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Západočeská univerzita v Plzni
Fakulta aplikovaných věd
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Abstract
This work concerns the solvability of the semi-linear elliptic partial differential equations with measure data in
the very weak sense, i.e., the solution is an element of the space L1(Ω). Particularly,−∆u− λu = g(u) + µ in Ω ,

u = 0 on ∂Ω ,

where Ω is bounded domain in RN with C2 boundary ∂Ω, g is a continuous function and µ is a bounded real
Radon measure on Ω such that |µ|(∂Ω) = 0. To the best of the author’s knowledge, the original contributions
to the topic are: the solvability of the problem with λ = 0 and g = 0 for the dimension N = 2, the Fredholm
alternative for the Laplace’s operator with homogeneous Dirichlet boundary conditions in the very weak sense
and the solvability of the problem out of and at resonance. The latter is obtained through posing conditions of
Landesman-Lazer type on the measure µ.
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Notation of number sets
N . . . The set of all natural numbers, i.e. {1, 2, 3, . . .}.
N0 . . . The set of all natural numbers containing zero, i.e. {0, 1, 2, 3, . . .}.
Z . . . The set of all integers, i.e. {. . . ,−2,−1, 0, 1, 2, . . .}.
RN . . . The N -dimensional space of real numbers.

R+(R−) . . . The set of all positive (negative) real numbers.

R+
0 (R−0 ) . . . The set of all positive (negative) real numbers containing zero.

C . . . The set of all complex numbers.

x . . . The complex conjugate of the number x ∈ C.

Notation of general sets
X ⊂ Y . . . The set X is subset of the set Y and possibly X = Y .

X ⊂⊂ Y . . . The set X is a compact subset of Y .

|x| . . . The Eucleidian norm of x ∈ RN .

ρ(X,Y ) . . . The distance of two setsX,Y ⊂ RN defined by ρ(X,Y ) := inf{|x− y| : x ∈ X, y ∈ Y }.
Ω . . . A domain of RN , that is an open and connected Ω ⊂ RN ; note that Ω has the same

dimension as RN .

diam Ω . . . The diameter of the domain Ω defined by diam Ω := sup {ρ(x, y), x, y ∈ Ω}.
δ(x) . . . The distance of the point x ∈ Ω from the boundary ∂Ω defined by δ(x) := ρ(x, ∂Ω).

n . . . The unit outer normal of the domain boundary ∂Ω.

Bx(a) . . . An open ball centred at x ∈ RN with the radius a > 0.

B(X) . . . A Borel σ−algebra generated by open sets of the topological space X.

λ . . . Lebesgue measure defined on RN . Not to be confused with and eigenvalue of an
operator.

Notation of the multivariate calculus
u · v . . . The dot product of two vectors u, v ∈ RN .

∇u . . . The gradient of a differentiable function u.
∂

∂x
u . . . The derivative of the function u with respect to x ∈ RN .

∇xG(x, y) . . . The gradient of the function G with respect to x ∈ RN .

∆u . . . The Laplacian of a twice differentiable function u.

dSx . . . The surface element used in integration with respect to x ∈ RN .

f ∗ g . . . The convolution of two suitable objects (functions, measures and distributions) f
and g.

Diu . . . The weak first derivative of u with respect to i-th coordinate of RN .

Dαu . . . The weak derivative of u with respect to the multiindex α.

Du . . . The weak gradient of u.

DxG(x, y) . . . The weak gradient of the function G with respect to x ∈ RN .

D∆u . . . The weak Laplacian of u.

Notation of the functional analysis
X∗ . . . The space of all bounded linear functionals on X.

〈f, x〉X∗,X . . . The duality between x ∈ X and f ∈ X∗.
(x, y)H . . . The scalar product of x, y ∈ H, where H is a Hilbert space.

I . . . The identity mapping defined by Ix = x for all x ∈ X.

dom(T ) . . . The domain of the operator T : X → Y , i.e., the set of all x ∈ X such that
T (x) is defined.

ran(T ) . . . The range of the operator T : X → Y , i.e., the set of all y ∈ Y such that there
exists x ∈ X and T (x) = y holds.

Ker(T ) . . . The kernel of the operator T : X → Y , i.e., the set of all x ∈ X such that
T (x) = o.

C(X,Y ) . . . The set of all continuous mappings from topological space X to topological
space Y .

L(X,Y ) (L(X)) . . . The space of all continuous linear mappings from linear space X to linear space
Y (X).

C(X,Y ) (C(X)) . . . The set of all continuous and compact mappings from normed linear space X
to normed linear space Y (X).



Notation of spaces of functions, measures and distributions
C(Ω) . . . The space of continuous functions defined on Ω.

C(Ω) . . . The space of continuous functions continuous up to the boundary ∂Ω.

C0(Ω) . . . The space of functions u ∈ C(Ω) such that u = 0 on ∂Ω.

Ck(Ω) . . . The space of functions u ∈ C(Ω) such that their partial derivatives up to the order k
belong to C(Ω).

Ck(Ω) . . . The set of functions u ∈ C(Ω) such that their partial derivatives up to the order k
belong to C(Ω).

Ck0 (Ω) . . . The space of functions u ∈ C0(Ω) such that their partial derivatives up to the order
k belong to C(Ω); possibly k =∞.

Ck,λ(Ω) . . . The space of λ−Hölder continuous functions with partial derivatives up to the order
k belonging to C0,λ(Ω) with 0 ≤ λ ≤ 1; possibly k =∞.

Cc(Ω) . . . The space of u ∈ C(Ω) with compact support; supp f = {x : u(x) 6= 0}.
Lp(Ω) . . . The space of Lebesgue integrable functions with the exponent p; 1 ≤ p < +∞.

W k,p(Ω) . . . The space of functions u ∈ Lp(Ω) such that their weak partial derivatives up to order
k belong to Lp(Ω) with 1 ≤ p < +∞.

W 1,p
0 (Ω) . . . The space of functions u ∈W 1,p(Ω) such that u = 0 on ∂Ω in the sense of traces.

M(Ω) . . . The Banach space of bounded real Radon measures µ on Ω such that |µ|(∂Ω) = 0
endowed with the norm ‖µ‖M(Ω) = |µ|(Ω).

D(Ω) . . . The space of u ∈ Cc(Ω) such that all their partial derivatives belong to Cc(Ω) endowed
with topology (see [19, p.136–137]); called the space of test functions.

D′(Ω) . . . The space of distributions; the dual of D(Ω).



Chapter 1

Preface

Non-linear problems of the type −∆u+ g(x, u) = f in Ω ,

u = 0 on ∂Ω ,
(1.1)

arise in mathematical models and in applications of natural phenomena. A standard tool in examining the
solvability of elliptic problems including non-linearities is the theory of monotone operators in Hilbert spaces.
There are various generalisations of the problem (1.1) in the literature to problems that cannot be treated by
the monotone operator theory. Relevant generalisations will be mentioned in this introduction.

In the book [16], authors generalise the problem in the following way. They search for a very weak solution
of the problem −∆u+ g(x, u) = µ in Ω ,

u = 0 on ∂Ω ,
(1.2)

where µ ∈ M(Ω). The nature of the problem (1.2) requires some conditions to be posed on the function
g : Ω× R→ R. Namely

1. g ∈ C(Ω×R), g(x, 0) = 0 and g(x, · ) is non-decreasing;

2. g( · , t) ∈ L1(Ω, δ) for all t ∈ R.

The solvability of the problem (1.2) cannot be treated with the monotone operator theory in Hilbert spaces
since µ is a Radon measure (which does not belong to the dual of W 1,2

0 (Ω) for N ≥ 2). It turns out, that the
problem (1.2) does not possess a solution for every µ ∈M(Ω) (the solvability of the problem is conditioned by
the existence of the weak sub- and supersolutions, see [16, Section 2.2]).

Another generalisation of the problem (1.1) was developed by Landesman and Lazer in [14] where the
problem −Lu− λu = g(u) + f in Ω ,

u = 0 on ∂Ω ,
(1.3)

is considered in the weak sense at the resonance when λ is an eigenvalue. The operator L is a second order,
self-adjoint and uniformly elliptic operator, f ∈ L2(Ω) and g is a real-valued bounded continuous function such
that

1′. the limits

g(+∞) := lim
t→+∞

g(t), g(−∞) := lim
t→−∞

g(t)

exist and are finite;

2′. the inequalities

g(−∞) ≥ g(t) ≥ g(+∞)

hold for every t ∈ R.
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In general, this resonant case cannot be treated by the method of monotone operators.
The necessary conditions on the solvability of the problem (1.3) are so-called the Landesman-Lazer conditions

g(+∞)

∫
Ω

ϕ+ dx− g(−∞)

∫
Ω

ϕ− dx < (f, ϕ) < g(−∞)

∫
Ω

ϕ+ dx− g(+∞)

∫
Ω

ϕ− dx

where ϕ is the eigenfuction of the elliptic operator L with homogeneous Dirichlet conditions. These results are
further developed, e.g., [10].

In this thesis, we fuse these generalisations by considering a non-monotone g and measure data−∆u− λu = g(u) + µ in Ω ,

u = 0 on ∂Ω ,
(1.4)

where µ ∈ M(Ω). The function g : R → R is continuous (i.e., it satisfies the Carathéodory condition). For
the non-resonant case, it is sufficient to consider g possessing a sub-linear growth, i.e. there exists constants
0 ≤ α < 1, and b, c > 0 such that

|g(t)| ≤ b+ c|t|α

for all t ∈ R. If λ is an eigenvalue, then we assume g to be bounded function such that the limits

g(+∞) := lim inf
x→+∞

g(x), g(−∞) := lim sup
x→−∞

g(x)

are finite and satisfy

g(−∞) < g(+∞) .

The thesis is organised as follows. Chapter 2 contains preliminaries regarding functional analysis (abstract
spaces, spectral theory and fixed point theory), measure theory, integration, function spaces and elliptic PDE.
Chapter 3 contains important theorems regarding linear elliptic problems with measure data. The results are
mainly reproduced from [16] with the author’s contribution for the 2-dimensional case. Chapter 4 develops the
Fredholm alternative for the Laplace’s operator with homogeneous Dirichlet conditions in the very weak sense
for the problem with measure data. In Chapter 5, we study the solvability of the problem (1.4) at non-resonant
case and in Chapter 6, we study the solvability of the same problem at resonance. Chapter 7 contains an
example of the application of the main theorem of Chapter 6 in modelling the kinetics of the chemical reactions.
Finally, Chapter 8 concludes results of this thesis and stated open questions and possible directions of the
further research. Appendix contains an idea of numerical approach for solving elliptic PDE on a ball in R2 with
measure data. Due to the time difficulty of this thesis, the convergence of approximation sequences was not
proved.

I would like to express my gratitude to the supervisor of this thesis, doc. Ing. Petr Girg, Ph.D. for the
scientific and moral guidance, patience, linguistic support and the example in Chapter 7. Many thanks comes
also to my family, girlfriend L. Š. and close friends of mine for the patience and a constant support.

Keywords: elliptic PDE, Radon measure, measure data, Green’s function, Landesman-Lazer.
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Chapter 2

Preliminaries

2.1 Functional analysis

We assume, that the reader is familiar with the concepts of functional, operator, metric, linear, Banach and
Hilbert space and dual space. Convenient study material for this section is, e.g., [21].

Here, we present basic results of the theory of topological spaces, functionals, operators, spectral analysis in
Hilbert spaces and fixed point theory. Usually, general spaces are denoted by X and Hilbert spaces are denoted
by H.

2.1.1 Abstract spaces

Definition 2.1 ([6], p.25). A set X with collection T of its subsets is called a topological space denoted by
(X, T ) if and only if T possesses following properties

1. ∅, X ∈ T ,

2. an intersection of a finite number of sets of T belongs to T ,

3. a union of any subcollection of T belongs to T .

Elements of T are called open sets.

Definition 2.2. Let (X, T ) be a topological space. A neighbourhood of point x ∈ X is any open set A ∈ T
containing x ∈ A.

The counterpart of open sets are closed sets: a subset A ⊂ X of a topological space (X, T ) is closed if X \A
is open and the closure of the set A ⊂ T is the intersection of all closed sets containing A. Since the class
of all topological spaces is very wide and the conditions any topological space must satisfy are quite weak, we
define further properties in order to the topological spaces behave ”nicely”. For example, two points in general
topological space can be ”indistinguishable” from each other; i.e., we cannot find disjoint neighbourhoods of
the points. This holds true, e.g., for metric spaces.

Definition 2.3 ([4], Definition 6.1.2., p.4). Let (X, T ) be a topological space. (X, T ) is called Hausdorff if
and only if every two distinct points x, y ∈ X possess disjoint neighbourhoods.

Compactness is an important property of topological space. We can define various types of compactnesses
in topological spaces which further coincide in the case of more special spaces (metric, normed linear spaces
etc.). Here, we define only one regarding a covering of a set.

Definition 2.4. Let (X, T ) be a topological space and A subset of X. An open cover of A is a collection of
open sets {Aγ}γ∈Γ ⊂ T such that

⋃
γ∈ΓAγ ⊃ A. If Γ is countable set, the cover {Aγ}γ∈Γ is called a countable

cover and if Γ is finite, the cover is called a finite cover.

Definition 2.5. Let (X, T ) be a topological Hausdorff space and A subset of X. Then A is called

1. compact, if and only if every open cover of A contains a finite subcover,

2. relatively compact, if and only if the closure of A s compact.

The space (X, T ) is called compact if and only if X is compact.
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With the structure of topology, we are able to define a continuity of mapping between two topological spaces.

Definition 2.6 ([6], p.26). Let (X, TX) and (Y, TY ) be topological spaces and f : X → Y mapping. Then f is
said to be continuous on X if and only if the preimage of any open set B ∈ TY is open set A ∈ TX .

This notion of continuous mapping is consistent with the definition of convergence through the metric (since
every metric space can be endowed with topology). Last, we mention two theorems regarding linear operators
in a narrower class of spaces – normed linear spaces. The uniform boundedness principle provides a connection
between pointwise boundedness and boundedness in the norm of a sequence of bounded linear operators.

Theorem 2.7 ([6], Theorem 2.1.4., p.57, Uniform boundedness principle). Let X be a Banach space and Y
normed linear space. If {Aγ}γ∈Γ ⊂ L(X,Y ) is such that the sets {‖Aγx‖}Y : γ ∈ Γ are bounded for all x ∈ X,

then
{
‖Aγ‖L(X,Y ) : γ ∈ Γ

}
is also bounded.

If an injective linear operator T : X → Y such that dom(T ) = X, ran(T ) = Y and where X and Y are
linear spaces then there is defined an linear inverse T−1 : Y → X. Moreover, a stronger claim holds.

Theorem 2.8 ([21], Theorem 4.2-H, p.180). Let X and Y be complete metric linear spaces. Let T be a linear
operator whose domaini is X and whose range is all of Y . Suppose that T is continuous and that T−1 exists.
Then T−1 is continuous

2.1.2 Spectral theory

Given a linear operator T : H → H, we are interested in the solvability of the operator equation Tx− λx = f
(i.e., for given λ ∈ C and f ∈ H, we try to find x ∈ H). Alternatively, we study the existence of the inverse
operator (T − λI)−1 and the properties of its domain: for which f ∈ H, f ∈ dom((T − λI)−1) holds? The
values λ ∈ C, for which bounded linear operator (T − λI)−1 exists are called regular values of the operator T .
If the λ ∈ C is not a regular value, it belongs to the spectrum of the operator T denoted by σ(T ). If the inverse
operator (T − λI)−1 does not exist, we call λ an eigenvalue.

Adjoint and self-adjoint operators take very important role in the spectral theory. Here, we recall basic
definitions used in this thesis.

Definition 2.9 (see [21], p.249–250). Let T : H → H be a linear operator with dom(T ) being dense in H.
Denote dom(T ∗) the set of all x ∈ H for which there exists z ∈ H such that for all y ∈ H (x, Ty) = (z, y)
holds. We then write T ∗x = z for each x ∈ dom(T ∗) and the operator T ∗ : H → H assigning z ∈ H to each
x ∈ dom(T ∗) is called adjoint operator to T .

Definition 2.10. Let T : H → H be a linear operator defined on a dense subset dom(T ) of H. We say that
the operator T is symmetric if and only if (x, Ty) = (Tx, y) holds for all x, y,∈ dom(T ).

Definition 2.11. A linear operator T : H → H defined on a dense subset dom(T ) ⊂ H is called self-adjoint if
and only if it is symmetric and dom(T ) = dom(T ∗).

The characterisation of the spectrum of a self-adjoint operator is provided by the following theorem.

Theorem 2.12 ([21], Theorem 6.2.-B, p.330). Suppose T is a bounded self-adjoint operator. Then the spectrum
of T lies on the closed interval [mT ,MT ] 1. The endpoints of this interval belong to the spectrum.

The range and the kernel of the linear operator T : H → H are linear subspaces (if T is continuous, kernel is
in addition closed) of H, which is a trivial consequence of linearity. A linear operator T : H → H is normal, if
AA∗ = A∗A. It can be shown, that for given λ ∈ C the operator (T − λI) is normal. Therefore, we can deduce
the following relation between ran(T − λI) and Ker(T − λI).

Theorem 2.13 ([21], Theorem 6.2-G, p.332). If S is normal, ran(S) and Ker(S) are orthogonal complements,
so that H = ran(S)⊕Ker(S).

If we assume a compactness of the operator T : H → H and if λ 6= 0, then the Ker(T − λI) is a finite
dimensional linear subspace of H. The dimension of Ker(T − λI) is called the multiplicity of the eigenvalue λ.
If λ 6= 0 belongs to the spectrum, then the inverse operator (T − λI)−1 does not exist, but if λ = 0 belongs
to the spectrum, the inverse operator may exist but it does not need to be bounded or the domain may not
be dense in H. The eigenvalues of the compact self-adjoint operator are clustered at zero (i.e. there is only

1The values mT ,MT are defined

mT = inf
‖x‖H=1

(Tx, x), MT = sup
‖x‖H=1

(Tx, x).
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a finite number of eigenvalues outside each open interval containing zero). We can order the eigenvalues of T
such that |λ1| ≥ |λ2| ≥ . . . > 0. Each λn 6= 0 is assigned a finite number of linearly independent xn ∈ H
called the eigenvectors. Eigenvectors can be considered orthonormal. The eigenvectors form a closed linear
subspace H1 ⊂ H and the orthogonal decomposition H = H1 ⊕ H2 can be made. Moreover, T : H1 → H1

and T : H2 → H2, where all elements of H2 are the eigenvectors of the eigenvalue 0. Finally, we formulate the
Fredholm alternative, the main result of this section.

Theorem 2.14 ([11], Theorem 5.11, p.21, reformulated for self-adjoint operators). Let H be a Hilbert space
and T a compact self-adjoint mapping of H into itself. Then there exists a countable set Λ ⊂ R having no limit
points except possibly λ = 0, such that if λ 6= 0, λ 6= σ(T ) the equation

Tx− λx = f (2.1)

have uniquely determined solutions x ∈ H for every f ∈ H, and the inverse mapping (T − λI)−1 is bounded.
If λ ∈ σ(T ), the null space of the mapping T − λI is of a positive finite dimension and the equation (2.1) is
solvable if and only if f is orthogonal to the null space of T − λI.

2.1.3 Fixed point theory

We briefly recall well-known fixed point theorems used in the non-linear analysis. Given an operator T : X → X
mapping space X to itself the point x ∈ X such that T (x) = x is called a fixed point of the operator T . The
fundamental result is the Schauder fixed point theorem and the existence of the Leray-Schauder degree of
compact perturbation of identity.

Theorem 2.15 ([6], Theorem 5.2.5, p.254). Let K be a nonempty, closed, convex and bounded subset of a
normed linear space X. Assume that F ∈ C(K,X) and F (K) ⊂ K. Then there is a fixed point of F in K.

Theorem 2.16 ([6], Theorem 5.8.2, p.315). Let D be a bounded open subset of a Banach space X. There exists
a mapping deg(I − F,D, y0) defined for all F ∈ C(D,X) and y0 ∈ X such that

x− F (x) 6= y0 for all x ∈ ∂D.

This mapping has the following properties:

1. deg(I,D, y0) =

{
1 if y0 ∈ D ,

0 if y0 /∈ D .
.

2. deg(I − F,D, y0) = deg(I − F − y0, D, o).

3. If deg(I − F,D, y0) 6= 0, then the equation

x− F (x) = y0

has a solution in D.

4. If D1, . . . , Dk are pairwise disjoint open subsets of D and x− F (x) 6= y0 for each x ∈ D \
⋃k
j=1Dj, then

deg(I − F,D, y0) =

k∑
j=1

deg(I − F,Dj , y0).

5. If F,G ∈ C(D,X) and

sup
x∈∂D

‖F (x)−G(x)‖X < inf
x∈∂D

‖x− F (x)− y0‖X ,

then

deg(I − F,D, y0) = deg(I −G,D, y0) .

6. (homotopy invariance property) If F,G ∈ C(D,X) and

H(t, x) = (1− t)F (x) + tG(x), t ∈ [0, 1], x ∈ D ,

are such that

x−H(t, x) 6= y0 for every x ∈ ∂D and t ∈ [0, 1] ,

then deg(I −H(t, · ), D, y0) is constant on [0, 1]. In particular,

deg(I − F,Ω, y0) = deg(I −G,D, y0) .
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The last theorem gives the sufficient conditions for the set of fixed point of a compact mapping to be
connected with respect to a real parameter.

Theorem 2.17 ([25], Theorem 14.C, p.629, Global continuation principle of Leray-Schauder). Let the operator
F : [a, b]×D → X be compact, where D is a bounded open set in the Banach space X. If the equation

x− F (c, x) = 0, c ∈ R, x ∈ X (2.2)

has no solutions on [a, b] × ∂D and deg(I − F (a, · ), D, o) 6= 0. Then the equation (2.2) has a continuum Σ of
solutions in R×X which connects the set {a} ×D with the set {b} ×D.

2.2 Measure and integration theory

We assume, that the reader is familiar with the concepts of σ−algebra, Borel σ−algebra, measurable function,
simple function, non-negative measure and Lebesgue measure. Convenient study material for this section is,
e.g., [3], [4] or [9].

In this section, we recall the definition of the Lebesgue integral, signed measure and extension of the definition
of Lebesgue integral for signed measures. For the sake of simplicity, the non-negative measures will be called
just measures. The couple (X,A) denotes a measurable space with σ−algebra A.

Definition 2.18 ([3], Definition 1.3.1., p.9). A real-valued set function µ on a class of sets A is called countably
additive if

µ

(
+∞⋃
n=1

An

)
=

+∞∑
n=1

µ (An)

for all pairwise disjoint sets An in A such that
⋃+∞
n=1An ∈ A. A countably additive set function defined on an

algebra is called a measure.

Definition 2.19 ([3], Definition 2.4.1., p.118). Let a function f be defined and finite µ a.e. (i.e., f may be
undefined or infinite on a set of measure zero). The function f is called Lebesgue integrable with respect to the
measure µ (or µ-integrable) if there exists a sequence of simple functions fn such that fn(x) → f(x) almost
everywhere and the sequence {fn} is fundamental in the mean2. The finite value

lim
n→∞

∫
X

fn(x) dµ(x) ,

which exists (see [3]), is called the Lebesgue integral of the function f and is denoted by∫
X

f(x) dµ(x) .

The previous definition considered measure µ : A → [0,+∞). However, it can be extended to a possibly
infinite measure µ of the form µ : A → [0,+∞]. However, we restrict ourselves only on finite measures in this
thesis. The countably additive mapping µ : A → (−∞,+∞) is called a signed measure.

Theorem 2.20 ([3], Theorem 3.1.1., p.175). Let µ be a countably additive real-valued measure on a measurable
space (X,A). Then, there exist disjoint sets X−, X+ ∈ A such that X− ∪X+ = X and for all A ∈ A, one has

µ(A ∩X−) ≤ 0, and µ(A ∩X+) ≥ 0 .

Lemma 2.21 ([3], Corollary 3.1.2., p.176). Under the hypotheses of Theorem 2.20 let

µ+(A) := µ(A ∩X+), µ−(A) := −µ(A ∩X−), A ∈ A .

Then µ+ and µ− are a non-negative countably additive measures and one has equality µ = µ+ − µ−.

2A sequence {fn} of simple functions is called fundamental in the mean if, for every ε > 0 there exists a number n such that∫
X
fi(x)− fj(x) dµ(x) < ε for all i, j ≥ n .

See [3, Definition 2.3.1., p.116].
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The Lebesgue integral can be simply extended to signed measures by putting∫
X

f(x) dµ(x) :=

∫
X

f(x) dµ+(x)−
∫
X

f(x) dµ−(x)

where both integrals are finite.

Definition 2.22 ([3], Definition 3.1.4., p.176). The measures µ+ and µ− constructed above are called the
positive and negative parts of µ, respectively. The measure

|µ| = µ+ + µ−

is called the total variation of µ.

Following result is known as the Radon-Nikodým theorem. In this thesis, we will use the fact, that every µ
integrable function f defines a measure of certain properties.

Theorem 2.23 ([3], Theorem 3.2.2., p.178). Let µ and ν be two finite measures on a space (X,A). The measure
ν is absolutely continuous with respect to the measure µ3 precisely when there exists a µ-integrable function f
such that ν is given by

ν(A) :=

∫
A

f(x) dµ(x)

for each A ∈ A.

Let (X,AX , µ) and (X,AY , ν) be two spaces with finite measures, i.e., µ(X) < +∞ and ν(Y ) < +∞. The
σ−algebra generated by all rectangles of the form AX ×AY is denoted by AX ⊗AY . Let µ× ν(AX ×AY ) :=
µ(AX)ν(AY ) for all AX ∈ AX and AY ∈ AY . Then, the Lebesgue completion of the algebra AX ⊗ AY with
respect to the measure µ× ν is denoted by AX⊗AY . The unique extension of finitely additive function µ× ν
(defined on AX ×AY ) to AX⊗AY is denoted by µ ⊗ ν. The set function µ ⊗ ν is countably additive. Hence,
(X × Y,AX⊗AY , µ ⊗ ν) is a uniquely given space with a complete measure.4 For more detailed proofs and
definitions see [3, 3.3 Products of measure spaces].

Following theorems are frequently used results of the theory of integration.

Theorem 2.24 ([9], Theorem 2.18, p.52, Fatou’s lemma). Let (X,A, µ) be a space with measure. If {fn} is
any sequence of non-negative measurable functions defined on X, then∫

X

(
lim inf
n→+∞

fn

)
dµ ≤ lim inf

n→+∞

∫
X

fn dµ .

Theorem 2.25 ([3], Theorem 3.4.4., p.185, Fubini’s theorem). Let µ and ν be σ−finite non-negative measures
on the measurable spaces (X,AX) and (Y,AY ). Suppose that a function f in X × Y is integrable with respect
to the product measure µ ⊗ ν. Then, the function y 7→ f(x, y) is integrable with respect to ν for µ-a.e. x, the
function x 7→ f(x, y) is integrable with respect to µ for ν-a.e. y, the functions

x 7→
∫
Y

f(x, y) dν(y) and y 7→
∫
X

f(x, y) dµ(x)

are integrable on the corresponding spaces, and one has∫
X×Y

f d(µ⊗ ν) =

∫
Y

∫
X

f(x, y) dµ(x)dν(y) =

∫
X

∫
Y

f(x, y) dµ(y)dν(x) .

Theorem 2.26 ([3], Theorem 3.4.5., p.185, Tonelli’s theorem). Let f be non-negative µ⊗ν-measurable function
on X × Y , where µ and ν are σ−finite measures. Then f ∈ L1(µ⊗ ν) provided that∫

Y

∫
X

f(x, y) dµ(x)dν(y) < +∞ .

3Let µ and ν be defined on a measurable space (X,A). A measure ν is absolutely continuous with respect to the measure µ
precisely if |ν|(A) = 0 for every set A with |µ|(A) = 0 (see [3, p.178]).

4Let (X,A, µ) be a space with measure. The measure µ is called complete if for any A ∈ A the identity µ(A) = 0 holds, then
B ∈ A for every B ⊂ A and µ(B) = 0.
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2.3 Function, measure and distribution spaces

Definition 2.27 ([3], Definition 5.3.1., p.337). A function f on an interval [a, b] is called absolutely continuous
if, for every ε > 0, there exists δ > 0 such that

n∑
i=1

|f(bi)− f(ai)| < ε

for every finite collection of pairwise disjoint intervals (ai, bi) in [a, b] with
∑n
i=1 |bi − ai| < δ.

We remark that a continuously differentiable function in an interval [a, b] is absolutely continuous in this
interval. The notation of various sets and spaces are mentioned in the preface. We only recall, that the spaces
of continuous functions Ck(Ω) and Ck0 (Ω) are Banach with respect to the norm

‖u‖Ck0 (Ω) = ‖u‖Ck(Ω) :=
∑
|α|≤k

max
x∈Ω

∣∣∣∣ ∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαNN
u(x)

∣∣∣∣ ,
where α := (α1, α2, . . . , αN ) is the multiindex and |α| :=

∑N
i=1 αi. Naturally, αi are non-negative. The space

of functions from Ck(Ω) which are λ−Hölder continuous functions5 is denoted by Ck,λ(Ω) and is Banach when
equipped with the norm

‖u‖Ck,λ(Ω) := ‖u‖Ck(Ω) +
∑
|α|=k

sup
x,y∈Ω
x 6=y

∣∣∣ ∂|α|

∂x
α1
1 ∂x

α2
2 ... ∂x

αN
N

(u(x)− u(y))
∣∣∣

|x− y|λ
.

Next, we introduce the sets of integrable functions.

Definition 2.28. Let (X,A, µ) be a space with nonnegative measure and let p ∈ [0,+∞) be given constant.
The set Lpµ(X) is the set of all µ−measurable functions with |f |p being µ−integrable. If p = +∞, then the set
L∞µ (X) is set of functions which are essentially bounded 6.

We introduce the relation of equivalence: two functions f, g ∈ Lpµ(X) are equivalent (f ∼ g) if they differ on
the set of µ measure zero.

Definition 2.29. Let (X,A, µ) be a space with nonnegative measure and let p ∈ [0,+∞] be given constant
(possibly infinite). The set Lpµ(X) is the set of all equivalence classes of Lpµ(X) with respect to the relation ∼.

If the measure µ from the previous definitions is Lebesgue measure, the subscript in Lp(X) and Lp(X) will

be omitted. Given p ∈ [0,∞), we define ‖·‖Lpµ(X) =
(∫
X
|·|p dµ

)1/p
and ‖·‖L∞µ (X) = esssupX |·|, where essential

supreme of µ−measurable function f is equal to K if and only if µ(U) = 0, where U = {x : f(x) > K} and
esssupX |f | = supX\U |f | = K. The spaces Lpµ(X) and L∞µ (X) are Banach spaces with respect to their respective
limits.

Theorem 2.30 ([3], Theorem 2.11.12, Hölder inequality). Suppose that 1 < p < ∞, q = p(p − 1)−1, f ∈
Lpµ(X), q ∈ Lqµ(X). Then fg ∈ L1

µ(X) and ‖fg‖L1
µ(X) ≤ ‖f‖Lpµ(X) ‖g‖Lqµ(X), i.e., one has

∫
X

|fg| dµ ≤
(∫

X

|f |p dµ
)1/p(∫

X

|g|q dµ
)1/q

.

Functions satisfying Carathédory condition are important in non-linear analysis.

Definition 2.31 ([6], Definition 3.2.22, p.136). Let Ω be an open set in RN . A function f : Ω×R→ R is said
to have the Carathéodory condition if

1. for all t ∈ R the function x 7→ f(x, t) is Lebesgue measurable on Ω;

2. for a.a. x ∈ Ω the function t 7→ f(x, t) is continuous on R.

Theorem 2.32 ([6], Theorem 3.2.24, p.136). Let f satisfy the Carathéodory condition and p, q ∈ [1,+∞). Let
there exist g ∈ Lq(Ω) and c ∈ R such that

|f(x, t)| ≤ g(x) + c|t|
p
q , for a.a. x ∈ Ω and all y ∈ R .

Then

5A function u is λ−Hölder continuous if there exists a constant C > 0, such that |u(x)− u(y)| ≤ C|x− y|λ holds for all x, y ∈ Ω
6For each function f ∈ L∞µ (X), there exists a constant K such that µ(U) = 0, where U = {x : f(x) > K}.
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1. F (ϕ) ∈ Lq(Ω) for all ϕ ∈ Lp(Ω);

2. F is a continuous mapping from Lp(Ω) to Lq(Ω);

3. F maps bounded sets in Lp(Ω) into bounded sets in Lq(Ω).

Since the integrable functions can not be derived in the classical sense. Therefore, we introduce weak
derivative.

Definition 2.33. Given u ∈ L1
loc(Ω)7 a function w ∈ L1

loc(Ω) is called a weak α−derivative of the function u if
it satisfies ∫

Ω

u(x)
∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαNN
ϕ(x) dx = (−1)|α|

∫
Ω

w(x)ϕ(x) dx .

The following result by L. Schwartz provides us with the connection of the weak and the classical derivative
of the function of more variables.

Theorem 2.34 ([20], Theoréme V, p.57, translated from French). 1. If the locally integrable function f is
absolutely continuous in the variable xi on almost all lines parallel to the axis xi and can be differentiated
(in the classical sense) almost everywhere to a locally integrable function g = ∂

∂xi
f a.e., then g = Dif in

the sense of distributions.

2. If the function f admits derivative g = Dif in the sense of distributions, function f has a representative
which is absolutely continuous in xi on almost all lines parallel to the axis xi, then f can be differentiated
almost everywhere in the classical sense and g = ∂

∂xi
f almost everywhere. If in addition f, g are continuous

in some open domain Ω then g = ∂
∂xi

f everywhere in the classical sense.

The set of measurable functions Lp(Ω) such that their weak derivatives up to the order k belong to the space
Lp(Ω) is called the Sobolev space is denoted by W k,p(Ω) and is Banach space with respect to the norm

‖u‖Wk,p(Ω) =
∑
|α|≤k

‖Dαu‖Lp(Ω) .

In general, we cannot distinguish boundary values of integrable function u ∈ Lp since the Lebesgue measure
of the boundary ∂Ω is zero. The structure of Sobolev spaces is more strict and given a domain Ω with ”nice”
boundary we can find an equivalent notion of boundary values of the functions in W 1,p(Ω).8

Theorem 2.35 ([6], Theorem 5.5.1, p.275, Trace theorem). Let Ω be such that ∂Ω ∈ C0,1 be a bounded domain
in RN . There exists one and only one continuous linear operator T which assigns to every function u ∈W 1,p(Ω)
a function Tu ∈ Lp(∂Ω) and has the following property:

”For u ∈ C∞(Ω) we have Tu = u|∂Ω.”

The following identity holds:

W 1,p
0 (Ω) =

{
u ∈W 1,p(Ω) : Tu = o in Lp(∂Ω)

}
.

By the virtue of the previous theorem we can say, that a function u ∈ W 1,p(Ω) is zero at the boundary ∂Ω
in the sense of traces (or generalized sense) if u ∈W 1,p

0 (Ω).
The following theorems summarize embeddings of function spaces.

Theorem 2.36 ([8], Theorem 6., Section 5.7, p.270). Let Ω be a bounded open subset of RN with a C1 boundary.
Assume u ∈W k,p(Ω).

1. If k < n/p. then u ∈ Lq(Ω), where 1/q = 1/p− k/N . We have in addition the estimate

‖u‖Lq(Ω) ≤ C ‖u‖Wk,p(Ω) ,

the constant C depending only on k, p,N and Ω.

7A function which is integrable on each compact subset of Ω.
8The following theorem uses an alternative definition of Sobolev spaces. The space Wk,p(Ω) (resp., Wk,p

0 (Ω)) is a closure of the
space of functions u ∈ C∞(Ω) (resp., C∞

c (Ω)) such that ‖u‖Wk,p(Ω) < +∞ with respect to the norm ‖ · ‖Wk,p(Ω).

9



2. If k > n/p, then u ∈ Ck−[np ]−1,γ(Ω), where

γ =


[
n
p

]
+ 1− n

p , if
n
p is not an integer

any positive number < 1, if n
p is not an integer.

We have in addition the estimate

‖u‖
C
k−[np ]−1

(Ω)
≤ C ‖u‖Wk,p(Ω) ,

the constant C depending only on k, p,N, γ and Ω.

Theorem 2.37 ([8], Theorem 1, p.272, Rellich-Kondrachov Compactness Theorem). Assume Ω is a bounded
open subset of RN , and ∂Ω is C1. Suppose 1 ≤ p < n. Then

W 1,p(Ω) ↪→↪→ Lq(Ω)

for each 1 ≤ q < p∗ :=
Np

N − p
.

Having claims regarding integrable functions at hand, we proceed to more general objects – measures9. Our
main goal is to show, that the space M(Ω) is the dual space of C0(Ω), where Ω is a bounded domain in RN .
Since we follow the stream of ideas in [9], the claims are stated in full generality working with a topological
space (X, T ). We immediately compare the general situation to the situation of metric space (Ω, | · |) whose
open set in the metric | · | induce a topology (Ω,BΩ).

The following lemma shows a close relation of continuity and measurability of mappings defined on a topo-
logical space.

Lemma 2.38 ([9], Corollary 2.2, p.44). If X and Y are metric (or topological) spaces, every continuous
f : X → Y is (BX ,BY )-measurable (BX and BY are Borel σ−algebras defined on the space X and Y respectively).

In the following text, we work with a general topological space (X, T ) which is locally compact (every x ∈ X
has a compact neighbourhood) and Hausdorff (every two points x, y ∈ X such that x 6= y posses disjoint
neighbourhoods) unless otherwise stated. Given f ∈ C(X) := C(X,R) the support of f is defined by

supp(f) := {x : f(x) 6= 0}

and we say, that f ∈ C(X) vanishes at infinity if for every ε > 0 the set {x : |f(x) ≥ ε|} is compact. We define
Cc(X) as the set of all f ∈ C(X) such that supp(f) is compact and C0(X) as the set of all f ∈ C(X) such that
f vanishes at infinity. Every function in Cc(X) and C0(X) is bounded, since any continuous functional defined
on a compact space is bounded. The counterpart of C(X) in (Ω,BΩ) is simply Cc(Ω). The only functions
defined on an open domain Ω which vanish at infinity are the restriction of the functions in C0(Ω) to Ω. Hence,
we can identify C0(X) with C0(Ω).

Theorem 2.39 ([9], Proposition 4.35, p.132). If X is a locally compact Hausdorff space, C0(X) is the closure
of Cc(X) in the uniform metric10.

Let µ be a Borel measure defined on (X,BX). The measure µ is called outer regular on A ∈ BX if µ(A) =
inf {µ(U) : U ⊃ A, U open} and inner regular on A if µ(A) = sup {µ(K) : K ⊂ A, K compact}. If µ is inner
and outer regular on all A ∈ BX , then it is called regular. A Borel measure (X,BX) that is finite on all compact
sets, outer regular on all Borel sets and inner regular on all open sets is called a Radon measure. The case of
(Ω,BΩ) is slightly less complicated, since the following theorem holds.

Theorem 2.40 ([9], Proposition 7.5, p.216). Every Radon measure is inner regular on all of its σ−finite sets.

Since every set A ∈ BX is σ−finite, Radon measure defined on (Ω,BΩ) automatically regular. Every non-
negative bounded linear functional on Cc(X) can be represented by a Radon measure µ. Since C0(X) is a
uniform closure of Cc(X), then every µ can be extended to a bounded linear functional on C0(X) if and only
if it is bounded with respect to the uniform norm. Moreover, we define M(Ω)11 the set of all bounded Radon
measures (i.e., |µ|(X) < +∞) on Ω. Naturally, if µ ∈ M(Ω) then we define |µ|(∂Ω) = 0. The space M(X) is
Banach with respect to the norm

‖µ‖M(X) := |µ|(X) .

Finally, we can formulate the Riesz representation theorem for continuous functions.

9By Radon-Nikodým theorem (see Theorem 2.23), every µ−integrable function f on X defines a measure on X.
10Given f, g ∈ C0(X), the uniform metric is a mapping m : X ×X → R+

0 such that m(f, g) := supx∈X |f(x)− g(x)|.
11In [9], these statements are formulated for the space of all complex signed measures. We restrict ourselves to the real case.

Thus, we formulate the statements on the linear subspace M(X) of the space of signed complex measures.
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Theorem 2.41 ([9], Theorem 7.17, p.223). Let X be a locally compact Hausdorff space and for µ ∈M(X) and
f ∈ C0(X) let Iµ(f) =

∫
X
f dµ. Then the map µ 7→ Iµ is an isometric isomorphism form M(X) to (C0(X))∗.

Since M(Ω) is the dual of C0(Ω), we can define an equivalent norm for µ ∈M(Ω) by

‖µ‖M(Ω) := sup

{∫
Ω

f dµ : f ∈ C0(Ω), ‖f‖C0(Ω) = 1

}
.

Indeed, without loss of generality let µ ∈M(Ω) be non-negative . Then, we can define a sequence {fn} ⊂ C0(Ω)
such that ‖fn‖C0(Ω) for all n ∈ N and fn ↗ 1 on Ω and by monotone convergence theorem

‖µ‖M(Ω) =

∫
Ω

1 dµ = |µ|(Ω) .

By Radon-Nikodým theorem, every integrable function L1(Ω) defines a measure in M(Ω) (regularity is the
consequence of the continuity of the Lebesgue integral with respect to the domain of integration and Lebesgue
σ−algebra on Ω is ”wider” than Borel σ−algebra on Ω). For each u ∈ L1(Ω) representing a signed measure
ũ ∈M(Ω) the equality

‖u‖L1(Ω) =

∫
Ω

|u| dx =

∫
Ω

u+ dx+

∫
Ω

u− dx =

∫
Ω

dũ+(x) +

∫
Ω

dũ−(x) =

∫
Ω

d|ũ|(x) = |ũ|(Ω) .

holds. Hence, there is a continuous embedding of the spaces L1(Ω) ↪→M(Ω).
The next theorem states, that convolution has the nice property of ”regularising” objects (such as measure)

even to the integrable functions. Since we will need to use this theorem in slightly different form, we include
the sketch of proof as in [9] and a further adjustment.

Theorem 2.42 ([9], Proposition 8.49., p.271). If f ∈ Lp(RN) for 1 ≤ p ≤ ∞ and µ ∈M(RN), then the integral
f ∗ µ(x) =

∫
f(x − y)dµ(y) exists for a.e. x, f ∗ µ ∈ Lp, and ‖f ∗ µ‖p ≤ ‖f‖p ‖µ‖M. (Here ”Lp” and ”a.e.”

refer to Lebesgue measure.)

Proof. [Sketch of the proof as in [9]] If f and µ are non-negative, then f ∗µ(x) exists (possibly being equal
to ∞) for every x, and by the Minkowski’s inequality for integrals,

‖f ∗ µ‖Lp(RN ) ≤
∫
‖f(· − y)‖Lp(RN ) dµ(y) ≤ ‖f‖Lp(RN ) ‖µ‖ . (2.3)

In particular f ∗ µ < ∞ for a.e. x. In the general case this argument applies to |f | and |µ|, and the result
follows easily.

We can see, that in (2.3) the shift invariance of the Lebesgue norm ‖·‖Lp(RN ) of the function f(· − y) in

the variable y in the whole space RN is used, so the norm of the convolution can be estimated independently
on y. Theorem 2.42 can be also (under further assumptions) formulated for a bounded domain Ω ⊂ RN , see
the proof of the inequality (3.2).

Finally, we include a lemma by which for two locally integrable functions u, v ∈ L1
loc(Ω) it is necessary and

sufficient to
∫
K
u− v dx = 0 hold for each compact K ⊂⊂ Ω in order to u and v be equal a.e.

Lemma 2.43 ([24], p. 72, Du Bois-Reymond lemma). In order that the function f(x), locally integrable in
Ω, should become zero in the region Ω in the sense of generalized functions, it is necessary and sufficient that
f(x) = 0 almost everywhere in Ω.

2.4 PDE theory

The classical results of the PDE solvability stated in the first section will be reproduced mainly from [11],
provided some minor labelling changes were made for the sake of consistency. Statements will be formulated
without proofs since are not in the main scope of the thesis. The Green’s function G will be derived as a
solution operator of the Poisson’s equation. For given bounded domain Ω the conditions on the smoothness of
the boundary ∂Ω will be posed in order for G to exist. The upper estimates for the Green’s function G will be
crucial in the further development of this thesis.
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2.4.1 Green’s function for the Laplace’s operator

A function u satisfying ∆u = 0 will be called harmonic. The problem of finding the function u ∈ C(Ω)∩C2(Ω)
defined on domain Ω ⊂ RN satisfying −∆u = f in Ω ,

u = g on ∂Ω ,

will be called the classical Dirichlet problem for Laplace’s equation (f ≡ 0) of Poisson’s equation (f nontrivial).
The solution u of this problem satisfies the equations in every point x ∈ Ω
Let y ∈ RN be fixed. We search for a harmonic function radially symmetric with respect to y. The homogeneous
partial differential equation reduces to an ordinary differential equation with the solution

Γ(x− y) = Γ(|x− y|) =


|x− y|2−N

N(N − 2)ωN
for N > 2 ,

− log |x− y|
2π

for N = 2 ,

(2.4)

where ωN is the volume of a unit ball in RN . The function Γ is called the fundamental solution of the Laplace’s
equation. It can be shown, that the fundamental solution Γ is harmonic at every point x ∈ RN , x 6= y. We recall
the Green’s identities. Let u, v ∈ C2(Ω) be two functions defined in the bounded domain Ω with C1 smooth
boundary ∂Ω then the following identities hold∫

Ω

v∆u dx+

∫
Ω

∇u∇v dx =

∫
∂Ω

v
∂

∂n
u dSx ,

(Green’s first identity) and ∫
Ω

(v∆u− u∆v) dx =

∫
∂Ω

(
v
∂

∂n
u− u ∂

∂n
v

)
dSx

(Green’s second identity). The first identity is derived from the divergence theorem and the second identity is
obtained by interchanging u and v in the first identity and subtracting. Now, we use the Green’s second identity
for the function Γ and a twice differentiable function u The integral is taken over the region Ω \By(r) for some
positive diameter r > 0. We obtain

u(y) =

∫
∂Ω

u
∂

∂n
Γ(x− y)− Γ(x− y)

∂

∂n
u dSx +

∫
Ω

Γ(x− y) ∆u dx (2.5)

for r → 0 as a limit process. The formula (2.5) cannot be used to solve the Poisson’s equation directly. The
directional derivative ∂

∂nu is a priori unknown. We try to find some ”version” of the function Γ which is

identically zero at the boundary ∂Ω. Suppose, we can find a harmonic function h ∈ C1(Ω) ∩ C2(Ω) such that
Γ = −h on ∂Ω. Then, by the Green’s second identity

−
∫
∂Ω

u
∂

∂n
h− h ∂

∂n
u dSx =

∫
Ω

h∆u dx . (2.6)

Setting G := Γ + h and thus adding (2.5) and (2.6), we obtain the formula

u(y) =

∫
∂Ω

u
∂

∂n
G dS +

∫
Ω

G∆u dx .

where G is called the Green’s function for the Laplace’s operator. For the given problem, the choice of the
function G is dependent on the domain Ω. It has been shown, e.g., in [24], that G(x, y) = G(y, x) and
G(x, y) > 0 for all x, y,∈ Ω. However, the function h can not be found for every domain Ω. In [11, Chapter 2]
is shown, that such function h can be found for domains Ω satisfying the exterior sphere condition This is, for
every x ∈ ∂Ω, there exists a ball B such that x = B ∩ Ω. Finally, we recall [11, Lemma, p. 22] which gives us
the interior estimates of the derivatives for harmonic functions.

Lemma 2.44. Let u be harmonic in Ω and B = By(R) ⊂⊂ Ω be a ball strictly contained in Ω. Then

|∇u(y)| ≤ N

R
sup
x∈∂Ω

|u(x)| . (2.7)
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C2 boundary As will be promptly shown, we will be interested in a particular type of boundaries. We present
a definition from [16] of a bounded domain Ω possessing a C2 boundary ∂Ω.

Definition 2.45. A bounded domain Ω ⊂ RN is of class C2 if there exists a positive number r0 such that, for
every x ∈ ∂Ω, there exists a set of Cartesian coordinates ξ = ξx, centred at x, and a function Fx ∈ C2(RN−1)
such that Fx(0) = 0,∇Fx(0) = 0 and

Ω ∩BNx (r0) = {ξ : |ξ| < r0, ξ1 > Fx(ξ2, . . . , ξN )} .

The set of coordinates ξx is called a normal set of coordinates at x and Fx is called the local defining function
at x.

A domain Ω with a C2 boundary ∂Ω satisfies the interior and exterior sphere condition, since the bound-
ary can be described by a twice differentiable function. Furthermore, the ball radius r0 > 0 can be chosen
independent of the choice of x and since Ω is bounded, the boundary can be covered by a finite number of
balls. Amongst the functions Fx ∈ C2(RN−1) defined in the balls, we can find the one with the maximum
curvature. We conclude, that the domain Ω satisfies the uniform interior and exterior sphere condition. That
is, the maximal balls constructed in the study of regularity of the boundary points have some lower bound on
their size.

2.4.2 Estimates for the Green’s functions

It is helpful to estimate the Green’s function G and its gradient ∇G by some function which asymptotic
behaviour is easy to analyse. Since the Green’s function G is a sum of Γ and a bounded (by maximal principle)
function h we would expect to be able to restrict the function G from above by some expression proportional
to the negative integral power of the distance from the point of singularity. Such estimates are mentioned e.g.
in [23].

Lemma 2.46. Assuming that Ω is bounded with a C2 boundary, then there exist constants Ki, i = 1, . . . , 6 such
that

1. G(x, y) ≤ K1(Ω)|x− y|2−N for N ≥ 3 ,

2. G(x, y) ≤ K2(Ω, α)|x− y|−α for N = 2, α > 0 ,

3. G(x, y) ≤ K3(Ω)δ(x)|x− y|1−N for N ≥ 3 ,

4. G(x, y) ≤ K4(Ω, α)δ(x)|x− y|−1−α
for N = 2, α > 0 ,

5. |∇G(x, y)| ≤ K5(Ω)|x− y|1−N for N ≥ 3 ,

6. |∇G(x, y)| ≤ K6(Ω, α)|x− y|−1−α
for N = 2, α > 0 ,

(2.8)

for all x, y ∈ Ω, x 6= y.

Proof.

1. Let y ∈ Ω be fixed, the Green’s function G(x, y) is defined by G := Γ + h. We can thus estimate

|G(x, y)| ≤ |Γ + h| ≤ |Γ| ≤ 1

N(2−N)ωN
|x− y|N−2 ≤ K(Ω)|x− y|2−N .

for all x ∈ Ω, x 6= y. Since the constant K does not depend on the choice of y, the inequality holds for all
x, y ∈ Ω, x 6= y.

2. Let y ∈ Ω. First, we explore the asymptotic behaviour of G near the point of singularity y. Let us restrict
to the ball By(r) centred at y with r > 0 sufficiently small that we does not take in account the behaviour
of the function h (G is ”almost” radially symmetric there). The situation is depicted in the Figure 2.1a
where we compared the function Γ(r) with function r−α for arbitrary positive α > 0. We can express the

inverse of both functions on the positive part of real line and we get Γ−1(r) = e−r and (r−α)−1 = r−
1
α .

The exponential function has more rapid decrease than polynomial function as the argument r approaches
the infinity and thus

e−r

r−
1
α

→ 0 as r → +∞ .

There exists a constant K such that the fundamental solution Γ and hence the Green’s function G
can be estimated from above by rational function r−α for α > 0 near the point y. Defining G0(x, y) :=

13



(a) The original situation near point y. (b) Inverse of the functions from Figure 2.1a

Figure 2.1: Behaviour of the fundamental solution Γ near the point of the singularity compared to the function
r−α with α = 0.2.

Γ(x, y)+ 1
2π log (diam Ω) we obtain a function G0 which is non-negative and G0 ≥ G holds by the maximum

principle. The fraction M(x, y) := G0(x,y)

|x−y|−α is a positive bounded function x 7→ M(x, y) in Ω with one

point of non-continuity x = y. The value of M at point (y, y) can be by the previous discussion defined
M(y, y) = 0 preserving the continuity. Therefore, for given y ∈ Ω, we are able to find Ky = maxx∈ΩM .
The function G0 is translation invariant in the second argument y in the plane R2 and there exists
K2 := K(Ω, α), such that

G(x, y) ≤ K2|x− y|−α, α > 0 .

holds for all x, y ∈ Ω.

3. The proof is carried out in [12] using the first inequality in (2.8).

4. The inequality is the consequence of the second inequality in (2.8) in the same manner as in the case of
higher dimension.

5. The function G(x, y) is harmonic for x ∈ Ω, x 6= y and the interior derivative estimate (2.7) in Ω for
subdomain not containing the point x 6= y holds. Suppose, that δ(x) ≤ |x− y|. Then each point x ∈ Ω
can be a centre of the ball Bx( 1

2δ(x)) which is strictly contained in Ω and does not contain the point y.
Thus, using the third estimate from (2.8) we get

|∇G(x, y)| ≤ N
1
2δ(x)

sup
x′∈Bx( 1

2 δ(x))

G(x, y) ≤ NK3
1
2δ(x)

sup
x′∈Bx( 1

2 δ(x))

δ(x′)|x′ − y|1−N . (2.9)

Bounding the supreme from above, we consider ”worst case” scenarios. The distance from the boundary
can be maximally 3

2δ(x) and choosing the nearest point at the ball boundary to y in the other case we get

|∇G(x, y)| ≤ NK3

3
2δ(x)

[
|x− y| − 1

2δ(x)
]1−N

1
2δ(x)

≤ 3NK3

(
1

2

)1−N

|x− y|1−N , (2.10)

utilizing the fact that δ(x) ≤ |x− y|. Now suppose that δ(x) > |x− y|. Let the ball be Bx( 1
2 |x− y|),

using the same argumentation as before and the estimate 1. from (2.8)

|∇G(x, y)| ≤ N
1
2 |x− y|

sup
x′∈Bx( 1

2 |x−y|)
G(x′, y) ≤ NK1

1
2 |x− y|

sup
x′∈Bx( 1

2 |x−y|)
|x′ − y|2−N , (2.11)

≤ NK1

[
|x− y| − 1

2 |x− y|
]2−N

1
2 |x− y|

≤ 2NK1

(
1

2

)2−N

|x− y|1−N . (2.12)

Finally, define K5(Ω) := max
{

3NK3

(
1
2

)1−N
, 2NK1

(
1
2

)2−N}
.
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6. The proof is same as in the preceding case. The only natural consequence is dependence of K6 on the
domain Ω and the parameter α > 0.

2.4.3 Other PDE concepts

For the sake of clarity, we included the definitions of strong, weak and very weak formulations and formulation
in the sense of distributions of the Dirichlet boundary value problem−∆u = f in Ω ,

u = 0 on ∂Ω .
(2.13)

Definition 2.47. A function u ∈ W 2,2(Ω) ∩W 1,2
0 (Ω) is a strong solution of the equation (2.13) if it satisfies

the equation almost everywhere in Ω and the boundary condition holds in the sense of traces.

Definition 2.48. A function u ∈W 1,2(Ω) is a weak solution of the equation (2.13) if it satisfies∫
Ω

Du · ∇v dx =

∫
Ω

f v dx

for all v ∈ C1
0 (Ω) and u ∈W 1,2

0 (Ω).

Definition 2.49 ([16], Definition 1.2.1, p.4). Let µ ∈ M(Ω). A function u ∈ L1(Ω) is a very weak solution of
the equation −∆u = µ in Ω ,

u = 0 on ∂Ω .
(2.14)

if it satisfies

−
∫

Ω

u∆v dx =

∫
Ω

v dµ

for all v ∈ C2
0 (Ω).

Definition 2.50. A distribution u ∈ D′(Ω) is the solution in the sense of distributions of the equation

−∆u = f

if it satisfies

−〈u,∆v〉 = 〈f, v〉 .
for all v ∈ D(Ω).

The equivalent of the Green’s first identity holds even for weakly differentiable functions.

Theorem 2.51 ([18], Theorem 1.30, p.20, integration by parts). If u ∈W 1,p(Ω) and v ∈W 1,q(Ω), 1 = 1/p+1/q,
then ∫

Ω

(
uDiv +Diu v

)
dx =

∫
∂Ω

u · v ni dS (2.15)

holds for all i = 1, . . . , N .

The last two theorems specifies the regularity of the solutions of equations in the strong sense and in the
sense of distributions respectively.

Theorem 2.52 ([8], Theorem 6, Section 6.3., p.317). Assume f ∈ L2(Ω). Suppose that u ∈W 1,2
0 (Ω) is a weak

solution of the boundary value problem −∆u = f in Ω ,

u = 0 on ∂Ω .

Assume finally ∂Ω ∈ C2. Then u ∈W 2,2(Ω).

Theorem 2.53 ([17], Lemma 2.85, p.76). Suppose that u ∈ L1(D) for each D ⊂⊂ Ω and satisfies∫
Ω

u∆v dx = 0

for all v ∈ D(Ω). Then u is equivalent to a harmonic function.
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Chapter 3

Elliptic PDE with measure data

In the sequel, we assume that Ω is a bounded a domain in RN with the boundary ∂Ω of the class C2. Theorem
3.1 was published in [16, Chapter 1] considering Ω ⊂ RN only for N ≥ 3. Here, we provide a more detailed
proof altogether with considering the possibility N = 2.

Theorem 3.1 ([16], Theorem 1.2.2, p.4). Assume µ ∈M(Ω), then the problem (2.14) has a unique very weak
solution u given by

u(x) =

∫
Ω

G(x, y) dµ(y) . (3.1)

Furthermore,

‖u‖Lp(Ω) ≤ C1(p,Ω) ‖µ‖M(Ω) for 1 ≤ p < N

N − 2
, N ≥ 3 , (3.2)

‖u‖Lp(Ω) ≤ C2(p,Ω) ‖µ‖M(Ω) for 1 ≤ p < +∞, N = 2 , (3.3)

and

‖u‖W 1,p(Ω) ≤ C3(p,Ω) ‖µ‖M(Ω) for 1 ≤ p < N

N − 1
, N ≥ 2 , (3.4)

where C1, C2, C3 are constants depending only on p and Ω.

The following theorem characterises a boundary behaviour of the very weak solution of (2.14). The proof is
omitted since it is independent of the dimension by the inequality (3.4).

Theorem 3.2 ([16], Assertion 1.3.7.a, p.15). Let µ ∈M(Ω). If

v(x) :=

∫
Ω

G(x, y) dµ(y), ∀x ∈ Ω (3.5)

then v ∈W 1,p
0 (Ω) for 1 ≤ p < N/(N − 1).

Proof. [Proof of Theorem 3.1] The proof will be carried out in several steps. At first, we show the uniqueness
of the very weak solution. Then, we show that any function u given by the formula (3.1) satisfies (3.2) or (3.3)
and (3.4). Finally, we show that the function u given by (3.1) is a very weak solution of (2.14).

1. Uniqueness: Let u, v ∈ L1(Ω) be the solutions of (2.14) and thus satisfying

−
∫

Ω

u∆φ dx =

∫
Ω

φ dµ ,

−
∫

Ω

w∆φ dx =

∫
Ω

φ dµ ,

for each φ ∈ C2
0 (Ω). Subtracting both identities we get∫

Ω

(u− v)∆φ dx = 0 ,

for each φ ∈ C2
0 (Ω) and w := u − v ∈ L1(Ω) is a very weak solution of the equation ∆w = 0. Using

Lemma 2.53 we deduce that w is equivalent to a harmonic function in Ω in the sense of classes in L1(Ω).
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Thus, applying the Green’s first identity twice and the harmonic property of w we obtain

0 =

∫
Ω

w∆φ dx = −
∫

Ω

∇w∇φ dx+

∫
∂Ω

w
∂

∂n
φ dSx =

=

∫
Ω

∆wφ dx+

∫
∂Ω

∂

∂n
wφ dSx +

∫
∂Ω

w
∂

∂n
φ dSx =

=

∫
∂Ω

w
∂

∂n
φ dx

for all φ ∈ C2
0 (Ω) and therefore, w = 0 on ∂Ω. By the maximum principle for harmonic functions, w has

a trivial representative w ≡ 0 in Ω and therefore u = v a.e. in Ω. Hence, the problem (2.14) has at most
one solution.

2. Estimate (3.2), N ≥ 3: First, we modify the form of solution u.

|u(x)| =
∣∣∣∣∫

Ω

G(x, y) dµ(y)

∣∣∣∣ =

∣∣∣∣∫
Ω

G(x, y) dµ+(y)−
∫

Ω

G(x, y) dµ−(y)

∣∣∣∣ ≤
≤
∣∣∣∣∫

Ω

G(x, y) dµ+(y)

∣∣∣∣+

∣∣∣∣∫
Ω

G(x, y) dµ−(y)

∣∣∣∣ ≤ ∫
Ω

G(x, y) dµ+(y) +

∫
Ω

G(x, y) dµ−(y) =

=

∫
Ω

G(x, y) d|µ|(y) ,

since the Green’s function is non-negative. The first inequality in (2.8) is used to derive

|u(x)| ≤
∫

Ω

G(x, y) d|µ|(y) ≤ K1(Ω)

∫
Ω

|x− y|2−N d|µ|(y) = K1(Ω)
(
|x− y|2−N ∗ |µ|

)
.

The expression on the right hand-side is a convolution of function and a bounded measure on Ω. For
1 ≤ p < N

N−2 the function |x− y|2−N belongs to the space Lp(Ω) and using the properties of convolution,

we observe |x− y|2−N ∗ |µ| ∈ Lp(Ω) and further∥∥∥|x− y|2−N ∗ |µ|∥∥∥
Lp(Ω)

≤
∥∥∥|· − y|2−N∥∥∥

Lp(Ω)
‖µ‖M(Ω) ≤ K

′
1(Ω, p) ‖µ‖M(Ω) .

Defining C1 := K1K
′
1, we obtain

‖u‖Lp(Ω) ≤ C1(Ω, p) ‖µ‖M(Ω) , 1 ≤ p < N

N − 2
.

3. Estimate (3.3), N = 2: The proof is similar to the one of the previous case N ≥ 3. We choose an arbitrary
p ∈ [1,+∞) and α := α(p) > 0 close to zero such that |x− y|−α ∈ Lp(Ω) (i.e. αp < 2). The constant K2

from the second inequality in (2.8) is dependent on α(p), we can therefore set K2 := K2(p,Ω). Finishing
the proof as in the previous case gives (3.3).

4. Estimate (3.4), N ≥ 3: We have shown, that the function u given by the kernel integral (3.1) satisfies (3.2).
Now, if the function u possesses a weak derivative Diu in the direction xi, it must satisfy∫

Ω

Diuψ(x) dx = −
∫

Ω

u
∂

∂xi
ψ(x) dx = −

∫
Ω

[∫
Ω

G(x, y) dµ(y)

]
∂

∂xi
ψ(x) dx (3.6)

for all ψ ∈ D(Ω). The inner integral taken with the norm variation |µ| instead of µ can be estimated
by a L1(Ω) function. The derivative ∂

∂xi
ψ is a bounded function on Ω. The integral (3.6) with the

variation norm |µ| satisfies the assumptions of Tonelli’s theorem (Theorem 2.26) and is less than +∞.
Thus G(x, y) ∂

∂xi
ψ(x) ∈ L1

λ⊗|µ|(Ω × Ω) and therefore G(x, y) ∂
∂xi

ψ(x) ∈ L1
λ⊗µ(Ω × Ω). The assumptions

of Fubini’s theorem (Theorem 2.25) are satisfied and we can interchange the order of the integration and
find a weak derivative of G

−
∫

Ω

[∫
Ω

G(x, y) dµ(y)

]
∂

∂xi
ψ(x) dx = −

∫
Ω

[∫
Ω

G(x, y)
∂

∂xi
ψ(x) dx

]
dµ(y) =

=

∫
Ω

[∫
Ω

DiG(x, y)ψ(x) dx

]
dµ(y)

Let y ∈ Ω be fixed. Let H be a function defined by H : t 7→ G(x+ txi, y) with t ∈ R such that x+ txi ∈ Ω.
Then, the function H is continuously differentiable (and hence also absolutely continuous) on every line
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Figure 3.1: An example of the domain Ω for dimension N = 2. The points x, y ∈ Ω are fixed. Since the point y
does not lie on the thick line segments of x+tx1, the function H : t 7→ G(x+txi, y) is continuously differentiable
on the both thick lines. For any given x ∈ Ω, there is only a finite number of line segments (intersections of the
line x+ txi with the domain Ω) as we assume the domain Ω is bounded with C2 boundary. The differentiability
of H is examined for each line segment separately.

parallel to the axis xi with the exception of the line going through the point y, see Figure 3.1. Thus, G
satisfies the assumptions of the first part of Theorem 2.34 and the classical and the weak derivatives are

equal DiG = ∂
∂xi

G a.e. in Ω. Next, we observe the inequalities
∣∣∣ ∂∂xiG∣∣∣ ≤ |∇xG| (since the absolute value

of the gradient is the sum of squared absolute values for the Euclidean norm) and |∇G| ≤ K5|x− y|1−N
(from the fifth inequality in (2.8)). Using the above stated estimates and the previous argumentation, we
can use the Fubini’s theorem again and proceed∫

Ω

[∫
Ω

DiG(x, y)ψ(x) dx

]
dµ(y) =

∫
Ω

[∫
Ω

∂

∂xi
G(x, y)ψ(x) dx

]
dµ(y) =

=

∫
Ω

[∫
Ω

∂

∂xi
G(x, y) dµ(y)

]
ψ(x) dx (3.7)

for all ψ ∈ D(Ω). Getting back to (3.6), the weak derivative Diu ∈ D′(Ω) is generally a distribution but
equating (3.6) and (3.7), we have∫

Ω

Diuψ(x) dx =

∫
Ω

[∫
Ω

∂

∂xi
G(x, y) dµ(y)

]
ψ(x) dx

for all ψ ∈ D(Ω). By the Du Bois-Raymond lemma (Lemma 2.43), Diu =
∫

Ω
∇xiG(x, y) dµ(y) a.e. in Ω.

Applying the gradient estimates (2.8) for the Green’s function and using same approach as in the part
two of this proof, we get∣∣Diu(x)

∣∣ =

∣∣∣∣∫
Ω

∂

∂xi
G(x, y)

∣∣∣∣ dµ(y) ≤ K(Ω)

∫
Ω

|x− y|1−N d|µ|(y) ,

a.e. in Ω. Using the properties of convolution, we get∥∥Diu
∥∥
Lp(Ω)

≤ C(Ω, p) ‖µ‖M(Ω) , 1 ≤ p < N

N − 1
.

Since the direction xi was chosen arbitrarily, this inequality holds for all i = 1, 2, . . . , N and all first
weak derivatives are p integrable functions for 1 ≤ p < N/(N − 1), defining C3 := max {NC,C1}, the
estimate (3.4) holds.
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5. Estimate (3.4), N = 2: The argument on the change of the integration and weak derivative holds for
N = 2 as in the previous case. Again, using the sixth inequality in the estimate (2.8)∣∣Diu(x)

∣∣ =

∣∣∣∣∫
Ω

∂

∂xi
G(x, y)

∣∣∣∣ dµ(y) ≤ K(Ω, α)

∫
Ω

|x− y|−1−α
d|µ|(y) ,

holds for all α > 0. Note, that the function |x− y|−1−α
is p-integrable if (1 + α)p < 2 and therefore

only for p ∈ [1, 2) = [1, N/(N − 1)) a relevant α := α(p) > 0 such that |x− y|−1−α ∈ Lp(Ω) can be
found. Repeating the same argumentation as in the previous case and recalling, that the dependence of
the constant K(Ω, α) is actually dependence on Ω and p. Hence, the estimate (3.4) holds.

6. The measure µ approximation and the convergence result: For the sake of simplicity, we do not further
specify the suitable range for p. It is sufficient to consider p = 1 + ε (ε > 0 being arbitrarily small)
regardless of the dimension N ≥ 2. Any distribution g ∈ D′(Ω) can be approximated by a sequence of test
functions {gn} ⊂ D(Ω) weakly relative to D(Ω). Since µ ∈ M(Ω) ⊂ D′(Ω), even µ can be approximated
in such manner by the sequence {fn} ⊂ D(Ω), such that∫

Ω

fnv dx→
∫

Ω

v dµ ,

for all v ∈ D(Ω) as n → +∞. The space of test functions D(Ω) is dense in C0(Ω) with respect to the
supreme norm and the limit µ ∈M(Ω) belongs (by isomorphism) to the dual space of C0(Ω), therefore∫

Ω

fnv dx→
∫

Ω

v dµ , (3.8)

holds for all v ∈ C0(Ω) as n→ +∞. Let un denote the solution of−∆u = fn in Ω ,

u = 0 on ∂Ω .
(3.9)

The solution un can be expressed (see e.g. [11])

un(x) =

∫
Ω

G(x, y) fn(y) dy . (3.10)

The real sequence
∫

Ω
fnv dx is convergent for all v ∈ C0(Ω) and is therefore bounded. The sequence {fn}

can be interpreted as a sequence of continuous linear functionals on C0(Ω) which is pointwise bounded and
is by the uniform boundedness principle (Theorem 2.7) bounded in ‖·‖M(Ω) norm (C0(Ω) equipped with

the supreme norm is a Banach space). By the already proven estimate (3.4), the sequence {un} is bounded
in ‖·‖W 1,p(Ω) norm. By the Rellich-Kondrachov theorem the space W 1,p(Ω) is compactly embedded in

the space Lp(Ω) 1 and there exists a subsequence {unk} ⊂ {un} weakly convergent in W 1,p(Ω) which is
convergent in ‖·‖Lp(Ω) norm. Since the classical solution of the equation (3.9) is also a very weak solution,
the identity

−
∫

Ω

unk ∆v dx =

∫
Ω

fn φ dx

holds for all φ ∈ C2
0 (Ω). Let w ∈ Lp(Ω) be a limit of the sequence {unk} in the norm ‖·‖Lp(Ω), thus

lim
n→+∞

∫
Ω

|unk − w|
p
dx = 0 .

The embedding of the spaces Lp(Ω) ↪→ L1(Ω) is continuous and we can conclude

lim
n→+∞

∫
Ω

(unk − w) ∆φ dx ≤ K(φ) lim
n→+∞

∫
Ω

|unk − w| dx ≤ K(φ, p) lim
n→+∞

∫
Ω

|unk − w|
p
dx = 0 ,

for all φ ∈ C2
0 (Ω). By the previous argumentation and the convergence of the sequence {fn} to the

bounded Radon measure µ ∈M(Ω), we have

−
∫

Ω

w∆φ dx = − lim
n→+∞

∫
Ω

unk ∆φ dx = lim
n→+∞

∫
Ω

fn φ dx =

∫
Ω

φ dµ

1This assertion follows from Remark in [8] on the page 274, after the proof of the Rellich-Kondrachov theorem.
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for all φ ∈ C2
0 (Ω) ⊂ C0(Ω). Thus, w is a solution of (2.14). Furthermore, w is a unique solution by the

first part of this proof. Therefore, the limit of the sequence {un} does not depend on the choice of the
subsequence {unk} 2.

7. Equivalence of the limit w =
∫

Ω
G(x, y) fn(y) dy and (3.1): Finally, we show, that u = w, i.e.∫

Ω

G(x, y) dµ(y) = lim
n→+∞

∫
Ω

G(x, y)fn(y)dy . (3.11)

Here, we assume that µ ≥ 0 and therefore the approximating sequence {fn} can be considered non-negative
fn ≥ 0. Given parameter ε > 0, let ψε ∈ C∞(RN ) be a function such that 0 ≤ ψε ≤ 1 with ψε = 0 in
B0(ε/2) and ψε = 1 in RN \B0(ε). Distinguishing the behaviour of the sequence of solutions {un} strictly
inside the domain Ω and near the boundary ∂Ω we can write

un(x) =

∫
Ω

G(x, y) fn(y) dy =

=

∫
Ω

G(x, y)ψε(|x− y|) fn(y) dy +

∫
Ω

G(x, y) (1− ψε(|x− y|)) fn(y) dy . (3.12)

For any fixed x ∈ Ω, the function G(x, y)ψε(|x− y|) belongs to the space C0(Ω) (the singularity in G at
the point x = y is removed by the zero value of ψε) and therefore∫

Ω

G(x, y)ψε(|x− y|) fn(y) dy →
∫

Ω

G(x, y)ψε(|x− y|) dµ(y) , (3.13)

holds for n → +∞ from the convergence of the sequence {fn}, (3.8). Now, subtracting w − u altogether
with applying the identity (3.12) and limits (3.13), un → w results in

w(x) − u(x) = lim
n→+∞

∫
Ω

G(x, y)(1 − ψε(|x− y|))fn(y) dy −
∫

Ω

G(x, y)(1 − ψε(|x− y|)) dµ(y) . (3.14)

By (3.13), the convergence result (3.11) holds near the boundary ∂Ω for arbitrary ε > 0. We show, that
w = u a.e. on arbitrary compact subdomain of Ω by showing the right hand-side of (3.14) converging to
zero for ε→ 0. For given compact subset F ⊂ Ω with ε < 1

4ρ(F, ∂Ω) we define

Fε =
{
x ∈ RN : ρ(x, F ) < ε

}
.

Using this notation and the Fubini’s theorem∫
F

[∫
Ω

G(x, y)(1− ψε(|x− y|))fn(y) dy

]
dx =

=

∫
Ω

[∫
F

G(x, y)(1− ψε(|x− y|))fn(y) dy

]
dx ≤

∫
Ω

fn(y) dy sup
y∈Fε

∫
By(ε)

G(x, y) dx ,

where the inequality

0 ≤ 1− ψε(|x− y|) ≤ 1 ,

was used. Since fn ∈ D(Ω) the norm is given by ‖fn‖M(Ω) =
∫

Ω
fn dx by the dual characterisation. The

sequence {fn} can be viewed as sequence of continuous linear functionals on C0(Ω). By (3.8), {fn} is
point-wise bounded and by uniform boundedness principle, there exists K > 0 such that ‖fn‖M(Ω) ≤ K
holds for n ∈ N. Thus

lim sup
n→+∞

∫
F

[∫
Ω

G(x, y)(1− ψε(|x− y|))fn(y) dy

]
dx ≤

≤ lim sup
n→+∞

∫
Ω

fn(y) dy sup
y∈Fε

∫
By(ε)

G(x, y) dx ≤

≤ K sup
y∈Fε

∫
By(ε)

G(x, y) dx .

2Assume by contradiction, that there exists a subsequence {unl} ⊂ {un} such that ‖unl − w‖Lp(Ω) > ε holds for each n > n0

for some ε > 0 and n0 ∈ N. But there exists a subsequence
{
unlm

}
⊂ {unl} which is convergent to w by the compact embedding

of W 1,p(Ω) ↪→↪→ Lq(Ω). This is a contradiction with the assumption of a non-convergence of the sequence {unl}.
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The Green’s function G is integrable and for ε → 0, the area of integration vanishes and therefore the
expression on the right hand-side tends to zero. Analogous to the previous case∣∣∣∣∫

F

[∫
Ω

G(x, y)(1− ψε(|x− y|)) dµ(y)

]
dx

∣∣∣∣ =

=

∣∣∣∣∫
Ω

[∫
F

G(x, y)(1− ψε(|x− y|)) dx
]
dµ(y)

∣∣∣∣ ≤
∣∣∣∣∣
∫

Ω

dµ(y) sup
y∈Fε

∫
By(ε)

G(x, y) dx

∣∣∣∣∣ ≤
≤

∣∣∣∣∣µ(Ω) sup
y∈Fε

∫
By(ε)

G(x, y) dx

∣∣∣∣∣
and the last expression tends to zero as ε→ 0. Obtained estimates give altogether with the Fatou’s lemma
and the fact that the limit limn→+∞

∫
Ω
G(x, y)(1− ψε(|x− y|))fn(y) dy exists

0 ≤
∣∣∣∣∫
F

w − u dx
∣∣∣∣ =

=

∣∣∣∣∫
F

[
lim

n→+∞

∫
Ω

G(x, y)(1− ψε(|x− y|))fn(y) dy −
∫

Ω

G(x, y)(1− ψε(|x− y|)) dµ(y)

]
dx

∣∣∣∣,
≤
∣∣∣∣∫
F

[
lim inf
n→+∞

∫
Ω

G(x, y)(1− ψε(|x− y|))fn(y) dy

]
dx

∣∣∣∣+

∣∣∣∣∫
F

[∫
Ω

G(x, y)(1− ψε(|x− y|)) dµ(y)

]
dx

∣∣∣∣ ,
≤
∣∣∣∣lim inf
n→+∞

∫
F

[∫
Ω

G(x, y)(1− ψε(|x− y|))fn(y) dy

]
dx

∣∣∣∣− ∣∣∣∣∫
F

[∫
Ω

G(x, y)(1− ψε(|x− y|)) dµ(y)

]
dx

∣∣∣∣ ,
≤
∣∣∣∣lim sup
n→+∞

∫
F

[∫
Ω

G(x, y)(1− ψε(|x− y|))fn(y) dy

]
dx

∣∣∣∣− ∣∣∣∣∫
F

[∫
Ω

G(x, y)(1− ψε(|x− y|)) dµ(y)

]
dx

∣∣∣∣ .
The expression on the right hand-side tends to zero as ε → 0 and therefore u = v a.e. in arbitrary
compact F ⊂⊂ Ω. Thus, u = v a.e. in Ω (by the Du Bois-Raymond lemma). If the Radon measure µ is
not non-negative, we prove the convergence for the positive µ+ and negative µ− part respectively.
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Chapter 4

Fredholm alternative

The main goal of this chapter is to prove the Fredholm alternative of the Laplace’s operator in the sense
of Definition 2.49 (the very weak sense). First, we define the solution operator S′ : M(Ω) → W 1,p

0 (Ω) of
the problem (2.14). Using the Rellich-Kondrachov Compactness theorem, we show that the image space of the
operator S′ is a subset of the Hilbert space L2(Ω) and the operator S :M(Ω)→ L2(Ω) is compact. Furthermore,
the operator restriction S : L2(Ω)→ L2(Ω) is self-adjoint and the Fredholm alternative for the operator S can
be proved.

By Theorem 3.1, the linear operator S′ : dom(S′) =M(Ω)→W 1,p
0 (Ω) for p ∈ [1, N/(N − 1)) defined by

S′ : µ 7→
∫

Ω

G(x, y) dµ(y) . (4.1)

is bounded. Moreover, it assigns the unique very weak solution of the problem (2.14) to any measure µ ∈M(Ω).
We start with a simple claim which will be implicitly used throughout the following chapters.

Lemma 4.1. Let u ∈W 1,p
0 (Ω) and µ ∈M(Ω), then−∆u = µ in Ω ,

u = 0 on ∂Ω ,
(4.2)

holds in the very weak sense if and only if

u = Sµ . (4.3)

Proof. The implication from ”right to left” is a consequence of Theorem 3.1. The reverse implication will
be proved by a contradiction. Suppose, that (4.2) holds and u 6= Sµ. Then there exists v := Sµ ∈ W 1,p

0 (Ω)
such that u 6= v on a set of positive (Lebesgue) measure. But, the equality v = Sµ implies that v satisfies (4.2)
in the very weak sense. By the uniqueness of the solution, u = v holds a.e. in Ω which is a contradiction.

Using Theorem 2.37 (the Rellich-Kondrachov compactness theorem) we will prove the following lemma.

Lemma 4.2. The operator S : M(Ω) → L2(Ω) defined by the same formula as S′, i.e. (4.1), is compact for
N = 2, 3.

Proof. The boundary ∂Ω of the domain Ω is of the class C2 and the inequality 1 ≤ p < N holds. Both
conditions are in accordance with the assumptions of Theorem 2.37. Substituting the upper bound N/(N − 1)
of the interval for p ∈ [1, N/(N − 1)) into the formula of the critical exponent p∗ = Np/(N − p) in Theorem
2.37, the compact embedding

W 1,p(Ω) ↪→↪→ Lq(Ω)

holds for p < N/(N − 1) and q < N/(N − 2). Therefore, the embedding for q = 2

W 1,p(Ω) ↪→↪→ L2(Ω)

holds only for N ≤ 3. Thus, the operator S is compact since it is a composition of a continuous operator S′

and a compact embedding operator.
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Remark 4.3. Since L2(Ω) ↪→ M(Ω), the restriction of the operator S to the space L2(Ω) is well-defined.
Furthermore, the restriction of S is in fact a composition of a continuous embedding operator from the space
L2(Ω) into M(Ω) and a compact linear operator S : M(Ω) → L2(Ω). Therefore, S : L2(Ω) → L2(Ω) is a
compact linear operator. For the sake of simplicity, we denote the restriction of the operator S to the space
L2(Ω) also by S since the linearity, the continuity and the compactness are preserved.

The proof of self-adjointness of the operator S consists of two parts. It must be shown, that S is a symmetric
operator and the domains of S and S∗ are equal, dom(S) = dom(S∗).

Lemma 4.4. The operator S : L2(Ω)→ L2(Ω) is self-adjoint.

Proof. Let u, v ∈ L2(Ω). Then, by definition

(u, Sv) =

∫
Ω

u(x)

[∫
Ω

G(x, y) v(y) dy

]
dx =

∫
Ω

[∫
Ω

u(x) v(y)G(x, y) dy

]
dx .

The term u(x) v(y)G(x, y) can be decomposed to its positive and negative part and for both, the integral∫
Ω
G(x, y) v(y) dy ∈ L2(Ω) (from the properties of S). The outer integral is just a scalar product of two L2(Ω)

functions. Therefore, using the Tonelli’s theorem, the assumptions of Fubini’s theorem are satisfied.Thus, we
can interchange the order of the integration

(u, Sv) =

∫
Ω

u(x)

[∫
Ω

G(x, y) v(y) dy

]
dx =

∫
Ω

[
v(y)

∫
Ω

G(x, y)u(x) dx

]
dy = (Su, v). (4.4)

The operator S is symmetric. Next, we observe that dom(S) = L2(Ω) and for each u ∈ L2(Ω) there exists
w ∈ L2(Ω) such that for all v ∈ dom(S) = L2(Ω) the equality (u, Tv) = (w, v) holds. Such w ∈ L2(Ω) is
defined by w := Su. The operator S is symmetric and dom(S) = dom(S∗) = L2(Ω). Thus, the operator S is
self-adjoint.

Lemma 4.2 is useful in two ways. Obviously, it shows the compactness of the operator S, but it also shows
that ran(S) is a linear subspace of L2(Ω) under certain conditions. The latter will be used now.

Lemma 4.5. Let Ω be a domain with ∂Ω ∈ C2, and N ∈ {2, 3}. Then the very weak solution v of the equation−∆u = λu in Ω ,

u = 0 on ∂Ω ,
(4.5)

has a continuous representative in C0(Ω).

Proof. This lemma will be proved by the so called ”bootstrap argument”. Lemma 4.2 implies, that the
very weak solution of (4.5) belongs to space L2(Ω). Therefore, we can assume, that the right hand-side λu is
element of the space L2(Ω). Using Theorem 2.52, the solution v is in addition an element of the space W 2,2(Ω).
Every weak solution is also very weak solution and there exists at most one very weak solution. This justifies
the use of Theorem 2.52 for very weak solutions. Now, we use Theorem 2.36 with parameters k = 2 (v is twice
weakly differentiable), p = 2 (v and its derivatives are square integrable) and N ∈ {2, 3} (dimensions for which
S maps measures from M(Ω) into the space L2(Ω)). The inequality k > n/p holds in both cases N = 2 or
N = 3 an the space W 2,2(Ω) is embedded into the space of Hölder continuous functions on Ω and therefore it
is embedded in the space of continuous functions C0(Ω). Hence v ∈ C0(Ω).

The previous lemma enables us to apply a measure µ ∈ M(Ω) as a continuous linear functional to the
solution of (4.5). We can now prove the following claim connected to the symmetry of the operator S.

Lemma 4.6. Given µ ∈M(Ω) and φ ∈ C0(Ω), the equality (Sµ, φ) = 〈µ, Sφ〉 holds.

Proof. By definition

(Sµ, φ) =

∫
Ω

[∫
Ω

G(x, y) dµ(y)

]
φ(x)dx =

∫
Ω

[∫
Ω

G(x, y)φ(x) dµ(y)

]
dx .

Integrating by the measure variation |µ| (note that |µ| ∈ M(Ω)) and considering the absolute value |φ| we
see, that the whole integral is finite. Now, the order of the integration can be exchanged by Fubini’s theorem
obtaining

(Sµ, φ) =

∫
Ω

[∫
Ω

G(x, y) dµ(y)

]
φ(x)dx =

∫
Ω

[∫
Ω

G(x, y)φ(x) dx

]
dµ(y) = 〈µ, Sφ〉 .
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Moreover, Sφ ∈ C0(Ω) by Lemma 4.5 and the duality 〈µ, Sφ〉 is well-defined.

The main result of this chapter is the Fredholm alternative for the operator S.

Theorem 4.7. The equation −∆u− λu = µ in Ω ,

u = 0 on ∂Ω ,
(4.6)

has a uniquely defined solution v ∈ L2(Ω) if and only if 〈µ, φ〉 = 0 for all solutions of the equation (4.5).

Proof. Every solution φ of (4.5) is a continuous function φ ∈ C0(Ω) by Lemma 4.5. Since φ is the solution
of the homogeneous problem (4.5), then the equality φ = λSφ holds from Lemma 4.1. Applying Lemma 4.6
and the linearity of µ as a real bounded linear functional we obtain

〈µ, φ〉 = 〈µ, λSφ〉 = λ(Sµ, φ)

and therefore 〈µ, φ〉 = 0 if and only if (Sµ, φ) = 0. It is now sufficient to prove the following claim.
The equation

u− Sλu = S (4.7)

has a uniquely determined solution v ∈ L2(Ω) if and only if (Sµ, φ) = 0 holds for all solutions φ of the equation

u− Sλu = 0 . (4.8)

.
Trivially, if λ = 0, then the equation (4.6) has a uniquely determined solution v ∈ L2(Ω) which is orthogonal

to the unique trivial solution of the homogeneous equation (4.5); this is all the consequence of Theorem 3.1.
Assuming λ 6= 0 the equations (4.7), (4.8) can be divided by λ. Now, both equations satisfy the assumptions of
the Fredholm alternative with the compact self-adjoint operator S : L2(Ω)→ L2(Ω).

Remark 4.8. Since λ = 0 is regular value of the operator S, then all eigenfunctions {φi}+∞n=1 of the operator S
form the orthonormal basis (after the normalisation) of the space L2(Ω).
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Chapter 5

Semi-linear equation with sub-linear
nonlinearity – non-resonant case

In this chapter, we study the solvability of the problem−∆u− λu = g(u) + µ in Ω ,

u = 0 on ∂Ω ,
(5.1)

in the very weak sense where µ ∈M(Ω). Let us assume that

1. g : R→ R satisfies the Carathéodory condition;

2. g has a sub-linear growth, i.e. there exists constants 0 ≤ α < 1, and b, c > 0 such that

|g(t)| ≤ b+ c|t|α (5.2)

for all t ∈ R.

We show, that the conditions stated above are sufficient for the solvability of the problem (5.1) provided the
constant λ is not an eigenvalue of the Laplace’s operator with the homogeneous Dirichlet conditions.

For the sake of consistency, we prove that the function g generates a correctly defined Nemytsky operator
G : u 7→ g(u).

Lemma 5.1. The operator G : u 7→ g(u) is a continuous mapping G : L2(Ω)→ L2(Ω).

Proof. The function g satisfies the Carathéodory condition (see Definition 2.31). The sub-linear
growth (5.2) of g implies the existence of constants b, c > 0 such that |g(t)| ≤ b + c|t| for all t ∈ R and
therefore, the assumptions of Theorem 2.32 are satisfied (constant function b is trivially b ∈ L2(Ω)). The oper-
ator G maps the space L2(Ω) to the space L2(Ω). Moreover, G is a continuous mapping by Theorem 2.32.

Since the equivalent operator equation of the problem (5.1) is well defined, the main result of this chapter
can be proved.

Theorem 5.2. Let λ ∈ R such that λ is not an eigenvalue of the Laplace’s operator with a homogeneous
Dirichlet condition be fixed. Let g : R → R satisfy the Carathéodory condition and let g possess a sub-linear
growth (5.2). Then the problem (5.1) possesses at least one very weak solution.

Proof. By Lemma 4.1, it is necessary and sufficient to study the solvability of the operator equation

(I − λS)u = Sg(u) + Sµ .

Lemma 4.7 implies, that the operator (I − λS) is invertible since the equation I + λS = o has only trivial
solution (λ is not an eigenvalue). Therefore, we search for the fixed point of

u = (I − λS)−1S(g(u) + µ) .

We define T : u 7→ (I + λS)−1S(g(u) + µ). The operator T is composed of the continuous operator
G : L2(Ω) → L2(Ω), the compact linear operator S : M(Ω) → L2(Ω) and the bounded linear operator
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(I + λS)−1 : L2(Ω)→ L2(Ω). Therefore, the operator T is compact. Moreover,

0 ≤ ‖T (u)‖
‖u‖

=

∥∥(I − λS)−1S(g(u) + µ)
∥∥
L2(Ω)

‖u‖L2(Ω)

≤

∥∥(I − λS)−1S
∥∥
L(M(Ω),L2(Ω))

‖g(u) + µ‖M(Ω)

‖u‖L2(Ω

≤

≤
∥∥(I − λS)−1S

∥∥[K ‖g(u)‖L2(Ω)

‖u‖
+
‖µ‖M(Ω)

‖u‖

]
, (5.3)

where we used the continuous embedding L2(Ω) ↪→M(Ω). The sublinear growth of g (5.2) implies

‖g(u)‖L2(Ω)

‖u‖L2(Ω)

≤ b

‖u‖L2(Ω)

+
c ‖u‖αL2(Ω)

‖u‖L2(Ω)

for some 0 ≤ α < 1 and c > 0. Using this fact, we see, that ‖T (u)‖L2(Ω) → 0 approaches to zero as ‖u‖ → +∞.

Therefore, we can find C > 0 sufficiently large such that the mapping T maps the ball Bo(C) ⊂ L2(Ω) into
itself and there is no fixed point of T at the boundary ∂Bo(C). The assumptions of the Shauder Fixed Point
theorem are satisfied and there is at least one fixed point of T and hence the solution of (5.1).
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Chapter 6

Semi-linear equation with sub-linear
nonlinearity – resonant case

Here, we are interested in the solvability of the problem−∆u− λiu = g(u) + µ in Ω ,

u = 0 on ∂Ω ,
(6.1)

where λi is any simple eigenvalue of the Laplace’s operator with homogeneous Dirichlet conditions. Particularly,
we are interested in the case where the function g : R→ R is such that

1. g is continuous and bounded;

2. the limits

g(+∞) := lim inf
x→+∞

g(x), g(−∞) := lim sup
x→−∞

g(x)

are finite and satisfy

g(−∞) < g(+∞) . (6.2)

The example of such functions g are in the Figure 6.1. The functions satisfying the conditions stated
above form the set denoted by G1. To prove the solvability of the problem (5.1) we pose the conditions of
Landesmann-Lazer type. We start with auxiliary lemmas which will be used in the proof of the main theorem
of this chapter.

Let λi be a simple eigenvalue of the Laplace’s operator with homogeneous Dirichlet conditions and let ϕi be
a corresponding eigenfunction. The space of all functions u ∈ L2(Ω) orthogonal to ϕi will be denoted by

L2
⊥(Ω) :=

{
u ∈ L2(Ω) : (u, ϕi) = 0

}
and similarly

M⊥(Ω) := {µ ∈M(Ω) : 〈µ, ϕi〉 = 0}

be the set of all bounded real Radon measures which are ”orthogonal” to ϕi in the sense of the duality
〈 · , · 〉M(Ω),C(Ω). Naturally, L2

⊥(Ω) and M⊥(Ω) are closed linear subspaces of the respective spaces L2(Ω)

and M(Ω).

Lemma 6.1. The spaces L2
⊥(Ω) and M⊥(Ω) closed subspaces of L2(Ω) and M(Ω) respectively.

Proof. Let {un} ⊂ L2(Ω) be a sequence such that un → u ∈ L2(Ω) in the norm ‖ · ‖L2(Ω) and (un, ϕi) = 0
for all n ∈ N. Then

0 ≤ |(u, ϕi)| = |(u, ϕi)− (un, ϕi)| =
∣∣∣∣∫

Ω

(u− un)ϕi dx

∣∣∣∣ ≤ ‖u− un‖L2(Ω) ‖ϕi‖L2(Ω) .

Since ‖u− un‖L2(Ω) → 0 for n→ +∞, the identity (u, ϕi) = 0 holds.

1Note that every function g ∈ G satisfies the sufficient conditions for the non-resonant problem to be solvable (compare with
Chapter 5)
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Figure 6.1: Examples of suitable functions g ∈ G. Function arctangent (thick) possesses even finite limits
at ±∞. The perturbed arctangent (dotted) possesses only finite limes inferior and superior at +∞ and −∞
respectively. Note, if any function g ∈ G, then g + β ∈ G for any β ∈ R.

Similarly, let {µn} ⊂ M(Ω) be a sequence such that µn → µ ∈M(Ω) in the norm ‖ · ‖M(Ω) and 〈µn, ϕi〉 = 0
for all n ∈ N. Then

0 ≤ |〈µ, ϕi〉| = |〈µ, ϕi〉 − 〈µn, ϕi〉| = |〈µ− µn, ϕi〉| ≤ ‖µ− µn‖M(Ω) ‖ϕi‖C0(Ω) .

Since ‖µ− µn‖M(Ω) → 0 for n→ +∞, the identity 〈µ, ϕi〉 = 0 holds.

Lemma 6.2. The restriction of the operator S to the space L2
⊥(Ω) denoted by S⊥ is a compact linear operator

S⊥ :M⊥(Ω)→ L2
⊥(Ω). Moreover, the operator S⊥ : L2

⊥(Ω)→ L2
⊥(Ω) is self-adjoint.

Proof. Let µ ∈M⊥(Ω), then by Lemma 4.6 and the fact that ϕi is the eigenfunction of S, the identity

0 = 〈µ, ϕi〉 = λi 〈µ, S⊥ϕi〉 = λi(S⊥µ, ϕi) = 0

holds. Since, λi 6= 0, then (S⊥µ, ϕi) = 0 holds and therefore S⊥µ ∈ L2
⊥(Ω). The compactness and self-

adjointness of the operator S⊥ arise from the same properties of the operator S.
The operator S⊥ : L2

⊥(Ω) → L2
⊥(Ω) is symmetric and dom(S⊥) = L2

⊥(Ω). Moreover, dom(S∗⊥) = L2
⊥(Ω)

since the corresponding w = Su ∈ L2
⊥(Ω). The operator S⊥ : L2

⊥(Ω)→ L2
⊥(Ω) is self-adjoint.

For the sake of simplicity, we denote the operator S⊥ by S with special attention to fact, that in the resonance
case, the operator (I − λiS) : L2(Ω)→ L2(Ω) is not invertible but (I − λiS⊥) : L2

⊥(Ω)→ L2
⊥(Ω) already is.

Every L2(Ω) function defines a Radon measure and therefore a bounded linear functional on the space C0(Ω)
by integration. Therefore, for given function ϕ ∈ C0(Ω) such that ‖ϕ‖L2(Ω) = 1 we define a projection operator

P :M(Ω)→ span {ϕ} by

Pµ = 〈µ, ϕ〉ϕ

and its complement PC :M(Ω)→M⊥(Ω)

PCµ = (I − P )µ = µ− 〈µ, ϕ〉ϕ .

For the sake of clarity, we prove the following lemma.

28



Lemma 6.3. Given ϕ ∈ C0(Ω) such that ‖ϕ‖L2(Ω) = 1, the operator PC maps the space M(Ω) to the subspace

M⊥(Ω).

Proof. Let µ ∈M(Ω). Then,

〈
PCµ, ϕ

〉
= 〈µ− 〈µ, ϕ〉ϕ,ϕ〉 = 〈µ, ϕ〉 − 〈µ, ϕ〉 〈ϕ,ϕ〉 = 〈µ, ϕ〉 − 〈µ, ϕ〉

∫
Ω

ϕ2 dx = 〈µ, ϕ〉 − 〈µ, ϕ〉 = 0 .

Therefore, PCµ ∈M⊥(Ω) for all µ ∈M(Ω).

Theorem 6.4. Let g ∈ G, let λi be a simple eigenvalue of the Laplace’s operator with homogeneous Dirichlet
conditions. Then the problem (6.1) possesses a very weak solution for each µ ∈M(Ω) provided

g(−∞)

∫
Ω

ϕ+
i dx− g(+∞)

∫
Ω

ϕ−i dx < 〈µ, ϕi〉 < g(+∞)

∫
Ω

ϕ+
i dx− g(−∞)

∫
Ω

ϕ−i dx (6.3)

holds, where ϕi is the corresponding eigenfunction of λi.

Proof. Again, it is sufficient and necessary to study the solvability of the operator equation

(I − λiS)u = Sg(u) + Sµ . (6.4)

The operator (I + λiS) : L2(Ω)→ L2(Ω) is not invertible in general. But, by the Fredholm alternative, the
operator (I − λiS⊥) : L2

⊥(Ω)→ L2
⊥(Ω) is invertible. We decompose (6.4) using the projection operators P and

PC projecting to the space spanned by ϕi and its orthogonal complement respectively obtaining the equivalent
system of Lyapunov-Schmidt equations

PC(I − λiS)u = PCSg(u) + PCSµ ,

P (I − λiS)u = PSg(u) + PSµ ,

Since the operator S maps S : span {ϕi} → span {ϕi} and S :M⊥(Ω)→M⊥(Ω), the projection operators
P, PC and the solution operator S are commutative. Therefore

(I − λiS)PCu = SPCg(u) + SPCµ ,

(I − λiS)Pu = SPg(u) + SPµ .

Denoting u = Pu+ PCu := cϕi + u⊥ where u⊥ ∈ L2
⊥(Ω), we rewrite

(I − λiS)u⊥ = SPCg(cϕi + u⊥) + SPCµ ,

0 = SP (g(cϕi + u⊥) + µ) .
(6.5)

The right hand-side of the first equation in (6.5) belongs to the space M⊥(Ω) and therefore, there exists a
bounded linear inverse of (I − λiS). The operator P maps to a one-dimensional space. Thus,

o = u⊥ − (I − λiS)−1SPC [g(cϕi + u⊥) + µ] ,

0 = 〈g(cϕi + u⊥) + µ, ϕi〉 .
(6.6)

The equations in (6.6) can be rewritten

o = u⊥ − F (c, u⊥) ,

0 = H(c, u⊥) ,
(6.7)

where F (c, u⊥) : (c, u⊥) 7→ (I−λiS)−1SPC [g(cϕi + u⊥) + µ] is a compact operator (see Proof of Theorem 5.2)
and H : (c, u⊥) 7→ 〈g(cϕi + u⊥) + µ, ϕi〉 is a continuous operator (see Lemma 5.1). By boundedness of g, there
exist C1, C2 > 0 such that

‖F (c, u⊥)‖L2(Ω) < C1 ,

|H(c, u⊥)| < C2

(6.8)

for all c ∈ R, u⊥ ∈ L2
⊥(Ω). Let c ∈ R be fixed. We define a homotopy operator

Fτ (c, u⊥) := τF (c, u⊥) for τ ∈ [0, 1] .
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Naturally, F0 = 0 and F1 = F . By (6.8), there is no zero of I − Fτ (c, · ) (or equivalently fixed point of
Fτ (c, · )) on the boundary of the ball Bo(C1) ⊂ L2

⊥(Ω). Therefore, the Leray-Schauder degree of I( · )−F (c, · )
is defined and

deg(I( · )− F (c, · ), Bo(C1), o) = deg(I( · ), Bo(C1), o) = 1

holds. Thus, there exists a zero of I − F (c, · ) (denoted by Σc ⊂ L2
⊥(Ω)) for each c ∈ R. Since the degree is

constant, the set
⋃
c∈R Σc is connected with respect to the parameter c ∈ R (particularly, it is connected on

each interval [c1, c2] ⊂ R by Theorem (2.17))
Now, the second equation in (6.6) can be rewritten

0 =

∫
Ω

g(cϕi + u⊥)ϕi dx+ 〈µ, ϕi〉 =

∫
Ω

g(cϕ+
i + u⊥)ϕ+

i dx−
∫

Ω

g(−cϕ−i + u⊥)ϕ−i dx+ 〈µ, ϕi〉 . (6.9)

From now on, we will freely use the super- and sub-additivity of the limes inferior and limes superior
respectively and the equality lim infn→+∞−xn = − lim supn→+∞ xn. Considering c→ +∞, we use the Fatou’s
lemma2

lim inf
c→+∞

[∫
Ω

g(cϕ+
i + u⊥)ϕ+

i dx−
∫

Ω

g(−cϕ−i + u⊥)ϕ−i dx

]
≥

≥ lim inf
c→+∞

∫
Ω

g(cϕ+
i + u⊥)ϕ+

i dx+ lim inf
c→+∞

∫
Ω

−g(−cϕ−i + u⊥)ϕ−i dx ≥

≥
∫

Ω

lim inf
c→+∞

g(cϕ+
i + u⊥)ϕ+

i dx+

∫
Ω

lim inf
c→+∞

−g(−cϕ−i + u⊥)ϕ−i dx ≥

≥ g(+∞)

∫
Ω

ϕ+
i dx− g(−∞)

∫
Ω

ϕ−i dx .

If there exists the limit as c→ +∞ of the expression on the right hand-side of (6.9), it is equal to the limes
inferior. Therefore,

lim
c→+∞

∫
Ω

g(cϕi + u⊥)ϕi dx+ 〈µ, ϕi〉 = lim inf
c→+∞

∫
Ω

g(cϕi + u⊥)ϕi dx+ 〈µ, ϕi〉 ≥

≥ g(+∞)

∫
Ω

ϕ+ dx− g(−∞)

∫
Ω

ϕ− dx+ 〈µ, ϕi〉 > 0

by the first inequality in (6.3). If the limit as c → +∞ of the expression on the right hand-side of (6.9) does
not exist, then there must exist c+ > 0 great enough such that∫

Ω

g(c+ϕi + u⊥)ϕi dx+ 〈µ, ϕi〉 > 0

holds. Considering c→ −∞ we use the Fatou’s lemma again

lim sup
c→−∞

[∫
Ω

g(cϕ+
i + u⊥)ϕ+

i dx−
∫

Ω

g(−cϕ−i + u⊥)ϕ−i dx

]
≤

≤ lim sup
c→−∞

∫
Ω

g(cϕ+
i + u⊥)ϕ+

i dx+ lim sup
c→−∞

∫
Ω

−g(−cϕ−i + u⊥)ϕ−i dx ≤

≤ − lim inf
c→−∞

∫
Ω

−g(cϕ+
i + u⊥)ϕ+

i dx− lim inf
c→−∞

∫
Ω

g(−cϕ−i + u⊥)ϕ−i dx ≤

≤ −
∫

Ω

lim inf
c→−∞

−g(cϕ+
i + u⊥)ϕ+

i dx−
∫

Ω

lim inf
c→−∞

g(−cϕ−i + u⊥)ϕ−i dx ≤

≤ g(−∞)

∫
Ω

ϕ+
i dx− g(+∞)

∫
Ω

ϕ−i dx .

If there exists the limit as c→ −∞ of the expression on the right hand-side of (6.9), it is equal to the limes
superior. Therefore,

lim
c→−∞

∫
Ω

g(cϕi + u⊥)ϕi dx+ 〈µ, ϕi〉 = lim sup
c→+∞

∫
Ω

g(cϕi + u⊥)ϕi dx+ 〈µ, ϕi〉 ≤

≤ g(−∞)

∫
Ω

ϕ+ dx− g(+∞)

∫
Ω

ϕ− dx+ 〈µ, ϕi〉 < 0

2The Fatou’s lemma as is can be used only on non-negative function sequences. By boundeness of g, we can find an integrable
minorant −h < 0 of the integrand and use the Fatou’s lemma on the sum of integrand and h which is non-negative.

30



by the second inequality in (6.3). If the limit as c→ −∞ of the expression on the right hand-side of (6.9) does
not exist, then there must exist c− < 0 small enough such that∫

Ω

g(c−ϕi + u⊥)ϕi dx+ 〈µ, ϕi〉 < 0

holds.
Therefore, we are able to find c−, c+ ∈ R such that

1. trivially by (6.8), Σc ⊂ Bo(C1) (equivalently: the zeros of I − F (c, · ) belong to Bo(C1)) for all c ∈
[c−, c+] =: I;

2. H(c−, u⊥) < 0 < H(c+, u⊥) for each c ∈ I and u⊥ ∈ Bo(C1).

Since I is a connected interval and Σ′ :=
⋃
c∈I Σc is a connected subset of L2

⊥(Ω) and H is a continuous
mapping H : R × L2

⊥(Ω) 7→ R, the set H(I,Σ′) is also connected (see e.g. [1, Example 3]). Therefore, there
exists c0 ∈ I such that H(c0, u⊥) = 0 holds for some u⊥ ∈ Σ′. Thus, there exists a solution of (6.6) and hence
of (6.1).

Remark 6.5. Theorem 6.4 can be also proved in the same manner with the inequalities (6.3) and (6.2) reversed.
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Chapter 7

Example – Heat Generation

Heat generation by exothermic reaction driven by the Arrhenius reaction term with the preexponential factor
given by Transition state theory (see e.g. [15]) is modelled by semi-linear PDE with non-linear term given by

k(u) := c1u exp
(
−c2
u

)
for u > 0 ,

where c1, c2 > 0 are positive parameters. The function u represents the thermodynamic temperature in this
model. In our analytical treatment, we define k(0) := 0 and consider an odd extension of the function k by
inserting an absolute value |u|. Furthermore, we expand

k(u) = c1u exp

(
− c2
|u|

)
= c1u+ c1u

(
exp

(
− c2
|u|

)
− 1

)
. (7.1)

The heat generation is then described by the PDE−∆u = λk(u) + µ in Ω ,

u = 0 on ∂Ω .
(7.2)

Plugging in the expansion (7.1) of the function k, the problem (7.2) has the form−∆u− λc1u = λc1u
(

exp
(
− c2
|u|

)
− 1
)

+ µ in Ω ,

u = 0 on ∂Ω .

Setting

λc1 := λi

where λi is a simple eigenvalue of the Laplace’s operator with homogeneous Dirichlet conditions and

g(u) := λiu

(
exp

(
− c2
|u|

)
− 1

)
,

The problem (7.2) can be now rewritten as−∆u− λiu = g(u) + µ in Ω ,

u = 0 on ∂Ω .
(7.3)

The limits of the non-linear function g : R→ R satisfy

g(+∞) := lim inf
t→+∞

g(t) = lim
t→+∞

g(t) = −λc1c2, g(−∞) := lim sup
t→−∞

g(t) = lim
t→−∞

g(t) = λc1c2

The problem (7.3) posses a very weak solution by Theorem 6.4 provided (6.3) holds. In the application of the
results, we must consider only positive solution u, since u represents the thermodynamic temperature.

We remark, that for example heating of the substance at one single point by laser can be represented by
setting µ := δx0

being the Dirac measure concentrated at point x0 ∈ Ω (see e.g. [2]).
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Chapter 8

Conclusion

In this thesis, we focused mainly on the solvability of the elliptic PDE (1.4) in the very weak sense. Our main
results are the Fredholm alternative for the Laplace’s operator with the homogeneous Dirichlet conditions, the
proof of the solvability of (1.4) out of resonance and at resonance. The latter led to the sufficiency of the
Landesman-Lazer type of conditions to be posed on the measure µ ∈M(Ω).

The example in Chapter 7 shows, that the problems considered in this thesis can not be considered artificial.
The functions g ∈ G are used in modelling of chemical reaction kinetics (see, e.g., [15] and other books focused
on kinetics of chemical reactions).

Using the results from Chapters 4–6 the bifurcation of the system (1.4) can be studied in a similar manner
as in [13]. The compactness results and the estimates of the integrals from Chapter 6 are the key ingredients
to prove analogous results to those in [13].

The appendix contains a possible approximation approach by which the solution of the simpler form of (1.4)
can be approximated by the series of the Bessel functions. Since the topic of this thesis was very time demanding,
we were lacking time to prove the convergence of the series. However, we still considered the appendix suitable to
include because of the lightness of the underlying idea. A convenient study material for proving the convergence
of the Fourier series of the Bessel functions is [22].
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Appendix A

Elliptic PDE involving measures on a
unit disk

A.1 Homogeneous Helmholtz equation

In this section, we find a radially symmetric solution of the homogeneous Helmholtz equation. The equation
with the Dirichlet boundary conditions is formulated−∆u− λu = 0 in Ω ,

u = 0 on ∂Ω ,
(A.1)

where we consider Ω = B0(1). This equation can be solved by the separation of variables. First, consider the
equation (A.1) in polar coordinates{

−urr(r, θ)− 1
rur(r, θ)−

1
r2uθθ(r, θ)− λu(r, θ) = 0

u(1, θ) = 0,
(A.2)

with r ∈ [0, 1] be the radius and θ ∈ [0, 2π) be the angle. Now, we suppose the solution of (A.2) is of the form
u(r, θ) = R(r)Θ(θ) with derivatives

ur(r, θ) = R′(r)Θ(θ) ,

urr(r, θ) = R′′(r)Θ(θ) ,

uθθ(r, θ) = R(r)Θ′′(θ) .

and conditions on R

R′(0) = 0, R(1) = 0 ,

and the periodic boundary condition for Θ

Θ(0) = Θ(2π), Θ′(0) = Θ′(2π) .

Assuming the non-trivial solution, we multiply the first equation in (A.2) by r2/(RΘ) and collect the terms
with R and Θ obtaining

1

R(r)

[
−r2R′′(r)− rR′(r)− λr2R(r)

]
=

Θ′′(θ)

Θ(θ)
. (A.3)

Expressions on the left- and right-hand side can equal only if they are both equal to some constant m.
Considering only the expression containing Θ we have the ODE

Θ′′(θ) = mΘ(θ) ,

which has only non-trivial solutions for
√
m ∈ N0 of the form

Θ(θ) = c1 cos
√
mθ + c2 sin

√
mθ,

but the radially symmetrical solution can be achieved only with Θ being constant function and therefore m = 0.
This gives us the equation derived from (A.3) after dividing by r−r2R′′(r)− rR′(r)− λr2R(r) = 0 ,

R′(0) = 0, R(1) = 0 .
(A.4)
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A sufficiently smooth function R can be expressed by the Maclauran series

R(r) =

+∞∑
k=0

akr
k ,

R′(r) =

+∞∑
k=0

akkr
k−1 ,

R′′(r) =

+∞∑
k=0

akk(k − 1)rk−2 .

inserting into the first equation of (A.4)

+∞∑
k=0

akk(k − 1)rk +

+∞∑
k=0

akkr
k + λ

+∞∑
k=2

ak−2r
k = 0 .

We first handle odd exponents of r by induction. Comparison of the coefficients of r1 yields simply a1 = 0.
Now, let us take arbitrary odd k, suppose ak−2 = 0 and compare the coefficients of rk which yields

k(k − 1)ak + kak + λak−2 = 0 , (A.5)

k2ak = 0 , (A.6)

and therefore ak = 0. By induction, ak = 0 for arbitrary odd k. Taking k = 0, we can see that a0 can be an
arbitrary real number a0 ∈ R. The higher even indices k can be expressed as follows

k = 2 : 2a2 + 2a2 + λa0 = 0 → a2 = −λa04 ,

k = 4 : 12a4 + 4a4 + λa2 = 0 → a4 = −λa216 = λ2a0
2242 ,

k = 6 : 30a6 + 6a6 + λa4 = 0 → a6 = λa4
36 = − λ3a0

224262 ,
...

...

k = 2n : 2n(2n− 1)a2n + 2na2n + λa2n−2 = 0 → a2n = −λa2n−2

(2n)2 = (−1)n λna0
224262...(2n)2 .

Therefore, the power series expansion of R yields

R(r) =

+∞∑
k=0

akr
k = a0

+∞∑
k=0

(−1)k
λkr2k

224262 . . . (2k)2
= a0

+∞∑
k=0

(−1)k

(√
λr
)2k

224262 . . . (2k)2
,

which is the Bessel function of the first kind of the order zero (see, e.g., [5])

R(r) = a0J0(
√
λr) .

This expression of the solution satisfies the initial condition on derivative implicitely. In order to satisfy the
condition R(1) = 0 we must take

√
λ to be a root of the function J0. This function has a countable number of

roots λn, so we have countably many nontrivial solutions of (A.4) denoted by

ϕn(r) = J0(
√
λnr) .

Please note, that the solutions ϕn are radially symmetric and defined on B2
0(1). Solutions of the homogeneous

Helmholtz equation are depicted in Figure A.1

A.2 Non-homogeneous Helmholtz Equation with Dirac measure

Now, we consider a non-homogeneous Helmholtz equation containing Dirac Measure centred at origin δ0(x) as
a source term −∆u− λnu = δ0 − cnϕn in B0(1),

u(x) = 0 on ∂B0(1),
(A.7)

where cn is suitably chosen so that δ0−cnϕn is orthogonal to ϕn and λn is squared n-th root of J0. The solution
of (A.7) u and Dirac measure δ0 can be expressed in the Bessel series form as

u(r) =

+∞∑
k=1

bkϕk(r), δ0(r) =

+∞∑
k=1

ckϕk(r) .
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Figure A.1: Five radially symmetric solutions of homogeneous Helmholtz equation. Precisely, slices of the
solutions for r ∈ [0, 1].

Knowing the functions ϕn are the eigenfunctions of the Laplace operator ∆ on the unit ball B2
0(1) (i.e.

∆ϕk = −λkϕk) we can reformulate (A.7)

−∆

[
+∞∑
k=1

bkϕk(r)

]
− λn

+∞∑
k=1

bkϕk(r) =

+∞∑
k=1
k 6=n

1

πJ2
1

(√
λk
)ϕk(r) ,

+∞∑
k=1

bkλkϕk(r)− λn
+∞∑
k=1

bkϕk(r) =

+∞∑
k=1
k 6=n

1

πJ2
1

(√
λk
)ϕk(r) .

Equating the coefficients, the expression

λkbk − λnbk = ck ,

must hold for every k ∈ N, k 6= n. Thus

bk =

 ck/ (λk − λn) k 6= n ,

0 k = n .

The coefficients ck are defined in the terms of the inner product of the space L2 := L2(B0(1))

ck =
(ϕk, δ0)L2

(ϕk, ϕk)L2

=

∫
B2

0(1)
ϕk(x) dδ0(x)∫

B2
0(1)

ϕk(x)ϕk(x) dx
=

1

2π
∫ 1

0
ϕ2
k(r) dr

.

From [5, p.11], the integral in the denominator can be computed∫ 1

0

rϕ2
k(r) dr =

∫ 1

0

rJ2
0

(√
λkr
)
dr =

1

2

[
J2

0

(√
λk

)
+ J2

1

(√
λk

)]
=

1

2
J2

1

(√
λk

)
.

Therefore

ck =
1

πJ2
1

(√
λk
) .

and

u(r) =

+∞∑
k=1
k 6=n

1

πJ2
1

(√
λk
)

(λk − λn)
ϕk(r) .
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Remark A.1. The function u is not bounded at the origin r = 0. The inequality

1

πJ2
1

(√
λk
)

(λk − λn)
ϕk(0) ≥ 1

π(λk − λn)
>

1

π(k − n)
> 0 ,

holds for k > n. The second inequality was estimated using [7, Conjecture 1.4.]. Since the series
∑+∞
k>n

1
π(k−n)

diverges, the function is not bounded at r = 0.
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Second edition, 2013.

[7] Elbert, A. Some recent results on the zeros of Bessel functions and orthogonal polynomials, Journal of
Computational and Applied Mathematics 133, 2001, 65 – 83.

[8] Evans, L. C. Partial Differential Equations, American Mathematical Society, Volume 19.

[9] Folland, G.B. Real analysis. Modern Techniques and their applications, John Wiley & Sons, Inc., Second
Edition, 1999.
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