of the method is demonstrated on the Figure 9.1. 
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Figure 9.1: The principal idea of the data merging method. A defined number of recordings composes the 

train data. The figure shows an example for merging level = 3. 

We designed a new tool in the Matlab for data merging to test the method. We merged just the songs 

of the same recording origin because there could be a significant difference between recordings (see 

section 3.2). It was impossible to collect necessary amount of songs for some data sets, mainly for 

highest merging, see so-called IDA (insufficient data amount) cells in the Table 23. We also prepared 

an automation experiment tool in Matlab, see chapter Development Framework. 

9.3 Results 

We identified bird individuals by the GMM-UBM method (see section 3.4.2). For results, see Table 

23. Twelve sets of chiffchaff recordings were evaluated; each consists of approximately 2,000 songs. 

We processed in total 1.3 million trials. The number of bundled data increased from two to ten. 

Set 
File 

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 
10 

Set 
11 

Set 
12 

1 19.4% 21.9% 21.3% 22.3% 22.3% 22.1% 32.1% 16.1% 22.9% 21.8% 15.5% 21.1% 

2 18.0% 21.7% 18.9% 21.5% 21.3% 22.1% 31.8% 16.1% 24.2% 20.4% 15.8% 20.0% 

3 17.6% 24.0% 19.4% 20.1% 23.1% 20.2% 32.9% 16.6% 26.2% 26.2% 14.0% 17.0% 

4 16.6% 22.1% 16.3% 18.5% 17.0% 15.0% 30.0% 13.4% 23.6% 22.4% 14.6% 19.0% 

5 18.3% 20.7% 18.0% 20.5% 18.7% 15.0% 29.5% 12.5% 20.7% 24.0% 17.2% 26.9% 

6 16.8% 19.0% 14.6% 16.4% 18.0% 14.0% 28.3% 11.3% 27.3% 30.7% 14.8% 19.0% 

7 22.8% 19.0% 16.3% 21.8% 18.0% 14.0% 28.6% 8.8% 16.2% 16.3% 23.9% 19.0% 
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8 14.0% 19.0% 15.5% 17.8% 18.0% 14.0% 27.3%   IDA 16.2% 16.3% 13.1%  IDA 

9 10.2%  IDA 10.7% 7.9% 19.0% 14.0% 28.6%   IDA 27.3% 27.4%  IDA    IDA 

10 12.2%   IDA 7.9%  IDA 12.8% 12.7%  IDA    IDA   IDA   IDA   IDA   IDA 

Table 22: Data merging: Experiment results, total EER. First line gives the standard EER without any data 

merging, labelled as EER0. See the EER suffix for particular merging level. For instance, the row EER5 gives 

the EER for merging level 5. Notice the experiments were not be performed for some merging levels because 

of insufficient data amount (IDA). 

 

Merging 
level 

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Set 11 Set 12 

2 1.4% 0.2% 2.4% 0.8% 1.0% 0.0% 0.3% 0.0% -1.3% 1.4% -0.3% 1.1% 

3 1.8% -2.1% 1.9% 2.2% -0.8% 1.9% -0.8% -0.5% -3.3% -4.4% 1.5% 4.1% 

4 2.8% -0.2% 5.0% 3.8% 5.3% 7.1% 2.1% 2.7% -0.7% -0.6% 0.9% 2.1% 

5 1.1% 1.2% 3.3% 1.8% 3.6% 7.1% 2.6% 3.6% 2.2% -2.2% -1.7% -5.8% 

6 2.6% 2.9% 6.7% 5.9% 4.3% 8.1% 3.8% 4.8% -4.4% -8.9% 0.7% 2.1% 

7 -3.4% 2.9% 5.0% 0.5% 4.3% 8.1% 3.5% 7.3% 6.7% 5.5% -8.4% 2.1% 

8 5.4% 2.9% 5.8% 4.5% 4.3% 8.1% 4.8% IDA 6.7% 5.5% 2.4% IDA 

9 9.2% IDA 10.6% 14.4% 3.3% 8.1% 3.5% IDA -4.4% -5.6% IDA IDA 

10 7.2% IDA 13.4% IDA 9.5% 9.4% IDA IDA IDA IDA IDA IDA 

Average 2.8% 1.0% 5.4% 3.8% 3.5% 5.8% 2.2% 2.5% 0.2% -1.0% -0.6% 0.8% 

 Table 23: Data Merging Identification improvement. The table is based on the EER results from previous 

table. Each line contains differences between particular merging level EER and EER with no merging. For 

example a third line (Merging level 4) contains differences between EER4 and EER0. 

 

Following graphs display an accuracy improvement in detail; see Figure 9.2, Figure 9.3, Figure 9.4, 

and Figure 9.5. Notice the data origins from Table 23. 

 

Figure 9.2: Accuracy improvement: Data sets 1, 2, and 3. 
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Figure 9.3: Accuracy improvement: Data sets 4, 5, and 6. 

 

Figure 9.4: Accuracy improvement: Data sets 7, 8, and 9. 

 

Figure 9.5: Accuracy improvement: Data sets 10, 11, and 12. 
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We provided 94 experiments i.e. combination of all sets x nine merging levels. The recognition 

improvement accuracy was achieved for 77.7% of these experiments (73 cases). The absolute 

achieved improvement was 3.0 % on average, see Table 24. The highest value is 14.4% (set 4, 

merging level 9), the lowest -8.9% (set 10, merging level 6). The best results achieved the merging 

level 9, where an average of 9.9% improvement was achieved. However, just a few sets were 

involved because of insufficient amount of data. 

Merging level 2 3 4 5 6 7 8 9 10 Average 

Average improvement 0.6% 0.1% 2.5% 1.4% 2.4% 2.8% 5.0% 4.9% 9.9% 3.0% 

Number of experiments 12 12 12 12 12 12 10 8 6  

Number of insufficient 
data amount (IDA) 

0 0 0 0 0 0 2 4 8  

Table 24: Data merging identification improvement, summary. 

9.4 Contribution 

Researchers dealing with an automation processing of animal vocalization still suffers from an 

insufficient amount of data. In such cases any method, which could improve an identification 

accuracy, is very welcomed. Although the basic idea of data merging is simple, the results indicate 

the contributory of the method. We introduced and discussed the research in [PTA15c]. 

9.5 Summary 

The results reveal the method could improve individual/species identification accuracy in the case 

we operate with insufficient recording number.  We provided the Wilcoxon signed rank test (left-

tailed) for levels 0, 2, and 4 with following results: significance between level 0 and level 2: � =

0.033 and between level 0 and level 4: � = 0.048. 

Although with the positive Wilcoxon test, we are keenly aware that the method cannot be 

apprehended as a universal tool for identification accuracy improvement. The partial result analysis 

(see previous graphs) leads to the assumption that the method could improve the accuracy for only 

some data. For some data sets the improvement grows at a rate proportional to merging level (e.g. 

Figure 9.2 and Figure 9.3); for some, the accuracy changes with high deviation (e.g. Figure 9.4, set 

7), even it is worse (e.g. Figure 9.5, data set 10 and 11 ). 

Before the application of the method, we suggest users tune the identification system by increasing 

the merging level gradually. The decision to use or not to use the method will need to be made after 

the results have been achieved. 
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10 Bird Song Database 

10.1 Introduction 

There is many amateur and professional ornithologists over the word, there is many people recording 

the bird song. Nevertheless, they do not share their recordings compared to linguists. The speech-to-

text systems use language corpuses and speech databases (i.e. human-speech data provided by 

National Institute of Standards and Technology) for a long time.  

There are commercial databases of bird and animal sounds on the market. Ornithology laboratories 

(e.g. Cornell Lab of Ornithology or Borror Laboratory) collect bird songs and release them as Audio 

CDs. Professional ornithologists have also released Audiobooks (e.g. Elliott, L., Read, M.: Common 

Birds and Their Songs), or CDs as a book appendix (e.g. Borror, D., J.: Common Bird Songs). These 

CDs are sold in many stores (e.g. amazon.com, discogs.com), often categorized under Field 

Recordings. British Library offers Wildlife and environmental sounds which is the largest collection 

of its kind in Europe and the most comprehensive in the world. Cornell Lab of Ornithology, Macaulay 

Library archive contains over 250,000 digital audio and video recordings of birds, mammals, 

amphibians, reptiles, fishes, and insects from around the world. Users may request access to 

download media from the traditional archive for research, educational, and personal uses. We 

explored the Cornell database for purposes of our thesis but it contains just 24x recordings of 

Common Chiffchaff (Phylloscopus collybita), on the other way an user find about 190 chiffchaff 

photos. Avibase is an extensive database information system about all birds of the world, containing 

over 17 million records about 10,000 species and 22,000 subspecies of birds, including distribution 

information, taxonomy, synonyms in several languages, also in Czech. Borror Laboratory of 

Bioacoustics archive contains over 40,000 animal sound recordings. They provide recordings for 

research, education, management, and other uses. The recordings requests from these libraries are 

under licensing fees except research purposes. 

There are many amateur ornithologists the world over, and many record the bird songs. Nevertheless, 

their bird song database is not open source. Few non-commercial databases exist to share recordings, 

the most known is xeno-canto.org. Another database was introduces in [ARR15]. It serves for storing 

and annotating of sequence of vocal sounds (song, phrase). Over 1000 recordings were collected for 

more than 30 bird species up to date. Main purpose of the database is to collect long-recordings and 

phrase tagging providing besides. Although some valuable function, actually this database could not 

be used for similar purpose as BSC, because it is not based strictly on rules for bird individual 

identification, for instance an individual identity classification requisite (just as optional filed), lack 

of some data (distance, localization, weather), song structure decomposition missing (song->phrase-

>syllables), etc. 

The main problem of these databases is the inconsistent quality of recordings. Amateur ornithologists 

make the recordings under different climatic and noise conditions with different recording devices. 

Nevertheless, there is great potential for an automated bird recognition tool(s) because a bird song 

listening, recording, and collecting has been a popular hobby for a hundred years. 

Scientists usually do not share recordings. If yes, so only with a close community like an institute, 

or faculty. However, a huge amount of data is necessary for an ARSBI design. This led the author to 

aim to build up a Bird Song Database (BSC) for scientific purposes. The BSC was designed and 

developed in the last three years and is under a commercial preparation process now. 
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The main BSC benefits will be data sharing, experiment repeating, and ARSBI tuning. The 

database should, similarly like human speech corpus, serve the scientists for data exchange and 

experiment making with those data. Thanks to BSC, it will be easier compare the achieved results 

and optimize the used methods.  

10.2 Requirements  

The general requirement for BSC is an easy manipulation with large data amount. Using the term 

data we mean recordings of birds and / or other animal species. Manipulation means uploading, 

viewing and downloading.  

BSC is designed for cataloguing of bird recordings using a web interface - browser. It also allows 

to present data online very simply. The system requirements can be divided into two parts - 

Frontend, which is the public outcome, and Backend, the system administration part. Both parts 

physically run at the same server, in both HW and SW, see Figure 10.1. 

 

 

Figure 10.1: BSC infrastructure. 

 

The system operates three levels of user authorization, see Table 25. 

 superadmin admin User 

User administration yes no no 

Log administration (access, activity) yes no no 

LOV administration yes yes no 

Recording upload and download yes yes yes 

Self-user profile management yes yes yes 
Table 25: User access levels. 

When uploading data (sound recordings), the files are sent to the server using HTTP protocol. After 

a successful saving into the server file system, only the records of the recording attributes such as 

its size, type and file link are filed into the record chart. The names are generated with a md5 cipher 

so the file cannot be easily addressed though HTTP.  
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10.3 Application functionality 

The necessary functions resulted from the analysis carried out among the future users, 

ornithologists and engineers responsible for system administration.  

10.3.1 Backend 

1. Access only for registered users according to their roles - superadmin, admin, user  

2. Enable the superadmins manage user accounts  

3. Catalogues individuals (birds), connect them to the table of keys, especially the order, family, 

species  

4. Enable system admins edit data   

5. Catalogue individual recordings   

6. Enable system users to upload such recordings   

7. Enable system users to edit their user accounts (password, contacts, etc.) 

8. English is the primary language with the option to switch into Czech. 

 

Frontend 

1. Public (unauthorized) approach - web pages 

2. Data aggregation at different levels (taxonomy, order, location)  

3. Possibility to search for and sort data within these aggregations  

4. Possibility to download the chosen recordings (sounds) from the web. 

5. English is the primary language with the option to switch into Czech. 

10.4 Database model 

The data model was created after the initial discussion with the project participants and collecting 

of the basic requirements for the database functions, see Figure 10.2. 
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Figure 10.2: Relational model. 

The list of the main charts and their utilization is given in Table 26. 

Table name Description 

rad List of values (LOV) Order  

celed LOV Family 

birds_list LOV Bird 

auth Users  

content Articles 

gallery Names of galleries 

pictures LOV Pictures 

gallery attachments LOV Attachments 

individual LOV Individuals 

records LOV Recording 

Table 26: List of application tables. 

10.5 General description 

The aim was to create the whole application using Open Source. The obvious advantage of such 

solution is the costs, when there is no need to pay the licence fee. The main parts are: Web Server 

including an OS, and Database Server. 
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Essential HW requirement for the system is the availability of a fast Internet connection, since the 

programme response time and comfort of the manipulation: upload and download the large size 

files, are based on this feature. 

Backend entities important for BSC administration and operation are: 

 List of taxonomy  

 LOV Birds 

 Mass import 

 LOV Individuals 

 LOV Recordings 

 LOV Gallery and pictures 

10.5.1 List of taxonomy 

The main content of the Administrator section is filling, and administration of List of values 

(LOV). One of the basic is Taxonomy LOV. For the needs of the Ornithologists it is sufficient to 

use just two levels: Orders, and Families. 

 

 

Figure 10.3: LOV Administration. 

10.5.2 LOV Birds 

The essential table of keys of the project is LOV Birds. The ambition of the project was not to 

create a complete database of known birds, but initially just birds that occur in the Czech Republic. 

Combining the information from public web pages and check by the scientists of the University of 

South Bohemia we managed to get the basic list of  224 of CZ with bound taxonomy.  
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Figure 10.4: LOV Birds. 

The key item of LOV is the Latin name, displayed in orange, that is together with the Czech name 

a compulsory item of the table of keys. Placing the mouse over the icon in the list shows  some 

editable details - size of the bird, time and habitat in the Czech Republic. 

10.5.3 Mass data import 

Because of the need to import a very large amount of data initially, Mass Data import was 

implemented.  That is a multi-step import, which requires preparation from the system 

administrator.  

The actual import is performed in three steps:  

1. A CSV file is selected. Its content is automatically analysed and the import  information 

appears in the application. 

2. If the file is OK, an instruction to upload the files appears. The administrator highlights the 

files designated for import and drags them onto the upload instruction. The files are item-

by-item compared with the CVS records and are transferred to the server. If the transfer is 

successful, the data will be shown and the chart with imported records will update. Records 

with the same name as the uploaded items will be marked green. 

3. By clicking the Proceed button the green marked recordings will be saved into the database 

and renamed with a coded name. In the end the import statistics appears, see Figure 10.5. 
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Figure 10.5: Mass import, step 3. Green colour signs the correctly imported records.  

Red colour signs an import error occurs. 

10.5.4 LOV Individuals 

To enable matching of the recordings with the particular bird, there is and aggregation element: 

chart Individuals, between the bird table of keys and table of recordings. Their relation is visible 

from the Data model (see Figure 10.2). It is possible to bound more individuals with one record in 

the bird table of keys, as well it does not have to be bound at all. An ornithologist might just want 

to enter an individual that had not been 100% identified yet, and bound it later. More recordings 

can be bound to one individual.  

10.5.5 LOV Recordings 

The table of recordings is the key chart of the whole system. Every record there determines, using a 

unique code, the name of the physical recording file in the file server storage. The record can be 

bound to the table of individuals, but this is not a condition.  

For an easier handling of recording, the Location function was implemented.  It is possible to 

match the GPS location with every record. This function is implemented using publically available 

functions API Google Maps. With one click into the map and click on the Save button the location 

record in database is updated. It is possible to navigate the map as in Google Maps, change the 

scale, and switch over between the display modes (Standard, Satellite, etc.). It is possible to display 

the location of every record with GPS position, see Figure 10.6. This list also takes into 

consideration the extract filter - it only displays the positions of the filtered part of the records. 

 

Figure 10.6: Navigate the map. 

10.6 Contribution 

The BSC will serve for data sharing between ornithologists; it makes comparing the achieved results 

easier for scientists, and so it helps to optimize the used methods. Contrary to speaker verification, 

the number of bird records is always limited. While creating a database for the human voice is 

theoretically unlimited and the researcher needs only “time and money“. The building up of a 

database of songs of a particular bird is strictly limited. Recording depends on season, weather, bird 
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mood and condition, accessibility of a nest, and many more factors, the last being the circumstantial. 

The bird recordings sharing avoids a researcher dependency on just a small amount of own data. 

To date, the BSC is out of operation because it has been moved from České Budějovice to NTIS, 
Pilsen. If we follow the plan, the BSC will be operational at the end of 2016. We plan to introduce 
the BSC in an article after a pilot run. 

10.7 Summary 

Automatic recognition of animal sounds is a relatively new field that is supported by a small amount 

of resources. The reason might be a lower attractiveness of the topic and its limited applicability 

compared to the human voice recognition. Another reason might be the vast variety of species and 

sounds in the animal kingdom as opposed to the “only one” human speech. That is why there has not 

been any database similar to BSC created yet.  The only available resources are web pages like e.g. 

xenocanto.org, that serve for saving just a limited amount of birdsongs, and do not allow more 

effective work with a large data amount. 
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11 Mashona mole-rat identification 

11.1 Introduction 

The zoologist of the University of South Bohemia, Faculty of Science have a one of the largest colony 

of the Mashona mole-rat over the world [DVO13]. Because the mole-rats live in the soil under the 

surface, its vocalization is very important for communication. Many experiments were performed to 

reveal the detail of its vocalization, communication, and the capability of the mutual recognition. 

Purpose of our experiment was to prove a possibility of the mole-rat individual identification based 

just on its mating calls. Zoologist of University of South Bohemia, Faculty of Science required 

system accuracy3 � to be at least � ≥ 65%. We used the Framework described in the chapter 

Development Framework. 

11.2 Mashona mole-rat 

The subterranean ecotype is unique in many aspects and has a great impact on the sensory biology 

of its inhabitants (reviewed in [BUR90], [FRA00]. Ubiquitous darkness prevents visual 

communication; reduced airflow limits olfactory sense. Acoustic signals can disperse here over 

medium distances of a few meters [HET86], [LAN07]. Under such conditions, vocalization becomes 

a crucial means of communication in mammals living underground 

The Mashona mole-rat (Fukomys darling, in Czech rypoš) belongs to the African endemic rodent 

family of African mole-rats (Bathyergidae, Rodentia) see Figure 11.1. This species was known as 

Cryptomys. It is an herbivorous, social subterranean rodent. These mole-rats live in Zimbabwe, 

Mozambique and southern Malawi in small families up to nine animals. There is strict hierarchy in 

their families [GAB96], [BED13]. 

 

Figure 11.1: The Mashona mole-rat individual. 

                                                      
3 System accuracy η is defined as simply the ratio of correctly identified mole-rats to total amount of 
individuals.  
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11.3 Data 

The data were recorded by Veronika Dvořáková, M.Sc., University of South Bohemia, Faculty of 

Science. She recorded two types of vocalizations of adult individuals based on the vocal repertoire 

of the Mashona mole-rat. Mating calls were used for experiments with individuality. The Snort 

sound was used for testing what information mole-rats are able to obtain from the signaller. The 

recordings were taken with the MD 431 II Sennheiser dynamic microphone (frequency range 40-

16.000 Hz) and recorded with the Marantz card audio recorder PMD660 (sample frequency 44.1 

kHz, resolution 16 bit). The mole-rats were simultaneously recorded using a Panasonic 

SDRH60EP-S camera to enable repeated checks of the testing sessions. 

For individual identification, vocalizations of five dominant (breeding) females were used. The 

recordings were divided into 20-second tracks. Each recordings was named by a combination of a 

single letter (A,B,..E) represents a particular female, and a number represents a no. of recordings, 

e.g. “A_04”, or “E_11”. 

Families or pairs were kept in terrariums with horticultural peat used as substrate and supplemented 

with plastic tubes as imitations of tunnels and flowerpots to simulate the nest see Figure 11.2. 

University of South Bohemia, Faculty of Science has mole-rat breeding that belong among the most 

representative collections of the underground mammals in the world. The experiments were carried 

out on these breeding and they serve to verify and add wild nature findings. The room was lighted in 

12D/12L (lights on at 0700 h). The temperature was kept at 25±1 °C. Animals were fed ad libitum 

with carrots, potatoes, apples and dry rodent food. 

 

Figure 11.2: The Mashona mole-rat colony in the University of South Bohemia, Faculty of Science. 

11.4 Vocalization 

This species possess two types of mating calls; see Figure 11.3, both emitted mostly by females 

during courtship [DVO13]. This call is often produced in a series when one type alternates the 

other. A cluck is a very short vocalization, with the mean duration of 0.03 s. The range of 
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frequency is very low and it usually does not exceed 5 kHz. A shriek is a sound similar to a cluck, 

but it has a main frequency lower than a cluck and does not show a rising frequency towards the 

end. 

    

Figure 11.3: Spectrograms of the mating calls: cluck (left), and shriek (right). 

11.5 Testing procedure 

To ensure the objectivity of testing, two rounds which differed in the animal used for the UBM 

were performed for every target female. 

Four older recordings from female B (recorded in 2010) were used. These four recordings were of 

poor quality as they were recorded by a different type of audio recorder (Sony Digital Audio Tape-

corder TCD-D100) and probably negatively affected the results when used for estimating GMM of 

female B. On the other hand, these recordings did not have any impact when used for estimating 

UBM and in the verification phase. Hence, we removed these recordings from experiments when 

female B was used as the target animal, but used them when other females were used as target 

animals. 

For the system, setup parameters see Table 27. 

Parameter Value 

Window type Hamming 

Window length 20 ms 

Window overlap 10 ms 

Number of filters 23 

Number of cepstral coefficients 20 

Compute zero coefficient logE Yes 

High pass filter 250 Hz 

Low pass filter not used 

Delta coefficients Yes 

VAD detector No 
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Preemphase 0.99 

Linear/MelFilter scale Mel 

Table 27: Parametrization set up values. 

11.6 Results 

Table 28 shows the overall success rate of individual identification. The number of obtained 

recordings (20 s soundtracks) varied from 10 to 40. 

Target # recordings Experiment 
round 

# test # errors Success 
rate (%) 

Overall 
success 
rate (%) 

A 33 round 1 1394 332 76.20% 82.30% 

  round 2 1904 253 86.70%  

B 26 round 1 1067 223 79.10% 79.30% 

  round 2 1012 207 79.50%  

C 40 round 1 1860 391 79.00% 79.00% 

  round 2 1700 358 78.90%  

D 10 round 1 540 202 62.60% 59.20% 

  round 2 1386 584 57.90%  

E 29 round 1 1190 192 83.90% 83.50% 

  round 2 1260 212 83.20%  

  OVERAL 13313 2954 77.80%  

Table 28: Mole-rat identification results. 

The success rate of correct identification of particular individual varied between 59.2% and 83.5% . 

The lowest number of correct identification was obtained in female D, which unfortunately died at 

the time of recordings. I obtained only 10 soundtracks from this female, which is significantly less 

compared to any other female (26, 29, 33, 40). When results of recognition of female D are 

excluded, the overall success rate increases to 80.9%. 

11.7 Contribution 

The experiments confirmed the hypothesis that the mole-rats’ vocalization also holds individuality 

identification [BED13]. As described above, this hypothesis is of high importance because of the 

mole-rats’ life environment. Based on our knowledge, these are the first experiments dealing with 

mole-rat automatic individual identification. Although the experiments were introduced in [DVO13], 

it was not published yet. We plan together with Ema Hrouzkova4, Ph.D. to extend the experiments 

into winter 2016, and to proceed to submit the results for an article. The aim is to support the 

hypotheses about the mole-rat vocalization individuality described in [BED13].  

11.8 Summary 

The GMM-UBM based automatic system used for individual recognition was able to match the 

recordings to the particular female with an overall success rate of 77.8% (even more 80.9% if the 

                                                      
4 Department of Zoology, Faculty of Science, University of South Bohemia Ceske Budejovice, Czech Republic 
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female that died, i.e. with the lowest number of the sounds recorded is excluded). The overall 

percentage is thus high enough to show that the mating calls of the Mashona mole-rat can carry 

information about mole-rat individuality [DVO13].  

Results demonstrated that mole-rats chose to follow the sound of the subordinate male. Females 

preferred subordinate, probably less dangerous individuals. Avoiding dominant males reflects the 

experiences from one’s own family where the dominant male is not the one with which to interact. 
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12 Conclusion 

Our thesis deals with automatic recognition and identification of bird individuals. The main goals as 

set in the Thesis goals chapter were fulfilled: 

First, we designed and tested ARSBI algorithms and methods for a chiffchaff individual 

identification using as-is recordings i.e. live recordings made by ornithologist in nature without any 

pre-processing. The accuracy of the designed ARSBI reached 78.5%. Thus, the accuracy	� ≥ 70% 

required by the ornithologists of University of South Bohemia, Faculty of Science was met (see 

section 1.1 Overview). 

Second, we propose a new feature extraction optimized for bird song. A new filter bank distribution 

BAF optimized for bird vocalization was designed. The EER improvements achieved using the test 

data were BAF to Linear 1.94% and BAF to Mel 4.42%. For the altered distribution BAF 1/3, an 

improvement of 3.56% to linear and 6.03% to Mel were reached. 

 

Further the partial goals of our thesis were reached: 

A new Bird Audiogram Unified Equation was found for mathematical expression of audiograms. We 

discovered the coefficients for forty-seven species and for four aggregated audiograms (all birds, 

Non-Passeriformes, Passeriformes, and Strigiformes).  

A BSC database was created for storing the annotated recordings of bird songs. The aim of the 

authors is to collect the highest possible quantity of recordings annotated by independent 

ornithologists. After being filled with data, BSC enables to carry out experiments with both ARSBI 

and ARSBS, and with techniques belonging to the State of the Art. The desired step would be training 

of matrix iVector so that similar or even better results as for training of human speech. The planned 

BSC live launch in the end of 2016. 

Experiments of bird identification using iVector were carried out. The system correctly identified 

nine birds of thirteen bird (69.2%). Based on our knowledge these are the first experiments dealing 

with bird individual identification by iVectors. Although the small scope of the experiments, we 

proved iVectors identification ability for Bird Individual Identification on the Closed Set. 

Data Merging method was designed for improving the accuracy of identifying ARSBI and ARSBS. 

An accuracy improvement varied between 0.1% and 9.9%, and 3.0% in average. Although the 

method cannot be apprehended as a universal tool for accuracy improvement, it could be useful in 

cases we battle with insufficient number of data.  

The last activity described in the thesis is identification of the mole-rats individuals. The success rate 

of individual identification varied between 59.2% and 83.5%, and 77.8% in average. Based on our 

knowledge these are the first experiments dealing with mole-rat automatic individual identification.  

Even it may seem the activity has no connection with the main topic, we include it into the thesis 

mainly because we used the identical Matlab Tool as in the whole research. That supports the idea, 

that the identification of animal individuals can be used more or less universally for any species, also 

for those with limited vocalization (number, frequency). The only limitation is the realistic chance 

of collecting sufficient amount of quality recordings. 

 



112 
 _______________________________________________________________________________  

  

It was proved that the ARSBI methods and algorithms we have introduced could be utilized for non-

contact identification of birds, in our case for chiffchaff. At the same time, it was verified that ARSBI 

could be used not only for birds, but also for other animal species. We hope that the presented thesis 

brings new knowledge that may lead to the creation of a universal system of automatic recognition 

of birds in the wilderness (ARSBI and ARSBS). We believe that this method shall be an essential 

contribution to the study of the diverse and colourful world of birds, the research of which is now 

limited by the restricted possibilities of ringing or DNA testing.   

12.1 Application of an automatic bird identification 

Automatic bird identification offers a wide spectrum of applications, for instance: 
Territory survey. A researcher installs automatic record machines near nests, triggered when the 

level of a bird song exceeds a limit. The recorders do not need an operator. He or she downloads 

records after a while then uses them for automatic recognition. At present, similar systems are used 

for night bird recordings. 

Migration birds mapping. Ornithologists from different countries could share the data. From 

these records, a database of individual birds could be established after creating a precise bird model 

set. Then every user of this registry may be verified if the recorded bird is included in the registry. 

Inaccessible breeding grounds observation. After installation of automatic recorders, data can be 

collected automatically. After a while, an ornithologist marks the recorders down. The recorders 

then do not need an operator: either they can run continually or they are triggered after a set volume 

levels is exceeded (Intensity Trigger, Limiter level). There are starting some projects having tens of 

recorders record continually for several days or weeks, see for example CIBRA project (University 

of Pavia). However, the major setback is the processing of the collected material that is dealt with 

manually at present, with only partial automatization. Full automatization would mean an essential 

breakthrough for the data processing. 

Environmental protection. Thanks to a more sophisticated way of mapping the way of bird life, 

more accurate information about the life and habits of birds shall be gained. More accurate 

estimations about the possible influence of human activity on the individual species shall be 

provided. Specific cases may be, for example, the locality of NP Šumava, highway constructions, 

planning buildings near nesting sites, etc.  

Protection of air traffic. Air traffic is very often put in danger because of birds. More detailed 

observation together with automatically evaluated records shall determine migration habits of 

individuals more accurately.  

Others. As a matter of interest, we would like to mention also the area, where according to the 

author´s opinion, automatic recognition can also be useful: for the leisurely ornithologist activities, 

in particular, the competitions of canary breeders. The canary songs are evaluated by the referees. 

The canaries are then evaluated with points according to the given criteria, as for example in 

gymnastics, and there is a final ranking in the end. The referees can never be fully objective; the 

automatic recognition can thus serve as additional means for independent evaluation. That can 

contribute to a better objectivity of such competitions.   
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12.2 Future work 

Many interesting areas appeared that deserve a more detailed research. The topics we want to study 

in the future are: 

 An automatic identification of bird individuals throughout months even years. 

 To define parameters for maximum result achievement. 

 To determine the required minimum of the recordings for which the system will still be 

capable of identifying a bird individual as well as the minimum number of recordings to 

achieve acceptable results (in the sense of recording quality, amount of data, etc.). For 

every ornithologist it is essential to know how many bird songs or recordings of certain 

quality have to be recorded to obtain a reasonable recognition accuracy of the ASRBI. 

 To specify the influences and obstacles that would affect the ARSBI ability. 

 Expansion of the mole-rat individual identification experiments, based just on its mating 
calls. 

 BSC deployment and operation. 

 

12.3 Personal note 

Ornithology is a traditional scientific field. No matter how developed the opportunities of 

automatization and data processing are today, I still find ornithology has not acquired much in 

utilizing of such technologies. One of the reasons may also be its conservative approach: why should 

we do it in a different way, it had been done for years and it works. I have noticed this opinion at 

many ornithologists. They promptly refuse the automatic recognition as something not useful at all, 

because ringing and binoculars do the job. Unfortunately, more advanced methods (cepstral analysis, 

wavelet analysis, correlation analysis, etc.). At present there are also not many software solutions 

tailored to animal vocalization processing. For bird song analysis and gaining information from 

recordings, a spectrogram analysis is widely used in ornithology. Spectrograms are sometimes, with 

regret, perceived as the universal source of information about vocalization. The effort to mine 

features from the spectrum thus results, features that are not possible to gain at all or get inaccurately 

(pitch, vocal unique parameters, humour, age of an animal, etc.). In addition, the insufficient 

knowledge of frequency analysis appears and related restrictions (e.g. relation between n-point DFT 

and the signal length, Nyquist frequency, aliasing, quantization error, loss of time information during 

time-to-frequency transformation, etc.). Similarly ornithology approaches to signal filtering. 

Spectrum is most often understood as a picture,  where the filtration is made by a simple cut out of a 

part of the picture, in other words the unrequired part of the frequency pattern.  Possible restrictions 

(filter quality, steepness, wavelet, spectre leakage, frequency dependence of phase shift, etc.) are not 

taken into consideration, resulting from a poor knowledge of technical principles.  

One of my colleagues, ornithologist, worked on the spectrographic recordings of bird singing and 

looked for mutual differences as part of his thesis. He dedicated one whole year of work to this study. 

I am not afraid to say that the automatization would shorten this activity to hours. 
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The above-described approach of ornithologists towards technology is understandable. Ornithology 

is a complex and traditional science, including a lot of knowledge that is necessary to acquire if a 

person wants to work on a certain advanced level. It is a humanities field requiring a different way 

of thinking compared to technical fields. Ornithologist understand the IT technology as the tool for 

getting the required information, and do not analyse its principles. A technician would most probably 

not be interested in a top-level ornithology, as such level requires memorizing a huge amount of 

encyclopaedic knowledge.  

Thanks to the appearance of the new generation of scientists, we can observe a partial deflection 

from such philosophy. The young generation takes tablets, smartphones, and social networks as an 

everyday part of life and sees the potential of those technologies.  

Another reason for the minimum penetration of automatization into ornithology I consider the 

distance or even fear zoologists have towards technologies. It is apparent at any humanitarian person, 

and every technician is more than familiar with it. The orientation of zoologists and any living person 

is simply different from that of a geek whose life is filled by gadgets and modern technology toys. 

Such differences are an endless source of many films and TV series (Beautiful Mind), music albums 

(Tata Boys Nanoalbum) or books (Surely You're Joking, Mr. Feynman! Adventures of a Curious 

Character). 

In my opinion, the interdisciplinary cooperation can bring, apart from an original view of the 

problems, another positive side and that is the mutual enrichment. The technician helps with 

implementation of modern technologies. The scientist shows the technician that life is about not only 

zeros and ones, and that nature offers endless variety. I fully respect ornithology and appreciate the 

opportunity of the cooperation. Because of the nature of my job I consider myself an engineer, I am 

glad my colleagues - ornithologists - help me mediate an original view of the world. 
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13 Appendix 

The stated outputs were obtained from GNUPlot software, see section 7.2. The first page contains 

aggregate audiograms as shown in Table 18 (All Birds, Non-Passeriformes, Passeriformes, and 

Strigiformes). ). The remaining parts contain audiograms for the particular analysed species. Their 

complete list as in Table 17. 

 

Legend 

 

 

 

  

[DOO02b] page number, 
audiogram type. 

Audiogram parameters  
see Table 16. 

A final audiogram. The purple 
crosses represent localization 
points we put on the original 
audiogram. The coloured line 
is the graph of f1 see Figure 
7.3. Notice the frequency axis 
is in log2 scale. 

; 

Final set of parameters see 
Table 17 and Table 18. 
Parameter asymptotic  

standard error. 

GNUPlot iteration results for f1 
see equations (74), (75),  

and (76). 



pg_0070-B-48 :

all birds ( )

15.57 2.00 0.32 5.22 1.28 4.91

Obrázek 48: Audiogram all birds ( )

After 1442 iterations the fit converged.

final sum of squares of residuals : 0.11888

rel. change during last iteration : -6.85045e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.11493

variance of residuals (reduced chisquare) = WSSR/ndf : 0.0132089

Final set of parameters Asymptotic Standard Error

a = 11.8718 +/- 0.6325 (5.328%)

b = 0.734457 +/- 0.009855 (1.342%)

c = 524.5 +/- 151.5 (28.88%)

d = -0.0360242 +/- 0.00966 (26.82%)

e = -527.81 +/- 152.1 (28.81%)

pg_0071-B-49 :

01-12 (Non Passeriformes)

15.57 2.00 0.32 5.22 1.28 4.91

Obrázek 49: Audiogram 01-12 (Non Passeriformes)

After 4276 iterations the fit converged.

final sum of squares of residuals : 0.0541087

rel. change during last iteration : -3.57858e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0775376

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00601208

Final set of parameters Asymptotic Standard Error

a = 18.7657 +/- 0.6405 (3.413%)

b = 0.692153 +/- 0.005916 (0.8547%)

c = -2884.21 +/- 2526 (87.59%)

d = 0.0076418 +/- 0.006818 (89.22%)

e = 2881.98 +/- 2527 (87.68%)

pg_0072-B-50 :

13-35 (Passeriformes)

15.57 2.00 0.32 5.22 1.28 4.91

Obrázek 50: Audiogram 13-35 (Passeriformes)

After 3740 iterations the fit converged.

final sum of squares of residuals : 0.0105172

rel. change during last iteration : -3.29397e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0341844

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00116857

Final set of parameters Asymptotic Standard Error

a = 12.0993 +/- 0.2333 (1.928%)

b = 0.712241 +/- 0.003446 (0.4839%)

c = 1904.88 +/- 507.4 (26.64%)

d = -0.0110408 +/- 0.002869 (25.99%)

e = -1901.79 +/- 507.7 (26.69%)

pg_0073-B-51 :

36-47 (Strigiformes)

15.57 2.00 0.32 5.22 1.28 4.91

Obrázek 51: Audiogram 36-47 (Strigiformes)

After 3726 iterations the fit converged.

final sum of squares of residuals : 0.0134215

rel. change during last iteration : -3.11217e-07

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0386171

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00149128

Final set of parameters Asymptotic Standard Error

a = 12.2142 +/- 0.265 (2.17%)

b = 0.710617 +/- 0.003876 (0.5455%)

c = 1379.51 +/- 465.1 (33.71%)

d = -0.012282 +/- 0.004028 (32.8%)

e = -1402.81 +/- 465.3 (33.17%)



pg_0023-B-01 :

Mallard Duck (Anas platyrhynchos)

15.57 2.00 0.32 5.22 1.28 4.91

Obrázek 1: Audiogram Mallard Duck (Anas platyrhynchos)

After 4316 iterations the fit converged.

final sum of squares of residuals : 0.155299

rel. change during last iteration : -1.20649e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.13136

variance of residuals (reduced chisquare) = WSSR/ndf : 0.0172554

Final set of parameters Asymptotic Standard Error

a = 19.6151 +/- 1.17 (5.966%)

b = 0.690624 +/- 0.01041 (1.507%)

c = -3256.3 +/- 4966 (152.5%)

d = 0.00727713 +/- 0.0113 (155.2%)

e = 3256.49 +/- 4967 (152.5%)

pg_0024-B-02 :

Australian Grey Swiftlet (Collocalia spodiopygia)

20.31 2.00 0.49 5.71 1.66 5.23

Obrázek 2: Audiogram Australian Grey Swiftlet (Collocalia spodiopygia)

After 3747 iterations the fit converged.

final sum of squares of residuals : 0.0593927

rel. change during last iteration : -1.82682e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0812354

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00659919

Final set of parameters Asymptotic Standard Error

a = 18.5348 +/- 0.5943 (3.206%)

b = 0.708868 +/- 0.005754 (0.8117%)

c = 2419.5 +/- 1091 (45.07%)

d = -0.0118689 +/- 0.005207 (43.87%)

e = -2408.24 +/- 1091 (45.31%)

pg_0025-B-03 :

Oilbird (Steatornis caripensis)

20.31 2.00 0.49 5.71 1.66 5.23

Obrázek 3: Audiogram Oilbird (Steatornis caripensis)

After 3963 iterations the fit converged.

final sum of squares of residuals : 0.00903014

rel. change during last iteration : -1.84354e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0316757

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00100335

Final set of parameters Asymptotic Standard Error

a = 10.9649 +/- 0.2267 (2.067%)

b = 0.70453 +/- 0.003666 (0.5204%)

c = 1858.69 +/- 613.8 (33.02%)

d = -0.00974333 +/- 0.003147 (32.3%)

e = -1851.8 +/- 614 (33.16%)

pg_0026-B-04 :

Emu (Dromaius novaehollandiae)

17.39 1.41 0.20 4.04 0.88 3.85

Obrázek 4: Audiogram Emu (Dromaius novaehollandiae)

After 3429 iterations the fit converged.

final sum of squares of residuals : 0.709296

rel. change during last iteration : -9.9957e-06

degrees of freedom (FIT_NDF) : 8

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.297762

variance of residuals (reduced chisquare) = WSSR/ndf : 0.0886621

Final set of parameters Asymptotic Standard Error

a = 22.8571 +/- 3.698 (16.18%)

b = 0.699756 +/- 0.0299 (4.273%)

c = -2892.04 +/- 1.531e+04 (529.4%)

d = 0.00707593 +/- 0.03816 (539.3%)

e = 2887.24 +/- 1.531e+04 (530.4%)



pg_0027-B-05 :

Plains Wanderer (Pedionomus torquatus)

33.80 0.71 0.05 3.56 0.44 3.50

Obrázek 5: Audiogram Plains Wanderer (Pedionomus torquatus)

After 4241 iterations the fit converged.

final sum of squares of residuals : 0.0170089

rel. change during last iteration : -3.08153e-07

degrees of freedom (FIT_NDF) : 8

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0461098

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00212611

Final set of parameters Asymptotic Standard Error

a = 20.2978 +/- 0.6944 (3.421%)

b = 0.689831 +/- 0.006341 (0.9192%)

c = -1208.69 +/- 1387 (114.8%)

d = 0.00979192 +/- 0.01154 (117.9%)

e = 1222.24 +/- 1388 (113.6%)

pg_0028-B-06 :

Pigeon (Columbia livia)

16.90 1.41 5.67 0.13 5.80 5.67

Obrázek 6: Audiogram Pigeon (Columbia livia)

After 4241 iterations the fit converged.

final sum of squares of residuals : 0.0170089

rel. change during last iteration : -3.08153e-07

degrees of freedom (FIT_NDF) : 8

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0461098

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00212611

Final set of parameters Asymptotic Standard Error

a = 20.2978 +/- 0.6944 (3.421%)

b = 0.689831 +/- 0.006341 (0.9192%)

c = -1208.69 +/- 1387 (114.8%)

d = 0.00979192 +/- 0.01154 (117.9%)

e = 1222.24 +/- 1388 (113.6%)

pg_0029-B-07 :

American Kestrel (Falco sparverius)

2.42 2.00 0.36 5.25 1.37 4.89

Obrázek 7: Audiogram American Kestrel (Falco sparverius)

After 1629 iterations the fit converged.

final sum of squares of residuals : 0.264687

rel. change during last iteration : -2.31468e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.171493

variance of residuals (reduced chisquare) = WSSR/ndf : 0.0294097

Final set of parameters Asymptotic Standard Error

a = 23.9205 +/- 1.911 (7.99%)

b = 0.662058 +/- 0.01315 (1.987%)

c = -782.247 +/- 281.2 (35.94%)

d = 0.035272 +/- 0.01397 (39.61%)

e = 766.256 +/- 283 (36.94%)

pg_0030-B-08 :

European Sparrowhawk (Accipiter nisus)

4.27 2.00 0.35 5.39 1.37 5.04

Obrázek 8: Audiogram European Sparrowhawk (Accipiter nisus)

After 4517 iterations the fit converged.

final sum of squares of residuals : 0.0422705

rel. change during last iteration : -7.13187e-07

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0685327

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00469673

Final set of parameters Asymptotic Standard Error

a = 19.8187 +/- 0.5828 (2.941%)

b = 0.687179 +/- 0.005069 (0.7377%)

c = -3101.63 +/- 2049 (66.06%)

d = 0.00801726 +/- 0.005401 (67.36%)

e = 3091.44 +/- 2049 (66.29%)



pg_0031-B-09 :

Bobwhite Quail (Colinus virgianus)

13.15 2.00 2.13 8.70 1.35 6.57

Obrázek 9: Audiogram Bobwhite Quail (Colinus virgianus)

After 4517 iterations the fit converged.

final sum of squares of residuals : 0.0422705

rel. change during last iteration : -7.13187e-07

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0685327

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00469673

Final set of parameters Asymptotic Standard Error

a = 19.8187 +/- 0.5828 (2.941%)

b = 0.687179 +/- 0.005069 (0.7377%)

c = -3101.63 +/- 2049 (66.06%)

d = 0.00801726 +/- 0.005401 (67.36%)

e = 3091.44 +/- 2049 (66.29%)

pg_0032-B-10 :

Chicken (Gallus gallus)

7.37 1.41 0.20 4.10 0.91 3.90

Obrázek 10: Audiogram Chicken (Gallus gallus)

After 3893 iterations the fit converged.

final sum of squares of residuals : 0.0983042

rel. change during last iteration : -1.11988e-06

degrees of freedom (FIT_NDF) : 8

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.110851

variance of residuals (reduced chisquare) = WSSR/ndf : 0.012288

Final set of parameters Asymptotic Standard Error

a = 23.155 +/- 1.283 (5.539%)

b = 0.692576 +/- 0.01002 (1.446%)

c = -2599.53 +/- 4174 (160.6%)

d = 0.00799712 +/- 0.01311 (163.9%)

e = 2584.57 +/- 4175 (161.5%)

pg_0033-B-11 :

Japanese Quail (Coturnix coturnix japonica)

1.40 2.00 0.47 5.90 1.66 5.43

Obrázek 11: Audiogram Japanese Quail (Coturnix coturnix japonica)

After 3957 iterations the fit converged.

final sum of squares of residuals : 0.0164719

rel. change during last iteration : -1.07258e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.042781

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00183021

Final set of parameters Asymptotic Standard Error

a = 17.6339 +/- 0.3036 (1.722%)

b = 0.705661 +/- 0.003057 (0.4332%)

c = 2703.4 +/- 759.5 (28.1%)

d = -0.0101645 +/- 0.002791 (27.46%)

e = -2710.31 +/- 759.8 (28.03%)

pg_0034-B-12 :

Turkey (Meleagris gallopavo)

15.43 2.00 0.29 5.25 1.22 4.96

Obrázek 12: Audiogram Turkey (Meleagris gallopavo)

After 4323 iterations the fit converged.

final sum of squares of residuals : 0.0935137

rel. change during last iteration : -3.53741e-07

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.101933

variance of residuals (reduced chisquare) = WSSR/ndf : 0.0103904

Final set of parameters Asymptotic Standard Error

a = 18.9526 +/- 0.8856 (4.672%)

b = 0.690194 +/- 0.008121 (1.177%)

c = -2959.8 +/- 3515 (118.7%)

d = 0.00754701 +/- 0.009129 (121%)

e = 2959.84 +/- 3516 (118.8%)



pg_0035-B-13 :

American Robin (Turdus migratorius)

7.49 2.83 0.34 8.73 1.72 8.39

Obrázek 13: Audiogram American Robin (Turdus migratorius)

After 3941 iterations the fit converged.

final sum of squares of residuals : 0.00725465

rel. change during last iteration : -7.74861e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0283914

variance of residuals (reduced chisquare) = WSSR/ndf : 0.000806073

Final set of parameters Asymptotic Standard Error

a = 9.29235 +/- 0.2004 (2.157%)

b = 0.706929 +/- 0.003832 (0.5421%)

c = 1876.33 +/- 586.1 (31.23%)

d = -0.00941182 +/- 0.002878 (30.58%)

e = -1869.34 +/- 586.3 (31.36%)

pg_0036-B-14 :

Blue Jay (Cyanocitta cristata)

14.46 2.00 0.28 6.31 1.33 6.03

Obrázek 14: Audiogram Blue Jay (Cyanocitta cristata)

After 4101 iterations the fit converged.

final sum of squares of residuals : 0.00880649

rel. change during last iteration : -6.85812e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.031281

variance of residuals (reduced chisquare) = WSSR/ndf : 0.000978499

Final set of parameters Asymptotic Standard Error

a = 13.2034 +/- 0.2243 (1.699%)

b = 0.704129 +/- 0.003012 (0.4278%)

c = 1889.04 +/- 595.9 (31.55%)

d = -0.00983117 +/- 0.003033 (30.85%)

e = -1882.75 +/- 596.2 (31.66%)

pg_0037-B-15 :

Brown-headed Cowbird (Molothrus ater)

11.50 2.83 0.35 8.50 1.72 8.15

Obrázek 15: Audiogram Brown-headed Cowbird (Molothrus ater)

After 3892 iterations the fit converged.

final sum of squares of residuals : 0.00880884

rel. change during last iteration : -9.09264e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0312851

variance of residuals (reduced chisquare) = WSSR/ndf : 0.000978759

Final set of parameters Asymptotic Standard Error

a = 9.68272 +/- 0.2215 (2.288%)

b = 0.70611 +/- 0.004063 (0.5755%)

c = 1810.32 +/- 573.6 (31.68%)

d = -0.00999705 +/- 0.003096 (30.97%)

e = -1799.75 +/- 573.8 (31.88%)

pg_0038-B-16 :

Bullfinch (Pyrrhula pyrrhula)

-0.50 2.83 0.48 10.20 2.21 9.72

Obrázek 16: Audiogram Bullfinch (Pyrrhula pyrrhula)

After 6254 iterations the fit converged.

final sum of squares of residuals : 0.00441906

rel. change during last iteration : -9.99889e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0221587

variance of residuals (reduced chisquare) = WSSR/ndf : 0.000491007

Final set of parameters Asymptotic Standard Error

a = 8.73047 +/- 0.1656 (1.897%)

b = 0.700806 +/- 0.00334 (0.4766%)

c = 5081.55 +/- 2713 (53.38%)

d = -0.00389487 +/- 0.00206 (52.9%)

e = -5077.4 +/- 2713 (53.43%)



pg_0039-B-17 :

Chipping Sparrow (Spizella passerina)

2.06 4.00 0.59 12.90 2.75 12.31

Obrázek 17: Audiogram Chipping Sparrow (Spizella passerina)

After 3713 iterations the fit converged.

final sum of squares of residuals : 0.0118744

rel. change during last iteration : -2.169e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0363232

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00131937

Final set of parameters Asymptotic Standard Error

a = 6.40234 +/- 0.249 (3.889%)

b = 0.711876 +/- 0.006937 (0.9744%)

c = 2095.93 +/- 775.7 (37.01%)

d = -0.00919708 +/- 0.003334 (36.25%)

e = -2082.22 +/- 775.9 (37.26%)

pg_0040-B-18 :

Common Canary (Serinus canarius)

15.98 2.83 0.47 9.37 2.08 8.90

Obrázek 18: Audiogram Common Canary (Serinus canarius)

After 1175 iterations the fit converged.

final sum of squares of residuals : 0.728832

rel. change during last iteration : -9.54049e-07

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.284572

variance of residuals (reduced chisquare) = WSSR/ndf : 0.0809813

Final set of parameters Asymptotic Standard Error

a = 6.99756 +/- 1.342 (19.17%)

b = 0.756999 +/- 0.03619 (4.781%)

c = 438.35 +/- 252 (57.48%)

d = -0.0427403 +/- 0.02259 (52.86%)

e = -416.765 +/- 253.3 (60.77%)

pg_0041-B-19 :

Common Crow (Corvus brachyrhynchos)

-16.41 2.00 0.47 4.57 1.46 4.10

Obrázek 19: Audiogram Common Crow (Corvus brachyrhynchos)

After 4196 iterations the fit converged.

final sum of squares of residuals : 0.77613

rel. change during last iteration : -1.2792e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.293661

variance of residuals (reduced chisquare) = WSSR/ndf : 0.0862367

Final set of parameters Asymptotic Standard Error

a = 27.3755 +/- 2.828 (10.33%)

b = 0.692923 +/- 0.01826 (2.635%)

c = -4876.45 +/- 1.238e+04 (253.9%)

d = 0.00710128 +/- 0.01835 (258.4%)

e = 4840 +/- 1.238e+04 (255.8%)

pg_0042-B-20 :

European Starling (Sturnus vulgaris)

8.00 2.00 0.23 6.43 1.20 6.20

Obrázek 20: Audiogram European Starling (Sturnus vulgaris)

After 4154 iterations the fit converged.

final sum of squares of residuals : 0.00906184

rel. change during last iteration : -4.718e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0317312

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00100687

Final set of parameters Asymptotic Standard Error

a = 12.2944 +/- 0.2284 (1.858%)

b = 0.703478 +/- 0.003292 (0.4679%)

c = 1658.01 +/- 588.1 (35.47%)

d = -0.00997581 +/- 0.003459 (34.67%)

e = -1658.35 +/- 588.3 (35.47%)



pg_0043-B-21 :

Field Sparrow (Spizella pusilla)

9.61 2.83 0.32 8.65 1.65 8.33

Obrázek 21: Audiogram Field Sparrow (Spizella pusilla)

After 3920 iterations the fit converged.

final sum of squares of residuals : 0.0090912

rel. change during last iteration : -9.46687e-07

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0317826

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00101013

Final set of parameters Asymptotic Standard Error

a = 9.21394 +/- 0.2243 (2.435%)

b = 0.706816 +/- 0.004326 (0.612%)

c = 1758.36 +/- 619.5 (35.23%)

d = -0.009687 +/- 0.003339 (34.47%)

e = -1749.95 +/- 619.7 (35.41%)

pg_0044-B-22 :

Fire finch (Lagonosticta senegala)

10.89 2.00 0.50 6.49 1.79 5.99

Obrázek 22: Audiogram Fire finch (Lagonosticta senegala)

After 3892 iterations the fit converged.

final sum of squares of residuals : 0.0180105

rel. change during last iteration : -9.68491e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0447344

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00200117

Final set of parameters Asymptotic Standard Error

a = 15.7395 +/- 0.3181 (2.021%)

b = 0.705706 +/- 0.003587 (0.5083%)

c = 2847.53 +/- 913.9 (32.09%)

d = -0.00947517 +/- 0.002976 (31.41%)

e = -2841.59 +/- 914.2 (32.17%)

pg_0045-B-23 :

Great tit (Parus major)

3.07 2.00 0.32 8.17 1.60 5.02

Obrázek 23: Audiogram Great tit (Parus major)

After 3908 iterations the fit converged.

final sum of squares of residuals : 0.00988154

rel. change during last iteration : -2.38496e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0331353

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00109795

Final set of parameters Asymptotic Standard Error

a = 10.2496 +/- 0.2355 (2.298%)

b = 0.705533 +/- 0.004079 (0.5781%)

c = 1783.18 +/- 615.8 (34.54%)

d = -0.00993607 +/- 0.003355 (33.77%)

e = -1783.19 +/- 616.1 (34.55%)

pg_0046-B-24 :

House finch (Carpodacus mexicanus)

14.55 2.00 0.44 6.00 1.61 5.56

Obrázek 24: Audiogram House finch (Carpodacus mexicanus)

After 4048 iterations the fit converged.

final sum of squares of residuals : 0.0193257

rel. change during last iteration : -2.18601e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0463389

variance of residuals (reduced chisquare) = WSSR/ndf : 0.0021473

Final set of parameters Asymptotic Standard Error

a = 16.7576 +/- 0.3323 (1.983%)

b = 0.704423 +/- 0.003515 (0.499%)

c = 2746.77 +/- 970.1 (35.32%)

d = -0.00937526 +/- 0.003241 (34.57%)

e = -2740.42 +/- 970.4 (35.41%)



pg_0047-B-25 :

House Sparrow (Passer domesticus)

-8.31 1.41 0.29 4.55 1.13 4.27

Obrázek 25: Audiogram House Sparrow (Passer domesticus)

After 4147 iterations the fit converged.

final sum of squares of residuals : 0.309682

rel. change during last iteration : -1.57487e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.185497

variance of residuals (reduced chisquare) = WSSR/ndf : 0.0344091

Final set of parameters Asymptotic Standard Error

a = 22.2117 +/- 1.663 (7.488%)

b = 0.693419 +/- 0.01314 (1.895%)

c = -3497.61 +/- 8035 (229.7%)

d = 0.00683571 +/- 0.01597 (233.6%)

e = 3469.87 +/- 8037 (231.6%)

pg_0048-B-26 :

Pied Flycatcher (Ficedula hypolueca)

11.70 2.83 0.44 7.34 1.79 6.90

Obrázek 26: Audiogram Pied Flycatcher (Ficedula hypolueca)

After 3929 iterations the fit converged.

final sum of squares of residuals : 0.0129479

rel. change during last iteration : -3.14935e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0379296

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00143866

Final set of parameters Asymptotic Standard Error

a = 12.6422 +/- 0.2687 (2.125%)

b = 0.70622 +/- 0.003774 (0.5344%)

c = 2349.14 +/- 742.4 (31.6%)

d = -0.00967388 +/- 0.002991 (30.92%)

e = -2340.01 +/- 742.7 (31.74%)

pg_0049-B-27 :

Red-winged Blackbird (Agelaius phoeniceus)

11.85 2.83 0.33 8.20 1.64 7.87

Obrázek 27: Audiogram Red-winged Blackbird (Agelaius phoeniceus)

After 3974 iterations the fit converged.

final sum of squares of residuals : 0.0105685

rel. change during last iteration : -7.70427e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0342677

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00117427

Final set of parameters Asymptotic Standard Error

a = 10.2342 +/- 0.2441 (2.385%)

b = 0.705722 +/- 0.004231 (0.5995%)

c = 2016.04 +/- 771.7 (38.28%)

d = -0.00902441 +/- 0.003384 (37.5%)

e = -2006.53 +/- 772 (38.47%)

pg_0050-B-28 :

Slate-colored Junco (Junco hyemalis)

-5.29 2.83 0.68 8.25 2.36 7.57

Obrázek 28: Audiogram Slate-colored Junco (Junco hyemalis)

After 3903 iterations the fit converged.

final sum of squares of residuals : 0.0202193

rel. change during last iteration : -4.1674e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0473982

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00224659

Final set of parameters Asymptotic Standard Error

a = 12.5593 +/- 0.3295 (2.623%)

b = 0.709278 +/- 0.004671 (0.6586%)

c = 2905.14 +/- 911.1 (31.36%)

d = -0.0097247 +/- 0.002984 (30.68%)

e = -2904.7 +/- 911.5 (31.38%)



pg_0051-B-29 :

Song Sparrow (Melospiza melodia)

4.98 2.83 0.33 8.76 1.69 8.43

Obrázek 29: Audiogram Song Sparrow (Melospiza melodia)

After 5484 iterations the fit converged.

final sum of squares of residuals : 0.00189632

rel. change during last iteration : -9.99183e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0145156

variance of residuals (reduced chisquare) = WSSR/ndf : 0.000210702

Final set of parameters Asymptotic Standard Error

a = 9.52358 +/- 0.1082 (1.136%)

b = 0.700698 +/- 0.002001 (0.2856%)

c = 3561.02 +/- 1125 (31.61%)

d = -0.00489455 +/- 0.00153 (31.25%)

e = -3557.21 +/- 1126 (31.64%)

pg_0052-B-30 :

Swamp Sparrow (Melospiza georgiana)

6.05 2.83 0.37 9.00 1.82 8.63

Obrázek 30: Audiogram Swamp Sparrow (Melospiza georgiana)

After 2578 iterations the fit converged.

final sum of squares of residuals : 0.772093

rel. change during last iteration : -9.99356e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.292896

variance of residuals (reduced chisquare) = WSSR/ndf : 0.0857882

Final set of parameters Asymptotic Standard Error

a = 8.6637 +/- 1.936 (22.35%)

b = 0.717871 +/- 0.04007 (5.582%)

c = 1978.67 +/- 6333 (320.1%)

d = -0.0090733 +/- 0.02846 (313.7%)

e = -1971.45 +/- 6335 (321.3%)

pg_0053-B-31 :

Western Meadowlark (Sturnella neglecta)

-3.06 2.00 0.37 5.55 1.42 5.18

Obrázek 31: Audiogram Western Meadowlark (Sturnella neglecta)

After 4670 iterations the fit converged.

final sum of squares of residuals : 0.030098

rel. change during last iteration : -9.0441e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0578293

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00334422

Final set of parameters Asymptotic Standard Error

a = 19.555 +/- 0.4958 (2.535%)

b = 0.68609 +/- 0.004365 (0.6363%)

c = -3034.19 +/- 1597 (52.62%)

d = 0.00835449 +/- 0.004487 (53.71%)

e = 3017.73 +/- 1597 (52.92%)

pg_0054-B-32 :

Zebra Finch (Taeniopygia guttata)

17.98 2.83 0.44 8.24 1.89 7.81

Obrázek 32: Audiogram Zebra Finch (Taeniopygia guttata)

After 5639 iterations the fit converged.

final sum of squares of residuals : 0.00417722

rel. change during last iteration : -9.988e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0215438

variance of residuals (reduced chisquare) = WSSR/ndf : 0.000464136

Final set of parameters Asymptotic Standard Error

a = 11.268 +/- 0.1611 (1.429%)

b = 0.700425 +/- 0.002516 (0.3593%)

c = 4666.73 +/- 1937 (41.5%)

d = -0.00454736 +/- 0.001867 (41.06%)

e = -4649.21 +/- 1937 (41.66%)



pg_0055-B-33 :

Bourke’s Parrot (Neophema bourkii)

17.36 2.00 0.23 6.50 1.22 6.27

Obrázek 33: Audiogram Bourke’s Parrot (Neophema bourkii)

After 4185 iterations the fit converged.

final sum of squares of residuals : 0.0103867

rel. change during last iteration : -6.81314e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0339717

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00115408

Final set of parameters Asymptotic Standard Error

a = 12.3652 +/- 0.2455 (1.985%)

b = 0.703078 +/- 0.003516 (0.5%)

c = 1755.74 +/- 691.5 (39.39%)

d = -0.00952326 +/- 0.00367 (38.54%)

e = -1746.66 +/- 691.8 (39.61%)

pg_0056-B-34 :

Budgerigar (Melopsittacus undulatus)

0.80 2.00 0.36 5.97 1.45 5.62

Obrázek 34: Audiogram Budgerigar (Melopsittacus undulatus)

After 4111 iterations the fit converged.

final sum of squares of residuals : 0.0184701

rel. change during last iteration : -2.73268e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0453016

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00205224

Final set of parameters Asymptotic Standard Error

a = 15.5471 +/- 0.3269 (2.102%)

b = 0.703388 +/- 0.003724 (0.5294%)

c = 2382.28 +/- 945.2 (39.68%)

d = -0.00940287 +/- 0.003652 (38.84%)

e = -2390.49 +/- 945.5 (39.55%)

pg_0057-B-35 :

Cockatiel (Nymphicus hollandicus)

8.60 1.41 0.22 5.22 1.08 5.00

Obrázek 35: Audiogram Cockatiel (Nymphicus hollandicus)

After 1581 iterations the fit converged.

final sum of squares of residuals : 0.16501

rel. change during last iteration : -5.96023e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.135405

variance of residuals (reduced chisquare) = WSSR/ndf : 0.0183344

Final set of parameters Asymptotic Standard Error

a = 20.0919 +/- 1.456 (7.246%)

b = 0.66705 +/- 0.012 (1.798%)

c = -593.939 +/- 226 (38.05%)

d = 0.0347311 +/- 0.01452 (41.82%)

e = 584.858 +/- 227.4 (38.89%)

pg_0058-B-36 :

African Wood Owl (Strix woodfordii)

-13.40 2.40 0.33 7.90 1.60 7.58

Obrázek 36: Audiogram African Wood Owl (Strix woodfordii)

After 3945 iterations the fit converged.

final sum of squares of residuals : 0.00944017

rel. change during last iteration : -1.31468e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0323868

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00104891

Final set of parameters Asymptotic Standard Error

a = 10.5762 +/- 0.2307 (2.182%)

b = 0.705346 +/- 0.003871 (0.5488%)

c = 1897.42 +/- 648.1 (34.16%)

d = -0.00957758 +/- 0.003201 (33.42%)

e = -1913.98 +/- 648.4 (33.88%)



pg_0059-B-37 :

Barn Owl (Tyto alba)

-16.20 2.83 0.32 12.00 1.95 11.68

Obrázek 37: Audiogram Barn Owl (Tyto alba)

After 3959 iterations the fit converged.

final sum of squares of residuals : 0.00740078

rel. change during last iteration : -6.97308e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0286759

variance of residuals (reduced chisquare) = WSSR/ndf : 0.000822309

Final set of parameters Asymptotic Standard Error

a = 6.09353 +/- 0.2011 (3.3%)

b = 0.708372 +/- 0.005868 (0.8284%)

c = 1654.48 +/- 679.1 (41.04%)

d = -0.00877175 +/- 0.00353 (40.24%)

e = -1666.57 +/- 679.3 (40.76%)

pg_0060-B-38 :

Brown Fish Owl (Ketupa zeylonensis)

-1.60 1.00 0.08 4.00 0.57 3.92

Obrázek 38: Audiogram Brown Fish Owl (Ketupa zeylonensis)

After 1447 iterations the fit converged.

final sum of squares of residuals : 0.555113

rel. change during last iteration : -5.48941e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.248353

variance of residuals (reduced chisquare) = WSSR/ndf : 0.0616793

Final set of parameters Asymptotic Standard Error

a = 20.0632 +/- 2.752 (13.71%)

b = 0.684674 +/- 0.0236 (3.447%)

c = -451.523 +/- 562.1 (124.5%)

d = 0.0308808 +/- 0.04177 (135.3%)

e = 429.972 +/- 564.8 (131.3%)

pg_0061-B-39 :

Eagle Owl (Bubo bubo)

-23.48 2.00 0.21 6.52 1.18 6.31

Obrázek 39: Audiogram Eagle Owl (Bubo bubo)

After 4224 iterations the fit converged.

final sum of squares of residuals : 0.00829497

rel. change during last iteration : -1.29973e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0303589

variance of residuals (reduced chisquare) = WSSR/ndf : 0.000921664

Final set of parameters Asymptotic Standard Error

a = 11.9798 +/- 0.2195 (1.832%)

b = 0.703116 +/- 0.003244 (0.4613%)

c = 1701.7 +/- 638.7 (37.53%)

d = -0.00936734 +/- 0.003442 (36.74%)

e = -1733.48 +/- 638.9 (36.86%)

pg_0062-B-40 :

Great Horned Owl (Bubo virginianus)

4.31 0.71 0.03 4.15 0.35 4.12

Obrázek 40: Audiogram Great Horned Owl (Bubo virginianus)

After 4038 iterations the fit converged.

final sum of squares of residuals : 0.0138939

rel. change during last iteration : -5.60679e-07

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0392908

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00154377

Final set of parameters Asymptotic Standard Error

a = 15.4178 +/- 0.3249 (2.107%)

b = 0.691312 +/- 0.003648 (0.5276%)

c = -1183.32 +/- 1309 (110.6%)

d = 0.00755437 +/- 0.008512 (112.7%)

e = 1163.68 +/- 1309 (112.5%)



pg_0063-B-41 :

Long Eared Owl (Asio otus)

-25.05 2.83 0.41 8.06 1.81 7.65

Obrázek 41: Audiogram Long Eared Owl (Asio otus)

After 1308 iterations the fit converged.

final sum of squares of residuals : 0.160174

rel. change during last iteration : -8.47552e-06

degrees of freedom (FIT_NDF) : 10

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.12656

variance of residuals (reduced chisquare) = WSSR/ndf : 0.0160174

Final set of parameters Asymptotic Standard Error

a = 9.17166 +/- 0.6615 (7.212%)

b = 0.737917 +/- 0.0134 (1.816%)

c = 566.597 +/- 176.9 (31.22%)

d = -0.0341592 +/- 0.009947 (29.12%)

e = -590.947 +/- 177.5 (30.04%)

pg_0064-B-42 :

Mottled Owl (Strix virgata)

-9.54 1.41 0.06 8.20 0.72 8.14

Obrázek 42: Audiogram Mottled Owl (Strix virgata)

After 3419 iterations the fit converged.

final sum of squares of residuals : 0.00355814

rel. change during last iteration : -2.78023e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0198834

variance of residuals (reduced chisquare) = WSSR/ndf : 0.000395349

Final set of parameters Asymptotic Standard Error

a = 7.32194 +/- 0.1402 (1.914%)

b = 0.705148 +/- 0.003404 (0.4827%)

c = 676.01 +/- 215.8 (31.93%)

d = -0.0130068 +/- 0.004033 (31%)

e = -691.558 +/- 216 (31.23%)

pg_0065-B-43 :

Scops Owl (Otus scops)

-14.29 2.00 0.34 6.65 1.50 6.31

Obrázek 43: Audiogram Scops Owl (Otus scops)

After 4042 iterations the fit converged.

final sum of squares of residuals : 0.0122322

rel. change during last iteration : -4.37224e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0368664

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00135913

Final set of parameters Asymptotic Standard Error

a = 13.1191 +/- 0.2635 (2.009%)

b = 0.704679 +/- 0.003563 (0.5056%)

c = 2081.64 +/- 705.4 (33.89%)

d = -0.00980306 +/- 0.003249 (33.14%)

e = -2102.12 +/- 705.7 (33.57%)

pg_0066-B-44 :

Snowy Owl (Nyctea scandiaca)

-25.25 2.00 0.63 5.88 1.91 5.26

Obrázek 44: Audiogram Snowy Owl (Nyctea scandiaca)

After 3968 iterations the fit converged.

final sum of squares of residuals : 0.0333056

rel. change during last iteration : -7.61092e-06

degrees of freedom (FIT_NDF) : 10

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.057711

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00333056

Final set of parameters Asymptotic Standard Error

a = 20.4316 +/- 0.395 (1.933%)

b = 0.706276 +/- 0.003445 (0.4878%)

c = 3442.97 +/- 987 (28.67%)

d = -0.0101675 +/- 0.002849 (28.02%)

e = -3474.7 +/- 987.4 (28.42%)



pg_0067-B-45 :

Spotted Wood Owl (Strix seloputo)

-17.89 2.00 0.21 6.55 1.17 6.34

Obrázek 45: Audiogram Spotted Wood Owl (Strix seloputo)

After 4090 iterations the fit converged.

final sum of squares of residuals : 0.00810356

rel. change during last iteration : -2.33467e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0300066

variance of residuals (reduced chisquare) = WSSR/ndf : 0.000900395

Final set of parameters Asymptotic Standard Error

a = 11.7761 +/- 0.2148 (1.824%)

b = 0.70404 +/- 0.003235 (0.4594%)

c = 1484.15 +/- 495.1 (33.36%)

d = -0.0105653 +/- 0.003441 (32.57%)

e = -1510.22 +/- 495.3 (32.79%)

pg_0068-B-46 :

Tawny Owl (Strix aluco)

-24.62 2.00 0.22 6.62 1.19 6.41

Obrázek 46: Audiogram Tawny Owl (Strix aluco)

After 4212 iterations the fit converged.

final sum of squares of residuals : 0.0110325

rel. change during last iteration : -1.26409e-07

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0350118

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00122583

Final set of parameters Asymptotic Standard Error

a = 11.7794 +/- 0.2536 (2.153%)

b = 0.703057 +/- 0.003811 (0.5421%)

c = 1797.89 +/- 826.2 (45.95%)

d = -0.00884564 +/- 0.003983 (45.03%)

e = -1830.43 +/- 826.4 (45.15%)

pg_0069-B-47 :

White-faced Scops Owl (Otus leucotis)

-23.26 2.00 0.28 6.04 1.29 5.76

Obrázek 47: Audiogram White-faced Scops Owl (Otus leucotis)

After 4527 iterations the fit converged.

final sum of squares of residuals : 0.0244658

rel. change during last iteration : -5.13637e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.0521385

variance of residuals (reduced chisquare) = WSSR/ndf : 0.00271843

Final set of parameters Asymptotic Standard Error

a = 15.5641 +/- 0.4429 (2.846%)

b = 0.687426 +/- 0.004906 (0.7137%)

c = -2445.67 +/- 1509 (61.7%)

d = 0.00814554 +/- 0.005127 (62.94%)

e = 2411.45 +/- 1510 (62.6%)



 

 

Shrnutí 

Předložená práce se věnuje automatickému rozpoznávání a verifikaci ptáků. Zabývá se návrhem a 

evaluací nových metod pro automatickou identifikaci jedinců ptáků s využitím živých nahrávek bez 

nutnosti jejich předzpracování. Automatizované systémy založené na těchto metodách (Automatic 

Recognition System of Bird Individual, ARSBI) umožní identifikaci jedinců ptáků bez nutnosti jejich 

kroužkování nebo kontroly DNA. Práce se dále věnuje návrhu nové banky filtrů, optimalizované pro 

ptačí zpěv (Bird Adapted Filter, BAF).  

Současně bylo nezbytné řešit úkoly související s hlavními cíli práce.  Mezi ně patří nalezení nového 

způsobu vyjádření audiogramů ptáků v automatizovaných systémech, návrh a vytvoření databáze 

ptačích zpěvů (Bird Song Corpus, BSC), ověření možností nových metod při rozpoznávání ptáků a 

konečně návrh a využití navrženého ARSBI při identifikaci jiných zvířecích druhů, konkrétně rypošů. 

Navržené metody, popsané v jednotlivých kapitolách, jsou zároveň experimentálně ověřeny. 

Členění práce: První část popisuje současný stav obou hlavních oblastí výzkumu, tedy ornitologie a 

rozpoznávání mluvčího. Druhá část uvádí technické prostředky, které byly při výzkumu využity. 

Autor vytvořil programový celek v prostředí Matlab a využíval části kódu napsané v jazyce C++. 

Následují kapitoly, které se věnují plnění hlavních a dílčích cílů práce. Poslední část shrnuje dosažené 

výsledky a uvádí možnosti dalšího rozvoje. Přílohy obsahují 51 audiogramů (pro 47x druhů a 4x 

agregované), jejichž definice byly v rámci této práce nalezeny. 

Summary 

Our thesis deals with automatic recognition and identification of bird individuals. The first goal of the 

thesis is the design and evaluation of new methods and algorithms for automatic bird individual 

identification using live recordings, without their pre-processing. An automated system using the 

suggested methods is going to be called Automatic Recognition System of Bird Individual (ARSBI), 

and it enables a bird identification without the necessity of catching them for banding or DNA check. 

The thesis also deals with a new filter bank optimized for bird song (Bird Adapted Filter, BAF). 

At the same time, it was necessary to solve the below tasks that are closely connected to the main 

goals of our thesis. Namely a new mathematical expression of a bird audiograms for ARSBI, bird song 

database design and development (Bird Song Corpus, BSC), new speaker recognition methods 

evaluation for bird vocalization, and design and utilization of a new ARSBI for other species not just 

birds, particularly mole-rats. Experiment evaluations of proposed methods are also described. 

Thesis structure: The first chapter deals with State of the Art of both main research fields, ornithology 

and speaker recognition. The second chapter describes development framework we used for the 

experiments. Author developed a new framework in Mathlab, some C++ code parts are also in use. 

Then separated chapters describe goals completion. We end with a discourse on the results and future 

work. The attachment contains 51 audiograms (47x species and 4x aggregate) for which we discovered 

the setup parameters. 
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