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Abstract

This paper deals with the dynamic simulation of rigid multibody systems described with the use of two-dimensional
natural absolute coordinates. The computational methodology discussed in this investigation is referred to as planar
Natural Absolute Coordinate Formulation (NACF). The kinematic representation used in the planar NACF is based
on a vector of generalized coordinates that includes two translational coordinates and four rotational parameters. In
particular, the set of natural absolute coordinates is employed for describing the global location and the geometric
orientation relative to the general configuration of a planar rigid body. The kinematic description utilized in the
planar NACF is based on the separation of variable principle. Therefore, a constant symmetric positive-definite mass
matrix and a zero inertia quadratic velocity vector associated with the centrifugal and Coriolis inertia effects enter
in the formulation of the equations of motion. However, since a redundant set of rotational parameters is used in the
kinematic description of the planar NACF for defining the geometric orientation of a rigid body, the introduction
of a set of intrinsic normalization conditions is necessary for the mathematical formulation of the algebraic
constraint equations. Thus, the intrinsic constraint equations associated with the natural absolute coordinates must
be properly taken into account in addition to the extrinsic constraint equations that model the kinematic pairs which
form the mechanical joints. This investigation discusses in details the mathematical derivation and the numerical
implementation of the multibody system differential-algebraic equations of motion elaborated in the context of
the planar NACF. For this purpose, simple geometric considerations are employed in the paper to develop the
algebraic equations associated with the intrinsic and extrinsic constraints, whereas the fundamental principles
of classical mechanics are utilized for the formal deduction of the dynamic equations. By using the augmented
formulation, the index-three form of the differential-algebraic equations of motion is reduced to the corresponding
index-one counterpart in order to be able to apply the Udwadia-Kalaba approach for the analytical calculation of the
multibody system generalized acceleration vector. Furthermore, in the numerical implementation of the equations
of motion based on the planar NACF, the direct correction method is utilized for stabilizing the algebraic constraint
equations at both the position and velocity levels. The direct correction approach represents a new methodology
recently developed in the field of multibody system dynamics for treating the algebraic constraint equations leading
to physically correct and numerically stable dynamic simulations. A standard numerical integration algorithm is
employed for obtaining an approximate solution of the nonlinear dynamic equations derived by using the planar
NACF. The numerical implementation of a general-purpose multibody computer program based on the planar
NACF is demonstrated in the paper considering four simple benchmark examples of rigid multibody systems.
c© 2018 University of West Bohemia. All rights reserved.
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1. Introduction

In modern scientific literature, the study of the dynamic behavior of mechanical systems con-
strained by kinematic joints is referred to as multibody system dynamics [17]. Multibody
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mechanical systems are formed by collections of rigid and/or flexible continuum bodies inter-
connected between each other by means of mechanical joints, passive force elements, and active
control actuators [39,40]. Common examples of mechanical systems widely employed in engi-
neering applications that can be modeled using the multibody system approach are machines,
mechanisms, vehicles, robots, space structures, and biomechanical systems [8,9,63,69,75]. The
mechanical components of a multibody system can be connected in open-loop or closed-loop
configurations and may also come into contact between one another or with the surrounding
environment [45, 50, 70, 77]. The resultant evolution in time of a multibody system originates
from the action of external force fields and applied forces, is influenced by the possible presence
of contact and friction forces, and is heavily determined by the motion restrictions imposed by
the kinematic joints [25, 26, 83, 84].

One distinguishing feature that characterizes the motion of a general multibody system is
the presence of large displacements, large finite rotations, and possibly small and/or large de-
formations [4]. Therefore, the correct description of the rotational motion using a coordinate
parameterization that is free of kinematic singularities if of fundamental importance for effecti-
vely performing dynamic simulations of complex multibody systems [71, 100]. On the other
hand, the mechanical deformations of the continuum bodies and of the kinematic pairs that form
a general multibody system can significantly affect the resulting motion of the system itself.
The dynamic behavior of such complex systems is governed by nonlinear differential-algebraic
equations of motion resulting from the inherently nonlinear nature of the mutual relationships
between the multibody system components [98]. Thus, it becomes necessary to adopt general
and robust analysis approaches capable of correctly capturing geometric nonlinearities in order
to systematically formulate and numerically solve the equations of motion and the algebraic
equations of a general multibody system [3, 47, 51, 74, 91]. This issue is particularly relevant
for the optimal control problem of rigid-flexible multibody systems in which the standard al-
gorithms based on the linearization of the equations of motion are inadequate [43, 53, 66, 67].
To this end, appropriate numerical techniques and formulation procedures are needed to obtain
realistic numerical solutions for describing the general motion of flexible multibody systems
such as, for example, the Floating Frame of Reference Formulation (FFRF) and the Absolute
Nodal Coordinate Formulation (ANCF) [85]. The FFRF is a formulation approach that allows
for modeling large translations and large finite rotations of flexible multibody systems which
exhibit small deformations, whereas in the ANCF computational framework both small and
large deformations can be accurately described [61, 86]. One of the prominent features of both
the FFRF and the ANCF is represented by the possibility to achieve an accurate description of
complex curved geometry and the development of effective computational algorithms for the
numerical resolution of the differential-algebraic equations of motion based on a nonincremental
solution approach [49,54,62]. Therefore, both the FFRF and the ANCF computational procedu-
res for the description of flexible multibody systems can be readily used in conjunction with
the analytical methodologies typically employed for the dynamic analysis of rigid multibody
systems [60, 72, 73].

In recent years, multibody system dynamics has emerged as an independent research field
in which several formulation strategies and numerical procedures have been developed for
the systematic derivation and the numerical resolution of the differential-algebraic equations
of motion that characterize the dynamic behavior of a general multibody system [79, 95]. In
particular, there is a considerable difference between the formulation strategies employed for
modeling rigid multibody systems and the formulation approaches adopted for the description of
flexible multibody systems [82, 87]. The formulation procedures used for the simulation of the
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dynamic behavior of rigid multibody systems can be subdivided into three general categories,
namely the redundant coordinate formulation, the recursive coordinate approach, and the semi-
recursive method. The redundant coordinate formulation is one of the principal approaches
used in multibody system dynamics for modeling mechanical engineering applications. This
formulation employs a nonminimal set of generalized coordinates for the kinematic description
of a multibody system and, therefore, the dimension of the coordinate parameterization is larger
than the strict number of degrees of freedom of the system itself [55]. On the contrary, the
recursive coordinate approach is widely used in robotics and makes use of a minimal set of
generalized coordinates that are specific for each topology of the kinematic joints of a given
multibody system. The semi-recursive method, on the other hand, represents a hybrid strategy
in which the set of generalized coordinates includes both redundant and recursive variables [12].
As extensively discussed in the multibody literature, the three general categories of formulation
techniques mentioned before have distinct advantages and drawbacks of a theoretical nature or
in terms of computational convenience [5, 11, 44, 48].

The redundant coordinate formulation is of main interest for this investigation and repre-
sents the computational strategy employed in this paper. Following the concept underlying the
redundant formulation technique for modeling the kinematics of two-dimensional and three-
dimensional multibody systems composed only of rigid bodies, numerous computational me-
thodologies and computer codes were developed for the dynamic analysis of rigid multibody
systems [88]. In particular, the two principal formulation strategies that adopt the redundant
formulation approach are referred to as Reference Point Coordinate Formulation (RPCF) and
Natural Coordinate Formulation (NCF) [24]. The RPCF is a robust and reliable formulation
approach that is widely used for performing dynamic simulations of complex multibody sys-
tems [42]. The kinematic description employed in the RPCF is based on a nonminimal set of
generalized coordinates and can be distinguished into two types of coordinate formulations ac-
cording to the sets of rotational coordinates used to define the orientation of a general rigid body.
In this respect, one can distinguish the RPCF with Euler angles, that is based on the Cartesian
coordinates of a reference point together with set of three Euler angles in a three-dimensional
space, and the RPCF with Euler parameters, which uses the reference point coordinates as
translational variables and the four components of a unit quaternion for the identification the
body orientation in the space [1, 58, 59]. The main advantage of the RPCF is the fact that the
algebraic constraint equations that mathematically model the joint constraints can be expressed
in a simple and general form even in the case of complex kinematic pairs [56]. On the other
hand, the NCF is an effective formulation procedure which can be used in conjunction with
specially tailored numerical algorithms for performing real-time dynamic simulations of rigid
multibody systems. The kinematic representation used in the NCF deliberately avoids the use
of angular coordinates as rotational coordinates and exploits the separation of spatial-dependent
variables and time-dependent coordinates leading to a constant mass matrix and zero centrifugal
and Coriolis generalized inertia forces [22,23]. However, the main challenge encountered in the
computer implementation of the NCF is the definition of the algebraic equations that model the
joint constraints which are difficult to obtain in a systematic manner. This paper, on the other
hand, is based a formulation approach called Natural Absolute Coordinate Formulation (NACF)
in which the advantages of both the RPCF and the NCF are ideally combined [64]. Indeed, the
NACF represents a robust formulation approach for the dynamic analysis of rigid multibody
systems that has a clear geometric interpretation, involves simple algebraic manipulations, and
allows for a systematic derivation of the differential-algebraic multibody equations of motion
that can be readily implemented in a general-purpose multibody computer program [65].
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This investigation is focused on the development of a methodology for performing nonlinear
dynamic simulations of two-dimensional rigid multibody systems modeled by using the set of
natural absolute coordinates as generalized coordinates. The formulation approach discussed
in this paper is referred to as planar Natural Absolute Coordinate Formulation (NACF) and
represents the two-dimensional counterpart of the spatial NACF recently developed for the
kinematic and dynamic analysis of three-dimensional rigid multibody systems. In general, the
NACF computational framework is suitable for modeling rigid-flexible multibody systems in
combination with the ANCF method and this computational strategy can effectively lead to an
unified geometry/analysis approach that facilitates the integration of computer-aided design and
analysis (I-CAD-A) [46,81]. In a two-dimensional space, the set of natural absolute coordinates
is composed only of Cartesian coordinates of appropriate Euclidean vectors. To this end, for
identifying the general configuration of a two-dimensional rigid body, the Cartesian coordinates
of a specified reference point are used as translational coordinates, while the components of two
unit vectors endowed with the direction cosines of a body-fixed reference frame are employed as
rotational coordinates. Therefore, the natural absolute coordinates employed in this investigation
are natural in the sense that they include only generalized Cartesian coordinates and absolute in
the sense that they are relative to geometric vectors associated with the general configuration
of a rigid body represented with respect to an inertial frame of reference. In the planar NACF,
the underlying kinematic representation is based on the separation of variable principle and
leads to a substantial simplification of the mathematical derivation of the dynamic equations.
In fact, a matrix of shape functions can be defined for a general rigid body employing the set
of natural absolute coordinates leading to a kinematic representation featuring the separation
of space-dependent variables and time-dependent variables. It is shown in the paper that the
position, velocity, and acceleration fields of a general rigid body are vector functions which can
be respectively written as linear combinations of the natural absolute coordinates, velocities,
and accelerations.

Employing the formulation strategy discussed in this work, the algebraic equations that
describe the geometric restrictions imposed by the joint constraints can be readily obtained in a
concise form. In the mathematical formulation of the constraint equations in the context of the
planar NACF, the algebraic constraints are conceptually divided into two families, namely the
intrinsic constraint equations and the extrinsic constraint equations. While the intrinsic constraint
equations are a mathematical representation of the physical rigidity of a given body that forms
the multibody system, the extrinsic constraint equations formulate analytically the relationships
between the bodies of the multibody system that originate from the presence of the kinematic
pairs forming the mechanical joints. Furthermore, by using the D’Alembert-Lagrange principle
of virtual work together with the Lagrange multiplier method the differential-algebraic equations
of motion for a general multibody system can be systematically obtained in the framework of
the planar NACF employing a standard assembly procedure [21]. The mass matrix of a general
rigid body modeled employing the set of natural absolute coordinates is a positive-definite
symmetric constant matrix and, therefore, in the planar NACF the inertia quadratic velocity
vector that includes the centrifugal and Coriolis inertia effects is a null vector. In particular, the
collocation of the body-fixed reference system in correspondence of the principal axes of inertia
associated with the center of mass of the rigid body leads to a diagonal mass matrix which
implies a minimal inertia coupling of the equations of motion. It is important to note that having
a constant mass matrix as well as a zero inertia quadratic velocity vector is advantageous for
performing effective and efficient dynamic simulations. When compared with other multibody
computational procedures based on the redundant formulation approach, in the planar NACF
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the extrinsic algebraic equations which mathematically model the kinematic joints assume a
simple analytical form which in some important cases is linear and, therefore, can be eliminated
at the preprocessing stage leading to a set of differential-algebraic equations of motion featuring
a significantly reduced dimension [94].

The formulation procedure employed in the planar NACF leads to a sparse structure of
the differential-algebraic equations of motion which can be readily implemented in a general-
purpose multibody computer program. However, the set of generalized coordinates used in
the planar NACF is based on a nonminimal set of rotational parameters and, consequently,
in the numerical solution of the equations of motion, an effective method for enforcing the
algebraic equations at the position, velocity, and acceleration levels is needed in order to take
into account the intrinsic constraint equations associated with the normalization conditions of
the direction cosines as well as the extrinsic constraint equations that model the kinematic pairs
of the mechanical joints. For this purpose, in this investigation, the Udwadia-Kalaba equations
are used for computing the generalized acceleration vector of a rigid multibody system whereas
the direct correction approach is employed for the numerical stabilization of the algebraic
equations [2, 13]. The augmented formulation is used to transform the index-three form of
the differential-algebraic equations of motion into the corresponding index-one form in order
to obtain a standard formulation of the dynamic equations amenable to be treated with the
use of the Udwadia-Kalaba approach to the analytical dynamics [92]. The specific form of
Udwadia-Kalaba equations employed in this investigation comes from the original formulation
of the fundamental equations of constrained motion developed by Udwadia and Kalaba, and are
appropriately modified in order to exploit the simplified structure of the dynamic equations that
result from the development of the planar NACF [35]. On the other hand, the direct correction
approach is a methodology recently developed in the field of rigid multibody system dynamics
for satisfying the algebraic equations of a general rigid multibody system [52]. The key idea
of the direct correction methodology is to devise effective correction terms for the entire sets
of generalized coordinates and velocities in order to ensure the fulfillment of the algebraic
equations at both the position and velocity levels [99]. In analogy to the well-known generalized
coordinate partitioning procedure, the direct correction method allows for the selection of a
constraint tolerance that is enforced in the algorithm for the algebraic equations at each time
step [96]. Since the direct correction approach does not require the identification of dependent
and independent coordinates, it is generally more efficient than the generalized coordinate
partitioning method while conserves the robustness of the partitioning algorithm [97].

In this paper, the direct correction method is revisited in the framework of the planar NACF
and is combined with the Udwadia-Kalaba method in order to obtain a reliable multibody solver
for the differential-algebraic dynamic equations. Four numerical examples are considered in
the paper in order to evaluate by means of numerical experiments the effectiveness and the
efficiency of the formulation procedure analyzed in this work. In the numerical resolution of
the differential-algebraic equations of motion of the four numerical examples considered as
illustrative examples, the sixth-order explicit linear multistep method called Adams-Bashforth
algorithm is used to march forward the numerical solution on the time grid and, at the same
time, the direct correction approach is used to minimize the drift phenomenon of the algebraic
constraint equations at both the position and velocity levels. The numerical results obtained
in the paper employing the planar NACF are compared with the numerical results computed
with the use of the analytical procedure recently developed for modeling two-dimensional
multibody systems called planar RPCF with Euler parameters and considering the conventional
modeling approach referred to as planar RPCF with Euler angles. A very good matching
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between the numerical results computed employing the planar NACF, the planar RPCF with
Euler parameters, and the planar RPCF with Euler angles is found confirming the effectiveness
of the computational methodology developed in this work.

This paper is organized as follows. In section 2, the kinematic representation employed in
the planar NACF for modeling two-dimensional rigid multibody systems is described. For this
purpose, the set of natural absolute coordinates is defined and the separation of variable principle
is used for obtaining the matrix of shape functions of a general two-dimensional rigid body.
Section 3 encompasses a detailed description of the algebraic constraint equations used for mo-
deling the intrinsic normalization conditions of a generic rigid body and the extrinsic constraint
equations relative to the kinematic pairs that form the joint constraints of a general multibody
system. In particular, the algebraic equations corresponding to the extrinsic constraints are sub-
divided in this section into four subsets of constraint equations called basic constraints in order
to facilitate the construction of the mathematical equations relative to complex kinematic pairs.
In section 4, the fundamental principles of classical mechanics are used to derive the equations
of motion of a rigid multibody system in the framework of the planar NACF. To this end, the
D’Alembert-Lagrange principle of virtual work is utilized in conjunction with the Lagrange
multiplier technique for obtaining the differential-algebraic form of the dynamic equations.
Section 5 discusses the computational algorithm used in this investigation for the enforcement
the algebraic constraints and the numerical solutions of the nonlinear dynamic equations. For
this purpose, the direct correction approach is used to stabilize the algebraic constraints at both
the position and velocity levels and the Udwadia-Kalaba method is employed for enforcing the
constraint equations at the acceleration level. In section 6, the computer implementation of a
general-purpose multibody computer code developed in MATLAB based on the planar NACF
considering four simple numerical examples of two-dimensional rigid multibody systems is
demonstrated. It is shown in this section that the numerical results calculated by using the planar
NACF are consistent with the numerical results computed employing the planar RPCF with
Euler parameters as well as the planar RPCF with Euler angles. Finally, section 7 provides a
summary of the paper and the conclusions drawn from this investigation.

2. Reference kinematics
In this section, the kinematic representation employed in the framework of the planar NACF
is described. To this end, the position, velocity, and acceleration fields of a general body i of
a planar multibody system composed of rigid bodies are derived in terms of natural absolute
coordinates. For a generic rigid body i, the set of natural absolute coordinates is formed by
the Cartesian coordinates of a preassigned reference point on the rigid body i together with the
components of the unit vectors associated with the direction cosines of a body-fixed reference
system. In fact, in the kinematic description based on the planar NACF, two types of reference
frames are employed. The first type of reference system is an inertial frame of reference that is
called global reference system and serves as a common standard for the kinematic representation
used in the planar NACF. The second type of reference system is a local frame of reference that
is attached to a given point Oi of the rigid body i. The origin Oi of the body-fixed reference
system represents the reference point associated with the rigid body i. The local reference system
is also called floating reference frame since it translates and rotates with the generic rigid body i
of the multibody system. The global position vector of the reference point Oi of the rigid body i
measured with respect to the inertial reference system is denoted withRi and is defined as:

Ri =

[
Ri
1

Ri
2

]
, (1)
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where Ri
1 and Ri

2 are the Cartesian coordinates of the reference point Oi of the rigid body i
defined with respect to the inertial reference frame. Consider an arbitrary point P i on a general
rigid body i. The local position vector of a generic point P i on the rigid body i defined with
respect to the floating reference system is denoted with ūi and is given by:

ūi =

[
x̄i

ȳi

]
, (2)

where x̄i and ȳi are the Cartesian coordinates of an arbitrary point P i defined with respect to the
local reference frame pertaining to the rigid body i. Employing fundamental geometric concepts
of the mechanics of rigid bodies, the global position vector of a generic point P i on the rigid
body i measured with respect to the inertial reference system is denoted with ri and can be
written as:

ri = Ri +Aiūi, (3)

where Ri is the global position vector of the reference point Oi measured with respect to the
inertial coordinate frame, Ai is the rotation matrix which defines the orientation of the floating
reference system with respect to the global coordinate system, and ūi is the local position vector
of an arbitrary point P i on the rigid body i defined in the floating reference system associated
with the body i. The rotation matrix Ai transforms local vector quantities expressed in the
floating reference system into their global counterparts represented in the inertial coordinate
system [19]. In a two-dimensional space, the rotation matrix Ai can be formally obtained by
using the set of direction cosines as follows:

Ai =
[
αi βi

]
, (4)

where αi and βi are the unit vectors formed by the direction cosines associated with the floating
reference frame of the rigid body i and are given by:

αi =

[
αi
1

αi
2

]
, (5)

βi =

[
βi
1

βi
2

]
, (6)

where αi
1 and αi

2 are the direction cosines referred to the unit vector directed along the horizontal
axis of the floating reference frame of the body i, while βi

1 and βi
2 are the direction cosines

associated with the unit vector oriented along the vertical axis of the floating reference system
of the body i. The direction cosines that identify the unit vectors αi and βi can also be grouped
to form an orientation vector denoted with δi which is defined as:

δi =

[
αi

βi

]
. (7)

Considering an absolute angular displacement of the rigid body i denoted with θi and evaluated
counterclockwise from the horizontal axis of the inertial frame of reference, the two-dimensional
set of direction cosines can be computed as follows:{

αi
1 = cos(θ

i), βi
1 = − sin(θi),

αi
2 = sin(θ

i), βi
2 = cos(θ

i).
(8)

7



C. M. Pappalardo et al. / Applied and Computational Mechanics 12 (2018) XXX–YYY

Since the two unit vectors αi and βi formed by the direction cosines represent a nonminimal
set of orientation parameters, they must satisfy an appropriate set of normalization conditions.
Indeed, the normalization conditions of the orientation parameters based on the direction cosines
can be readily written as:

ϕi =

⎡
⎢⎣ (α

i)T αi − 1
(βi)T βi − 1
(αi)T βi

⎤
⎥⎦ = 0, (9)

where ϕi is an intrinsic constraint vector which identifies the rigidity constraint equations of the
body i which ensure that the rotation matrixAi is an orthogonal matrix. In fact, it can be proved
that the normalization conditions of the orientation vectors αi and βi mathematically formulate
the physical rigidity of a general body i that belongs to the rigid multibody system. Therefore,
the normalization conditions of the orientation vectors formed by the direction cosines represent
a set of intrinsic constraint equations. In the planar NACF, the general configuration of a rigid
body i pertaining to a multibody system can be univocally identified by using a vector of natural
absolute coordinates denoted with ei which contains the translational coordinate vectorRi and
the orientation parameter vector δi of the rigid body i and is defined as:

ei =
[
Ri

δi

]
. (10)

The vector of natural absolute coordinates ei represents the generalized coordinate vector
employed in the planar NACF. By using the set of natural absolute coordinates as generalized
coordinates, the position vector of an arbitrary point P i on the rigid body i can be expressed as
follows:

ri = Ri +Aiūi =
[
I Hi

] [
Ri

δi

]
= Siei, (11)

where ei is the vector of natural absolute coordinates and Si is the matrix of linear shape
functions associated with the rigid body i defined as:

Si =
[
I Hi

]
, (12)

where I is the identity matrix and Hi is a constant matrix that depends on the Cartesian
coordinates of a generic point P i defined with respect to the floating frame of reference on the
rigid body i as follows:

Hi =
[
x̄iI ȳiI

]
, (13)

where x̄i and ȳi are the Cartesian coordinates of an arbitrary point P i represented with respect
to the local reference frame associated with the rigid body i. The mathematical structure of
the constant matrix of shape functions Si associated with the rigid body i demonstrates that
the global position vector ri of an arbitrary point P i can be written as a linear combination
of the global position vector of the body reference point Ri with the unit vectors associated
with the direction cosines αi and βi that identify the orientation of the floating reference frame
with respect to the inertial reference frame. In particular, the constant coefficients of the linear
combination are the Cartesian coordinates x̄i and ȳi of an arbitrary point P i defined with respect
to the local reference frame and, therefore, the position field ri of a rigid body can be explicitly
written as:

ri = Siei = Ri + x̄iαi + ȳiβi. (14)
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Consequently, in the kinematic representation of the general geometric configuration of a ge-
neric rigid body i based on the planar NACF, it is apparent that the use of the set of natural
absolute coordinates leads to the separation of the spatial-dependent variables x̄i and ȳi from
the time-dependent variablesRi, αi, and βi. Therefore, the planar NACF features the principle
of separation of variables. The mathematical property of separation of variables considerably
facilitates the kinematic description of a general rigid body i and leads to a substantial sim-
plification of the derivation of the multibody system equations of motion in the context of the
planar NACF. It is important to note that the position field ri of a general rigid body i is a linear
function of the vector of natural absolute coordinates ei that serve as generalized coordinates
in the planar NACF. Furthermore, employing the separation of variable technique, the virtual
displacement field δri, the velocity field ṙi, and the acceleration field r̈i of a general rigid body i
can be respectively expressed by using the set of natural absolute coordinates as follows:

δri = Siδei = δRi + x̄iδαi + ȳiδβi, (15)
ṙi = Siėi = Ṙi + x̄iα̇i + ȳiβ̇i, (16)
r̈i = Siëi = R̈i + x̄iα̈i + ȳiβ̈i. (17)

Thus, in the planar NACF, it is clear that the virtual displacement field δri of the rigid body i
is a linear vector function of the natural absolute virtual displacement vector δei, the velocity
field ṙi of the rigid body i is a linear vector function of the natural absolute velocity vector ėi,
and the acceleration field r̈i of the rigid body i is a linear vector function of the natural absolute
acceleration vector ëi. On the other hand, the magnitude of the angular velocity vector defined
in the floating reference system ω̄i can be written as a linear combination of the time derivative
of the vector of orientation coordinates δ̇i as:

ω̄i = −
(
αi

)T
β̇i =

[
0T −(αi)T

] [
α̇i

β̇i

]
= Ḡiδ̇i, (18)

where the angular velocity transformation matrix Ḡi is defined as follows:

Ḡi =
[
0T −(αi)T

]
. (19)

The mathematical derivation in terms of natural absolute coordinates of the position, velocity,
and acceleration fields of a general rigid body i completes the analytical description of the
reference kinematics developed in the framework of the planar NACF.

3. Algebraic constraints

In this section, a comprehensive description of the algebraic equations necessary for the defi-
nition of the constraint equations in the context of the planar NACF is analyzed. In particular,
the algebraic equations that mathematically represent the kinematic constraints are classified
according to their physical nature into two general groups, namely the set of intrinsic constraint
equations and the set of extrinsic constraint equations [90]. The intrinsic constraint equations
are peculiar for each set of rotational parameters employed as rotational coordinates in a general
multibody formulation and are a mathematical expression of the body physical rigidity. In fact,
in the planar NACF, the intrinsic constraint equations arise from the normalization conditi-
ons of the unit vectors based on the set of direction cosines that are employed as orientation
parameters in the formulation of the equations of motion of multibody systems composed of
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two-dimensional rigid bodies. On the other hand, while enforcing the intrinsic constraint equati-
ons is of fundamental importance in order to ensure the rigidity of each body i pertaining to the
multibody system, the extrinsic constraint equations originate from the presence of the kinematic
joints and taking into account the extrinsic constraints is necessary for modeling the mechanical
restrictions on the motion of the rigid bodies that form the multibody system [89]. It is important
to note that the correct formulation of the extrinsic constraint equations that mathematically
represent the kinematic pairs of the mechanical joints of a general multibody system composed
of rigid bodies is a fundamental step for performing reliable kinematic and dynamic analysis
in the framework of the planar NACF. For this purpose, the algebraic equations for modeling
complex kinematic joints can be derived from a simple set of extrinsic constraint equations
which are called in this investigation basic constraints. The basic constraint equations associa-
ted with the extrinsic constraints serve as a set of elementary building blocks and allows for the
formulation of the constraint equations of more complex kinematic pairs in a two-dimensional
space such as, for example, the generalized joint, the rigid joint, the revolute joint, the prismatic
joint, and others. In this work, the basic equations for the extrinsic constraints are classified into
the following four types: generalized constraints, position constraints, orthogonality constraints
of the first kind, and orthogonality constraints of the second kind. The accurate description of
the algebraic equations used in the planar NACF for modeling the intrinsic constraints and the
four types of basic equations corresponding to the extrinsic constraints is discussed in details in
this section.

3.1. Intrinsic constraint equations for the orientation vectors

In this subsection, the algebraic equations relative to the intrinsic constraints of a general rigid
body i modeled in a two-dimensional space with the use of natural absolute coordinates are
developed. In the planar NACF, the intrinsic constraint equations allow for enforcing the rigidity
of a generic body i and originate from the normalization conditions of the unit vectors composed
of direction cosines which form a redundant set of orientation parameters. For a generic rigid
body i, the intrinsic constraint equations can be written as follows:

ϕi =

⎡
⎢⎣ (α

i)T αi − 1
(βi)T βi − 1
(αi)T βi

⎤
⎥⎦ = 0, (20)

where ϕi is the intrinsic constraint vector which mathematically models the rigidity property of
the body i, whereas αi and βi are the unit vectors that contain the direction cosines representing
the orientation of the floating reference system associated with the rigid body i. A virtual change
of the intrinsic constraint vector ϕi can be written as:

δϕi =

⎡
⎢⎣ 2(αi)T δαi

2(βi)T δβi

(αi)T δβi + (βi)T δαi

⎤
⎥⎦ =

⎡
⎢⎣0

T 2(αi)T 0T

0T 0T 2(βi)T

0T (βi)T (αi)T

⎤
⎥⎦

⎡
⎣ δRi

δαi

δβi

⎤
⎦ = ϕi

eiδe
i = 0, (21)

where ϕi
ei is the Jacobian matrix of the intrinsic constraint vector ϕi computed with respect to

the vector of natural absolute coordinates ei of the rigid body i which is defined as follows:

ϕi
ei =

⎡
⎢⎣0

T 2(αi)T 0T

0T 0T 2(βi)T

0T (βi)T (αi)T

⎤
⎥⎦ . (22)

10
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In addition, the first and the second time derivatives of the intrinsic constraint vector ϕi can be
readily calculated as:

ϕ̇i =

⎡
⎢⎣ 2(αi)T α̇i

2(βi)T β̇i

(αi)T β̇i + (βi)T α̇i

⎤
⎥⎦ = ϕi

ei ė
i = 0, (23)

ϕ̈i =

⎡
⎢⎢⎣

2(αi)T α̈i + 2(α̇i)T α̇i

2(βi)T β̈i + 2
(
β̇i

)T

β̇i

(αi)T β̈i + (βi)T α̈i + 2(α̇i)T β̇i

⎤
⎥⎥⎦ = ϕi

ei ë
i −Qi

d,ϕ = 0, (24)

whereQi
d,ϕ is the intrinsic constraint quadratic velocity vector that absorbs the terms which are

quadratic in the generalized velocities arising from the second time derivative of the intrinsic
constraint equations associated with the normalization conditions of the orientation vectors αi

and βi based on the direction cosines. The intrinsic constraint quadratic velocity vectorQi
d,ϕ is

defined as:

Qi
d,ϕ =

⎡
⎢⎢⎣

−2(α̇i)T α̇i

−2
(
β̇i

)T

β̇i

−2(α̇i)T β̇i

⎤
⎥⎥⎦ . (25)

When an index-one form of the multibody system equations of motion is employed for per-
forming dynamic simulations using the planar NACF, the analytical calculation of the intrinsic
constraint quadratic velocity vector Qi

d,ϕ associated with each rigid body i of the multibody
system is required for the imposition of the intrinsic constraint equations of the body orientation
parameters at the acceleration level.

3.2. Basic algebraic equations for the extrinsic generalized constraints

In this subsection, the algebraic constraint equations associated with the basic extrinsic con-
straints that mathematically describe the generalized constraints for a kinematic pair which
interconnects two planar rigid bodies are developed in the context of the planar NACF. Consider
a general set of generalized constraint equations labeled with the index k and connecting two
generic rigid bodies of the multibody system identified by the indices i and j. The generali-
zed constraints represent a set of extrinsic kinematic constraint equations between the natural
absolute coordinates of two bodies i and j involved in the kinematic pair k and remove a preas-
signed number of relative degrees of freedom between the two rigid bodies. The basic algebraic
equations that describe the kinematic restrictions of the generalized constraints are given by:

ψk = Biei −Bjej − di,j = 0, (26)

where ψk is the extrinsic constraint vector which identifies the basic algebraic equations for the
generalized constraints, Bi and Bj are appropriate Boolean matrices, ei and ej are the natural
absolute coordinate vectors of the rigid bodies i and j involved in the kinematic pair k, and di,j

is a constant vector. A virtual change of the extrinsic constraint vector ψk yields the following
equations:

δψk = Biδei −Bjδej =
[
Bi −Bj

] [
δei

δej

]
= ψk

ekδe
k = 0, (27)

11
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where ψk
ek is the Jacobian matrix of the extrinsic constraint vector ψk calculated with respect

to the vector of natural absolute coordinates ek involved in the kinematic pair k of the basic
algebraic equations associated with the generalized constraints. The the Jacobian matrix ψk

ek is
defined as:

ψk
ek =

[
Bi −Bj

]
. (28)

Furthermore, the first and the second time derivatives of the extrinsic constraint vector ψk of
the basic algebraic equations relative to the generalized constraints can be easily calculated as:

ψ̇k = Biėi −Bj ėj = ψk
ek ė

k = 0, (29)

ψ̈k = Biëi −Bj ëj = ψk
ek ë

k −Qk
d,ψ = 0, (30)

whereQk
d,ψ is the extrinsic constraint quadratic velocity vector that absorbs the terms which are

quadratic in the generalized velocities written in terms of natural absolute coordinates. For the
basic constraint equations of the generalized constraints, the constraint quadratic velocity vector
Qk

d,ψ is a zero vector:
Qk

d,ψ = 0. (31)

In the planar NACF, the analytical calculation of the extrinsic constraint quadratic velocity
vector Qk

d,ψ relative to the basic algebraic equations of the generalized constraints is necessary
for the numerical implementation of the index-one form of the multibody system equations of
motion.

3.3. Basic algebraic equations for the extrinsic position constraints

In this subsection, the algebraic constraint equations relative to the basic extrinsic constraints
that mathematically describe the position constraints for a kinematic pair which interconnects
two planar rigid bodies are developed in the framework of the planar NACF. Consider a general
set of position constraints labeled with the index k that connect two points P i and P j belonging
to two generic rigid bodies of the multibody system identified by the indices i and j. The position
constraints remove two relative degrees of freedom between the bodies i and j involved in the
kinematic pair k. The basic algebraic equations that describe the kinematic conditions of the
position constraints can be written as:

ψk = ri − rj − pi,j = 0, (32)

where ψk is the extrinsic constraint vector which identifies the basic algebraic equations for the
position constraints, ri and rj are the position vectors of the two points P i and P j on the two
rigid bodies i and j involved in the kinematic pair k, and pi,j is a constant vector. A virtual
change of the extrinsic constraint vector ψk leads to the following equations:

δψk = δri − δrj = Siδei − Sjδej =
[
Si −Sj

] [
δei

δej

]
= ψk

ekδe
k = 0, (33)

where ψk
ek is the Jacobian matrix of the extrinsic constraint vector ψk computed with respect

to the vector of natural absolute coordinates ek involved in the kinematic pair k of the basic
algebraic equations relative to the position constraints. The Jacobian matrix ψk

ek is given by:

ψk
ek =

[
Si −Sj

]
, (34)

12
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where Si and Sj are the matrices of shape functions evaluated in correspondence of the two
points P i and P j on the two rigid bodies i and j involved in the kinematic pair k. Moreover, the
first and the second time derivatives of the extrinsic constraint vector ψk of the basic algebraic
equations associated to the position constraints can be readily computed as:

ψ̇k = ṙi − ṙj = Siėi − Sj ėj = ψk
ek ė

k = 0, (35)

ψ̈k = r̈i − r̈j = Siëi − Sj ëj = ψk
ek ë

k −Qk
d,ψ = 0, (36)

where Qk
d,ψ is the extrinsic constraint quadratic velocity vector which absorbs the terms that

are quadratic in the generalized velocities expressed in terms of natural absolute coordinates.
For the basic constraint equations of the position constraints, the extrinsic constraint quadratic
velocity vectorQk

d,ψ is a zero vector:
Qk

d,ψ = 0. (37)

In the planar NACF, the analytical computation of the extrinsic constraint quadratic velocity
vectorQk

d,ψ associated with the basic algebraic equations of the position constraints is required
for the numerical implementation of the index-one form of the multibody system equations of
motion.

3.4. Basic algebraic equations for the extrinsic orthogonality constraints of the first kind

In this subsection, the algebraic constraint equations associated with the basic extrinsic constra-
ints that mathematically describe the orthogonality constraints of the first kind for a kinematic
pair which interconnects two planar rigid bodies are developed in the context of the planar
NACF. Consider a general set of orthogonality constraints of the first kind labeled with the
index k that involve two geometric directions P i

1O
i = P i

1 − Oi and P j
2O

j = P j
2 − Oj belon-

ging to two generic rigid bodies of the multibody system identified by the indices i and j. The
orthogonality constraints of the first kind remove one relative degree of freedom between the
bodies i and j involved in the kinematic pair k. The basic algebraic equations that describe the
kinematic restrictions of the orthogonality constraints of the first kind are given by:

ψk =
(
vi
1

)T
vj
2 − ai,j = 0, (38)

where ψk is the extrinsic constraint vector which identifies the basic algebraic equations for the
orthogonality constraints of the first kind, vi

1 and vj
2 are the unit vectors associated with the two

geometric directions P i
1O

i and P j
2O

j on the two rigid bodies i and j involved in the kinematic
pair k and identify two axes of the kinematic joint, and ai,j is a constant scalar quantity. A virtual
change of the extrinsic constraint vector ψk yields the following equations:

δψk =
(
vj
2

)T
δvi
1 +

(
vi
1

)T
δvj
2 =

(
vj
2

)T
Ni
1δe

i +
(
vi
1

)T
Nj
2δe

j (39)

=
[ (
vj
2

)T
Ni
1 (v

i
1)

TNj
2

] [
δei

δej

]
= ψk

ekδe
k = 0,

where ψk
ek is the Jacobian matrix of the extrinsic constraint vector ψk calculated with respect

to the vector of natural absolute coordinates ek involved in the kinematic pair k of the basic
algebraic equations associated with the orthogonality constraints of the first kind. The Jacobian
matrix ψk

ek is defined as:

ψk
ek =

[ (
vj
2

)T
Ni
1 (v

i
1)

TNj
2

]
, (40)

13
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whereNi
1 andNj

2 are constant matrices associated with the unit vectors vi
1 and vj

2 corresponding
to the two geometric directions P i

1O
i and P j

2O
j on the two rigid bodies i and j involved in the

kinematic pair k which are respectively defined as follows:

Ni
1 =

[
O Hi

1

]
, (41)

Nj
2 =

[
O Hj

2

]
, (42)

whereHi
1 andHj

2 are constant matrices functions of the local positions of the two generic points
P i
1 and P j

2 on the corresponding rigid bodies i and j involved in the kinematic pair k. The two
unit vectors vi

1 and vj
2 associated with the two geometric directions P i

1O
i and P j

2O
j on the two

rigid bodies i and j can be respectively written by using the constant matricesNi
1 andNj

2 as:

vi
1 = N

i
1e

i, (43)
vj
2 = N

j
2e

j. (44)

Furthermore, the first and the second time derivatives of the extrinsic constraint vector ψk of the
basic algebraic equations relative to the orthogonality constraints of the first kind can be easily
calculated as:

ψ̇k =
(
vj
2

)T
v̇i
1 +

(
vi
1

)T
v̇j
2 =

(
vj
2

)T
Ni
1ė

i +
(
vi
1

)T
Nj
2ė

j = ψk
ek ė

k = 0, (45)

ψ̈k =
(
vj
2

)T
v̈i
1 +

(
vi
1

)T
v̈j
2 + 2

(
v̇i
1

)T
v̇j
2 =

(
vj
2

)T
Ni
1ë

i +
(
vi
1

)T
Nj
2ë

j + 2
(
v̇i
1

)T
v̇j
2 =

ψk
ek ë

k −Qk
d,ψ = 0, (46)

where Qk
d,ψ is the extrinsic constraint quadratic velocity vector which absorbs the terms that

are quadratic in the generalized velocities written in terms of natural absolute coordinates. For
the basic constraint equations of the orthogonality constraints of the first kind, the extrinsic
constraint quadratic velocity vectorQk

d,ψ is given by:

Qk
d,ψ = −2

(
v̇i
1

)T
v̇j
2. (47)

In the planar NACF, the analytical calculation of the extrinsic constraint quadratic velocity
vectorQk

d,ψ relative to the basic algebraic equations of the orthogonality constraints of the first
kind is necessary for the numerical implementation of the index-one form of the multibody
system equations of motion.

3.5. Basic algebraic equations for the extrinsic orthogonality constraints of the second kind

In this subsection, the algebraic constraint equations associated with the basic extrinsic constra-
ints that mathematically describe the orthogonality constraints of the second kind for a kinematic
pair which interconnects two planar rigid bodies are developed in the framework of the planar
NACF. Consider a general set of orthogonality constraints of the second kind labeled with the
index k that involve the geometric direction P i

1O
i = P i

1 − Oi belonging to the generic rigid
body i and two points P i and P j belonging to two generic rigid bodies of the multibody system
identified by the indices i and j. The orthogonality constraints of the second kind remove one
relative degree of freedom between the bodies i and j involved in the kinematic pair k. The
basic algebraic equations that describe the kinematic conditions of the orthogonality constraints
of the second kind can be written as:

ψk =
(
vi
1

)T (
ri − rj

)
− bi,j = 0, (48)
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where ψk is the extrinsic constraint vector which identifies the basic algebraic equations for the
orthogonality constraints of the second kind, vi

1 is the unit vector associated with the geometric
direction P i

1O
i on the rigid body i in the kinematic pair k which identify the axis of the kinematic

joint, ri and rj are the position vectors of the two points P i and P j on the two rigid bodies i
and j involved in the kinematic pair k, and bi,j is a constant scalar quantity. A virtual change of
the extrinsic constraint vector ψk leads to the following equations:

δψk =
(
ri − rj

)T
δvi
1 +

(
vi
1

)T
δri −

(
vi
1

)T
δrj =(

ri − rj
)T
Ni
1δe

i +
(
vi
1

)T
Siδei −

(
vi
1

)T
Sjδej =[

(ri − rj)TNi
1 + (v

i
1)

TSi −(vi
1)

TSj
] [

δei

δej

]
= ψk

ekδe
k = 0, (49)

where ψk
ek is the Jacobian matrix of the extrinsic constraint vector ψk computed with respect

to the vector of natural absolute coordinates ek involved in the kinematic pair k of the basic
algebraic equations relative to the orthogonality constraints of the second kind. The Jacobian
matrix ψk

ek is given by:

ψk
ek =

[
(ri − rj)TNi

1 + (v
i
1)

TSi −(vi
1)

TSj
]
, (50)

where Ni
1 is a constant matrix relative to the unit vector vi

1 corresponding to the geometric
direction P i

1O
i on the rigid body i in the kinematic pair k, whereas Si and Sj are the matrices of

shape functions evaluated in correspondence of the two points P i and P j on the two rigid bodies i
and j involved in the kinematic pair k. Moreover, the first and the second time derivatives of the
extrinsic constraint vector ψk of the basic algebraic equations associated with the orthogonality
constraints of the second kind can be readily computed as:

ψ̇k =
(
ri − rj

)T
v̇i
1 +

(
vi
1

)T
ṙi −

(
vi
1

)T
ṙj =(

ri − rj
)T
Ni
1ė

i +
(
vi
1

)T
Siėi −

(
vi
1

)T
Sj ėj = ψk

ek ė
k = 0, (51)

ψ̈k =
(
ri − rj

)T
v̈i
1 +

(
vi
1

)T
r̈i −

(
vi
1

)T
r̈j + 2

(
v̇i
1

)T (
ṙi − ṙj

)
=(

ri − rj
)T
Ni
1ë

i +
(
vi
1

)T
Siëi −

(
vi
1

)T
Sj ëj + 2

(
v̇i
1

)T (
ṙi − ṙj

)
=

ψk
ek ë

k −Qk
d,ψ = 0, (52)

whereQk
d,ψ is the extrinsic constraint quadratic velocity vector which absorbs the terms that are

quadratic in the generalized velocities expressed in terms of natural absolute coordinates. For
the basic constraint equations of the orthogonality constraints of the second kind, the extrinsic
constraint quadratic velocity vectorQk

d,ψ is defined as:

Qk
d,ψ = −2

(
v̇i
1

)T (
ṙi − ṙj

)
. (53)

In the planar NACF, the analytical computation of the extrinsic constraint quadratic velocity
vectorQk

d,ψ relative to the basic algebraic equations of the orthogonality constraints of the second
kind is required for the numerical implementation of the index-one form of the multibody system
equations of motion.
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4. Analytical dynamics

In this section, the analytical formulation of the dynamic equations in the framework of the planar
NACF is discussed. By using the formulation approach developed in this section, the multibody
equations of motion for a general rigid multibody system are systematically obtained employing
a standard assembly procedure implemented in terms of natural absolute coordinates. For this
purpose, the physical quantities that enter into the mathematical formulation of the differential-
algebraic equations of motion are derived using the set of natural absolute coordinates as
generalized coordinates and exploiting the separation of variable property. In particular, the
multibody system mass matrix, the generalized external force vector, the Jacobian matrix of the
kinematic constraints, and the constraint quadratic velocity vector are analytically calculated in
this section by using the D’Alembert-Lagrange principle of virtual work in conjunction with the
Lagrange multiplier method. Considering a general rigid body i modeled in the planar NACF,
the virtual work of the inertia forces is denoted with δW i

i and can be expressed employing the
kinematic representation based on the set of natural absolute coordinates as follows:

δW i
i = −

∫
Ai

ρi
(
r̈i

)T
δri dAi = −

(
ëi

)T
∫

Ai

ρi
(
Si

)T
Si dAiδei =

(
−Miëi

)T
δei, (54)

where Ai is the area of the two-dimensional body i, ρi represents the body mass density, and
Mi denotes the mass matrix of the rigid body i. In the planar NACF, the mass matrixMi of a
general two-dimensional rigid body i is a constant positive-definite symmetric matrix given by:

Mi =
∫

Ai

ρi
(
Si

)T
SidAi =

⎡
⎣ miI J̄ i

Oi,x̄iI J̄ i
Oi,ȳiI

J̄ i
Oi,x̄iI J̄ i

Oi,x̄ix̄iI J̄ i
Oi,x̄iȳiI

J̄ i
Oi,ȳiI J̄ i

Oi,x̄iȳiI J̄ i
Oi,ȳiȳiI

⎤
⎦ , (55)

where I represents the identity matrix, mi denotes the mass of the rigid body i, J̄ i
Oi,x̄i and J̄ i

Oi,ȳi

are the first moments of mass of the two-dimensional body i computed with respect to the axes
of the floating frame of reference having the point Oi as origin, whereas J̄ i

Oi,x̄ix̄i , J̄ i
Oi,ȳiȳi , and

J̄ i
Oi,x̄iȳi are the second moments of mass of the rigid body i calculated with respect to the axes

of the body-fixed reference system. The first and second moments of mass of the rigid body i
can be written in terms of the local Cartesian coordinates of the body center of mass Gi and
using the body mass moments of inertia as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

J̄ i
Oi,x̄i = mix̄i

Gi ,

J̄ i
Oi,ȳi = miȳi

Gi,

J̄ i
Oi,x̄ix̄i = 1

2

(
Ī i
Oi,ȳiȳi + Ī i

Oi,z̄iz̄i − Ī i
Oi,x̄ix̄i

)
,

J̄ i
Oi,ȳiȳi = 1

2

(
Ī i
Oi,z̄iz̄i + Ī i

Oi,x̄ix̄i − Ī i
Oi,ȳiȳi

)
,

J̄ i
Oi,x̄iȳi = −Ī i

Oi,x̄iȳi ,

(56)

where mi is the body mass, x̄i
Gi and ȳi

Gi represent the Cartesian coordinates of the center of mass
Gi of the rigid body i referred to the local coordinate system, while Ī i

Oi,x̄ix̄i , Ī i
Oi,ȳiȳi , Ī i

Oi,z̄iz̄i are
the mass moments of inertia associated with the body i and calculated with respect to the axes
of the floating frame of reference having the point Oi as origin, and Ī i

Oi,x̄iȳi is the product of
inertia of the rigid body i computed with respect to the axes of the body-fixed reference system.
In the planar NACF, when the reference point Oi is assumed coincident with the center of mass
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Gi of the rigid body i and the axes of the floating frame of references coincide with the body
principal axes of inertia, the constant mass matrix Mi of the rigid body i has a special form
characterized by a diagonal structure and can be written as:

Mi =

⎡
⎣miI O O
O J̄ i

Gi,x̄ix̄iI O
O O J̄ i

Gi,ȳiȳiI

⎤
⎦ , (57)

where mi is the mass of rigid body i, whereas J̄ i
Gi,x̄ix̄i and J̄ i

Gi,ȳiȳi are the second moments of
mass of the rigid body i calculated with respect to the body principal axes of inertia referred to
the center of mass Gi of the rigid body i that are given by:⎧⎨

⎩
J̄ i

Gi,x̄ix̄i = 1
2

(
Ī i
Gi,ȳiȳi + Ī i

Gi,z̄iz̄i − Ī i
Gi,x̄ix̄i

)
,

J̄ i
Gi,ȳiȳi = 1

2

(
Ī i
Gi,z̄iz̄i + Ī i

Gi,x̄ix̄i − Ī i
Gi,ȳiȳi

)
,

(58)

where Ī i
Gi,x̄ix̄i , Ī i

Gi,ȳiȳi , Ī i
Gi,z̄iz̄i are the mass moments of inertia relative to the body i referred to

the body principal axes of inertia having the body center of mass Gi as origin of the coordinate
frame. It is noteworthy to emphasize the fact that, in the planar NACF, the mass matrix Mi

of a general rigid body i is a constant positive-definite symmetric matrix featuring a full rank.
Consequently, by using the formulation approach based on the set of natural absolute coordinates,
the kinetic energy T i of a general rigid body i can be mathematically written as a quadratic form
having constant coefficients that depends only on the body generalized velocities as follows:

T i =
1
2

(
ėi

)T
Miėi. (59)

Therefore, since in the planar NACF the kinetic energy T i of a rigid body i is a pure quadratic
form and the mass matrixMi is a constant square matrix, the inertia quadratic velocity vector
Qi

v that absorbs the centrifugal and Coriolis inertia terms which are quadratic in the generalized
velocities vanishes. In fact, by using the Euler-Lagrange equations in the framework of the
planar NACF, one can readily write:

Qi
v =

(
∂T i

∂ei

)T

− Ṁiėi = 0. (60)

It is important to note that having a dynamic formulation of the equations of motion for a general
rigid body i based on a constant mass matrix and zero Coriolis as well as centrifugal generalized
inertia terms is a distinguishing feature of the planar NACF. This peculiar feature of the planar
NACF is directly inherited from the separation of variable property employed in the kinematic
description based on natural absolute coordinates. This important property of the planar NACF is
advantageous for performing efficient and effective dynamic simulations for complex multibody
mechanical systems and leads to a considerable simplification of the mathematical definition of
the algebraic equations that represents the kinematic constraints. For instance, the body mass
matrix can be transformed into an identity matrix by using a change of variables based on a
set of Cholesky generalized coordinates leading to an optimal sparse structure of the multibody
equations of motion. On the other hand, the virtual work of the generalized external forces δW i

e

that are applied on a general rigid body i can be easily written by using the set of natural absolute
coordinates as follows:

δW i
e =

∫
Ai

(
f ie

)T
δri dAi =

∫
Ai

(
f ie

)T
Si dAiδei =

(
Qi

e

)T
δei, (61)
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where Ai is the area of the rigid body i, f ie is a general vector of external forces distributed on the
two-dimensional body i, such as for instance the gravity force vector, andQi

e is the generalized
external force vector acting on the rigid body i. In the planar NACF, the generalized external
force vectorQi

e is defined as:

Qi
e =

∫
Ai

(
Si

)T
f ie dA

i. (62)

Furthermore, in the planar NACF, the virtual work of the generalized constraint forces δW i
c,ϕ

relative to the intrinsic constraint equations of the rigid body i pertaining to a general two-
dimensional multibody system can be written using the Lagrange multiplier method as:

δW i
c,ϕ = −

(
λi

)T
δϕi =

(
−

(
ϕi
ei

)T
λi

)T

δei =
(
Qi

c,ϕ

)T
δei, (63)

where λi is the Lagrange multiplier vector associated with the intrinsic constraint equations of
the two-dimensional body i of the rigid multibody system, ϕi is the intrinsic constraint vector
associated with the rigid body i, ϕi

ei is the Jacobian matrix of the intrinsic constraint vector ϕi

calculated with respect to the vector of natural absolute coordinates ei of the rigid body i, and
Qi

c,ϕ is the generalized constraint force vector resulting from the intrinsic constraints of the rigid
body i. The generalized intrinsic constraint force vector Qi

c,ϕ relative to the intrinsic constraint
equations of the rigid body i is defined as follows:

Qi
c,ϕ = −

(
ϕi
ei

)T
λi. (64)

In the planar NACF, the virtual work of the generalized constraint forces δW k
c,ψ associated with

the the extrinsic constraint equations of the kinematic joint pertaining to a general kinematic
pair k of the multibody system can be expressed using the Lagrange multiplier method as
follows:

δW k
c,ψ = −

(
λk

)T
δψk =

(
−

(
ψk
ek

)T
λk

)T

δek =
(
Qk

c,ψ

)T
δek, (65)

where λk is the Lagrange multiplier vector relative to the extrinsic constraint equations of the
kinematic joint pertaining to a general kinematic pair k of the multibody system, ψk is the
extrinsic constraint vector relative to the kinematic joint k, ψk

ek is the Jacobian matrix of the
extrinsic constraint vector ψk calculated with respect to the vector of natural absolute coordinates
ek of the rigid bodies involved in the kinematic pair k, and Qk

c,ψ is the generalized constraint
force vector resulting from the extrinsic constraints associated with the kinematic joint k. The
generalized extrinsic constraint force vector Qk

c,ψ associated with the the extrinsic constraint
equations of the kinematic pair k is defined as:

Qk
c,ψ = −

(
ψk
ek

)T
λk. (66)

In the planar NACF, obtaining analytically the formal expressions of the rigid body mass matrix
Mi, the generalized external force vector Qi

e, the intrinsic constraint generalized force vector
Qi

c,ϕ associated with a general rigid body i, and the extrinsic constraint generalized force vector
Qk

c,ψ relative to a generic kinematic pair k of the multibody system is necessary for assembling
the complete set of differential-algebraic equations of motion. To this end, one can make use of
the fundamental principles of analytical mechanics, such as the D’Alembert-Lagrange principle
of virtual work, combined with the Lagrange multiplier method. Thus, the virtual work of all
the forces acting on the multibody system can be expressed as follows:

δWi + δWe + δWc = 0, (67)
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where δWi represents the total virtual work of the rigid body inertia forces, δWe denotes the total
virtual work of the external forces applied to the multibody system, and δWc is the total virtual
work of the intrinsic and extrinsic constraint forces that characterize the kinematic constraints
of the mechanical system. Assuming that the number of rigid bodies that form the multibody
system is Nb and denoting with e the total vector of natural absolute coordinates that identify
the general configuration of the multibody system, on can write the total virtual work of the
rigid body inertia forces δWi in the planar NACF as follows:

δWi =
Nb∑
i=1

δW i
i =

Nb∑
i=1

(
−Miëi

)T
δei = (−Më)T δe, (68)

whereM is the total mass matrix of the rigid multibody system which can be obtained by using
a standard assembly procedure. The total virtual work of the external forces δWe can be readily
obtained in the planar NACF as follows:

δWe =
Nb∑
i=1

δW i
e =

Nb∑
i=1

(
Qi

e

)T
δei = QT

e δe, (69)

where Qe is the total generalized external force vector associated with the complete set of
external forces applied on the rigid multibody system which can be formulated employing a
standard assembly procedure. Assuming a set of Nb intrinsic algebraic constraints relative to
the total set of rigid bodies that form the multibody system and a set of Nc extrinsic algebraic
constraints which model the joint constraints of all the kinematic pairs restricting the motion
of the multibody system, on can write the total virtual work of the constraint forces δWc in the
planar NACF by using the Lagrange multiplier technique as follows:

δWc =
Nb∑
i=1

δW i
c,ϕ +

Nc∑
k=1

δW k
c,ψ =

Nb∑
i=1

(
−

(
ϕi
ei

)T
λi

)T

δei +
Nc∑
k=1

(
−

(
ψk
ek

)T
λk

)T

δek =

(
−CT

e λ
)T

δe, (70)

where C is the total vector of algebraic constraint equations encompassing the complete set of
intrinsic and extrinsic constraints, Ce is the Jacobian matrix of the total vector of constraint
equations C calculated with respect to the total vector of natural absolute coordinates of the
multibody system e, and λ is the total vector of Lagrange multipliers associated with the entire
set of algebraic constraints. In the planar NACF, the total vector of algebraic constraint equations
C, the total Jacobian matrix of the kinematic constraints Ce, and the total constraint quadratic
velocity vector that absorbs the terms which are quadratic in the generalized velocities Qd are
respectively defined as:

C =
[

ϕ
ψ

]
, (71)

Ce =
[

ϕe
ψe

]
, (72)

Qd =

[
Qd,ϕ

Qd,ψ

]
, (73)

where ϕ is the total vector of intrinsic constraint equations, ψ is the total vector of extrinsic
constraint equations, ϕe is the complete Jacobian matrix of the total intrinsic constraint vector ϕ
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computed with respect to the total vector of natural absolute coordinates of the multibody system
e, ψe is the complete Jacobian matrix of the total extrinsic constraint vector ψ computed with
respect to the total vector of natural absolute coordinates of the multibody system e,Qd,ϕ is the
total constraint quadratic velocity vector associated with the entire set of intrinsic constraints,
andQd,ψ is the total constraint quadratic velocity vector associated with the entire set of extrinsic
constraints which can be obtained employing a standard assembly procedure. Assuming that
the Lagrange multipliers satisfy the dependent subset of the system equations of motion and
substituting the mathematical expressions of the total virtual works for the inertia, external, and
constraint forces in the analytical formulation of the D’Alembert-Lagrange principle of virtual
work, the total set of differential-algebraic equations of motion for the rigid multibody system
can be developed in the context of the planar NACF to yield:{

Më = Qe −CT
e λ,

C = 0.
(74)

As expected, in the planar NACF, the multibody system equations of motion form a set of
index-three differential-algebraic dynamic equations in which the mass matrix is constant and
the Coriolis and centrifugal generalized inertia terms are absent. Employing the augmented
formulation approach, the index-three set of equations of motion obtained in the planar NACF
can be readily transformed into a dynamically equivalent set of index-one equations of motion.
The augmented formulation represents an effective index reduction strategy which replaces the
total vector of algebraic constraints with its second time derivative and leads to the following
set of dynamic equations: {

Më = Qe −CT
e λ,

Ceë = Qd.
(75)

The index-one form of dynamic equations of a general multibody system derived in terms of
natural absolute coordinates and transformed using the augmented formulation can be rewritten
in a compact matrix form as follows:[

M CT
e

Ce O

] [
ë
λ

]
=

[
Qe

Qd

]
. (76)

The index-one form of the differential-algebraic equation of motion of a general rigid multibody
system constrained by kinematic joints features an appropriate mathematical structure amenable
to be treated with the use of the fundamental equations of constrained motion.

5. Computational algorithm

In this section, the computational algorithm used in this paper for the analytical treatment and
the numerical solution the equations of motion of a general rigid multibody system obtained
in the framework of the planar NACF is illustrated. In particular, the generalized acceleration
vector of the multibody system constrained by a general set of kinematic joints is explicitly
obtained in terms of natural absolute coordinates employing the fundamental equations of
constrained motion referred to as Udwadia-Kalaba equations. Furthermore, the direct correction
approach for eliminating the violations of the algebraic constraint equations at both the position
and velocity levels is employed in the computational algorithm for the numerical solution
of the multibody system equations of motion. A schematic representation of the complete
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Fig. 1. Flowchart of the computational algorithm for the numerical solution of the multibody system
equations of motion

computational algorithm used in the solution procedure of the equations of motion is shown in
Fig. 1. The fundamental equations of constrained motion represent an effective mathematical
technique recently developed in the field of analytical mechanics and are referred to as Udwadia-
Kalaba equations by the names of their discoverers. Udwadia and Kalaba developed this powerful
and general analytical method by using the Gauss principle of least constraint as a fundamental
principle of classical mechanics in conjunction with modern linear algebra techniques based on
the Moore-Penrose pesudoinverse matrix [93]. In the Udwadia-Kalaba equations, the system
mass matrixM, the generalized external force vector Qe, the Jacobian matrix of the constraint
equations Ce, and the constraint quadratic velocity vector Qd are known matrix and vector
quantities, whereas the generalized acceleration vector ë and the vector of Lagrange multipliers
λ are unknown vector quantities that can be readily computed employing the fundamental
equations of constrained motion. In the planar NACF, the Udwadia-Kalaba equations can be
rewritten in a special form by using the index-one form of the multibody equations of motion
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a =M−1Qe,

ε = Qd −Cea,
K = CeM−1CT

e ,

F = K+,

λ = −Fε,

Qc = −CT
e λ,

ac =M−1Qc,

ë = a+ ac,

(77)

where a is the generalized acceleration vector expressed in terms of natural absolute coordinates
for the multibody system released from the algebraic constraints, ε represents the constraint
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generalized error vector that mathematically quantifies how much the generalized acceleration
vector a relative to the unconstrained multibody system violates the second time derivative of the
algebraic constraint equations, K denotes the kinetic matrix that characterizes the constrained
dynamics of the rigid multibody mechanical system represented using natural absolute coordi-
nates, F is the constraint feedback matrix that originates from the application of the kinematic
constraints on the rigid bodies that from the multibody system modeled in the planar NACF, λ
is the total vector of Lagrange multipliers associated with the algebraic constraints,Qc denotes
the total generalized constraint force vector relative to the algebraic constraint equations, ac

represents the additional generalized acceleration vector induced on the multibody system by
the action of the algebraic constraints, and ë is the resultant generalized acceleration vector of
the multibody system expressed in terms of natural absolute coordinates. In the Udwadia-Kalaba
equations, the matrixK+ denotes the Moore-Penrose pseudoinverse matrix of the kinetic matrix
K of the multibody system which can be readily computed using a set of standard mathemati-
cal procedures of numerical linear algebra such as for example the SVD numerical technique.
However, if the Jacobian matrix of the kinematic constraintsCe has a full row rank, which means
that there are no redundant constraints in the vector of the algebraic equationsC, the generalized
inverse matrix which defines the Moore-Penrose pseudoinverse matrix is identical to the regular
inverse matrix and, therefore, the constraint feedback matrix F can be computed from kinetic
matrix of the multibody system K using a regular numerical inversion procedure based on the
LU factorization [14, 76]. Thus, by using the Udwadia-Kalaba equations, the total generalized
acceleration vector ë and the total vector of Lagrange multipliers λ can be effectively calculated
for a general rigid multibody system modeled with the use of natural absolute coordinates and,
therefore, the regular mathematical structure of the state function associated with the multibody
system can be recovered allowing for the use of a standard numerical integration scheme for
the numerical resolution of the equations of motion. However, since the numerical solution of
the index-one form of the equations of motion is prone to the drift phenomenon of the algebraic
constraints, a constraint stabilization technique, such as for instance the generalized coordinate
partitioning algorithm, the direct correction technique, the penalty method, or the Baumgarte
stabilization method, must be utilized for controlling the violations of the constraint equations at
the position and velocity levels in order to obtain consistent numerical results [6]. In particular, in
this investigation, the direct correction technique is employed to contrast the violations of the al-
gebraic constraint equations. The direct correction method is an effective and efficient constraint
stabilization technique which can be readily implemented in a general-purpose multibody code.
Unlike the conventional constraint stabilization techniques that are based on a trial-and-error
selection of the stabilization parameters, the direct correction methodology is able to reduce wi-
thin a specified error tolerance the violations of the algebraic constraints at both the position and
velocity levels without modifying the structure of the equations of motion [20]. Furthermore,
unlike the generalized coordinate partitioning method, the direct correction algorithm does not
require for each time step the analysis of the system degrees of freedom in which the identifi-
cation of the system dependent and independent coordinates is performed [41]. This is a crucial
aspect of the generalized coordinate partitioning algorithm that contributes significantly to the
robustness of the method but, at the same time, involves a significant additional overhead in the
algorithm leading to a computational intensive numerical procedure [7,57]. The direct correction
approach, on the other hand, produces effective correction terms that are computed for the entire
vectors of generalized coordinates and velocities without distinction between independent and
dependent variables and leads to a more efficient computational procedure when compared to
the generalized coordinate partitioning method [18]. In analogy with the generalized coordinate
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partitioning method, the algorithmic structure of the direct correction method is composed of
two numerical procedures, namely an attenuation of the constraint violations at the position
level and a subsequent stabilization of the constraint drift at the velocity level. In the first step
of the direct correction algorithm, the constraint violations at the position level are eliminated
adding a correction term to the generalized coordinate vector as follows:{

e = e0 +Δe,

Δe = −C+eC,
(78)

where e is the corrected configuration vector containing the multibody system generalized
coordinates updated by the direct correction procedure, e0 denotes the initial uncorrected vector
of generalized coordinates associated with a general time step of the numerical simulation, and
Δe represents the correction term for the system natural absolute coordinates. In the expression
of the direct correction terms associated with the total vector of generalized coordinates, the
rectangular matrixC+e denotes the Moore-Penrose pseudoinverse matrix of the Jacobian matrix
of the algebraic constraints Ce that is a rectangular matrix. This first step of the direction
correction algorithm is based on an approximate solution of the constraint equations at the
position level based on the Moore-Penrose pseudoinverse matrix. Thus, the direct correction
term for the natural absolute coordinatesΔe has a minimum norm and makes the least influence
possible on the dynamic equations. It is important to note that, in the direct correction algorithm,
the direct correction step on the generalized coordinates must be repeated iteratively until a
prescribed tolerance is met in order to effectively control the constraint violations at the position
level. On the other hand, in the second step of the direct correction algorithm, the corrected
vector of generalized coordinates obtained from the first step of the algorithm is employed and
the constraint violations at the velocity level are eliminated considering a correction term for
the generalized velocity vector which can be readily computed as follows:{

ė = ė0 +Δė,
Δė = −C+e Ċ = −C+e (Ct +Ceė) ,

(79)

where ė denotes the corrected vector of generalized velocities of the multibody systems expres-
sed in terms of natural absolute coordinates updated by the direct correction procedure, ė0 is
the initial uncorrected velocity vector of generalized velocities relative to a general step of the
dynamic simulation, and Δė identifies the correction term for the generalized velocities of the
rigid multibody system. In the expression of the direct correction terms associated with the total
vector of generalized velocities, the vector Ct represents the partial derivative of the constraint
vector C computed with respect to the time. Even in this case, this second step of the direction
correction algorithm is based on an approximate solution of the constraint equations at the ve-
locity level based on the Moore-Penrose pseudoinverse matrix. As a result, the direct correction
term for the natural absolute velocitiesΔė has a minimum norm and, therefore, makes the least
influence possible on the equations of motion. In general, in the direct correction algorithm, it
is not necessary to repeat iteratively the direct correction step on the generalized velocities be-
cause typically the magnitude of the constraint violation at the velocity level is of a minor entity.
The analytical formulation of the differential-algebraic set of equations of motion in terms of
natural absolute coordinates, the description of the formulation approach for the calculation of
the multibody system generalized acceleration vector based on the Udwadia-Kalaba equations,
and the illustration of the numerical procedure for the enforcement of the algebraic constraints
at the position and velocity levels by using the direct correction method complete the discussion
on the dynamic equations in the framework of the planar NACF.
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6. Numerical results and discussion

In this section, four illustrative numerical examples are examined in order to demonstrate the use
of the planar NACF for the kinematic and dynamic analysis of rigid multibody systems confined
in a two-dimensional space. As discussed in details in the previous section of the paper, the
flowchart of the computational algorithm developed in this investigation for the numerical
solutions of the equations of motion is shown in Fig. 1. The multibody systems analyzed in this
section include simple models of open-loop and closed-loop mechanical systems constrained
by kinematic joints. The numerical examples considered in this section are a four-bar linkage,
a slider-crank mechanism, a double inverted pendulum, and a quick return mechanism, as
respectively shown in Figs. 2, 3, 4, and 5. In the mathematical formulation of the multibody
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Fig. 2. Four-bar linkage
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k
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Fig. 3. Slider-crank mechanism

models of the four mechanical systems considered as numerical examples, the local position
of the origin of the reference system of each body is assumed to be coincident with the body
center of mass, while the coordinate system of each body is considered parallel to the body
principal axes of inertia. Tables 1, 2, 3, and 4 report the numerical values of the masses, of
the mass moments of inertia, and of the gravity accelerations of the rigid bodies that form the
multibody systems considered as illustrative examples. The four-bar linkage is composed of
three rigid bodies and four revolute joints that are respectively located in the points A, B, C,
and D of Fig. 2. In Fig. 2, the centers of mass of the three rigid bodies that form the four-bar
linkage are respectively indicated with G1, G2, and G3. As shown in Fig. 2, a spring-damper
element is collocated between the points B and C of the four-bar linkage. The slider-crank
mechanism is formed by three rigid bodies, three revolute joints, and one prismatic joint which
are respectively located in the points A, B, C, and G3 of Fig. 3. In Fig. 3, the centers of mass
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Table 1. Four-bar linkage inertia properties

Body Number Mass Mass Moments of Inertia Gravity Acceleration

i (–) mi (kg) Ii
xx, Ii

yy, I
i
zz, I

i
xy, I

i
xz, I

i
yz (kg ·m2) gi (m · s−2)

1 3.000 0.080, 4.040, 4.040, 0.000, 0.000, 0.000 9.810

2 3.000 0.080, 4.040, 4.040, 0.000, 0.000, 0.000 9.810

3 3.000 0.080, 4.040, 4.040, 0.000, 0.000, 0.000 9.810

Table 2. Slider-crank mechanism inertia properties

Body Number Mass Mass Moments of Inertia Gravity Acceleration

i (–) mi (kg) Ii
xx, Ii

yy, I
i
zz, I

i
xy, I

i
xz, I

i
yz (kg ·m2) gi (m · s−2)

1 2.000 0.053, 2.693, 2.693, 0.000, 0.000, 0.000 9.810

2 3.000 0.080, 29.896, 29.896, 0.000, 0.000, 0.000 9.810

3 4.000 0.667, 1.667, 1.667, 0.000, 0.000, 0.000 9.810

Table 3. Double inverted pendulum inertia properties

Body Number Mass Mass Moments of Inertia Gravity Acceleration

i (–) mi (kg) Ii
xx, Ii

yy, I
i
zz, I

i
xy, I

i
xz, I

i
yz (kg ·m2) gi (m · s−2)

1 5.000 0.833, 0.833, 0.833, 0.000, 0.000, 0.000 9.810

2 3.000 0.080, 4.040, 4.040, 0.000, 0.000, 0.000 9.810

3 1.000 0.027, 3.013, 3.013, 0.000, 0.000, 0.000 9.810

Table 4. Quick return mechanism inertia properties

Body Number Mass Mass Moments of Inertia Gravity Acceleration

i (–) mi (kg) Ii
xx, Ii

yy, I
i
zz, I

i
xy, I

i
xz, I

i
yz (kg ·m2) gi (m · s−2)

1 5.000 0.133, 1.733, 1.733, 0.000, 0.000, 0.000 9.810

2 10.000 1.067, 1.067, 1.067, 0.000, 0.000, 0.000 9.810

3 6.000 0.160, 18.080, 18.080, 0.000, 0.000, 0.000 9.810

4 2.000 0.053, 0.693, 0.693, 0.000, 0.000, 0.000 9.810

5 1.000 0.107, 0.107, 0.107, 0.000, 0.000, 0.000 9.810
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Fig. 4. Double inverted pendulum

Fig. 5. Quick return mechanism

of the three rigid bodies which constitute the slider-crank mechanism are respectively denoted
with G1, G2, and G3. As shown in Fig. 3, a spring-damper element is interposed between the
points B and D of the slider-crank mechanism. The double inverted pendulum is composed
of three rigid bodies, one prismatic joint, and two revolute joints that are respectively located
in the points G1, A, and B of Fig. 4. In Fig. 4, the centers of mass of the three rigid bodies
which form the double inverted pendulum are respectively indicated with G1, G2, and G3.
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As shown in Fig. 4, a spring-damper element is collocated between the points B and C of
the double inverted pendulum. The quick return mechanism is formed by five rigid bodies,
five revolute joints, and two prismatic joints which are respectively located in the points A,
B, C, D, E, G2, and G5 of Fig. 5. In Fig. 5, the centers of mass of the five rigid bodies
that constitute the quick return mechanism are respectively denoted with G1, G2, G3, G4, and
G5. As shown in Fig. 5, a spring-damper element is interposed between the points D and F
of the quick return mechanism. On the other hand, in Table 5 the spring undeformed length,
the spring constant stiffness coefficient, and the damper viscous damping coefficient for each
multibody system considered as illustrative examples are reported. Furthermore, Figs. 2, 3, 4,
and 5 represent the initial configurations for the four multibody systems considered as numerical
examples. The initial configurations of all the rigid bodies that constitute the four multibody
systems considered as numerical examples are respectively described in Tables 6, 7, 8, and 9.

Table 5. Spring-damper element properties

Model Name Spring Undeformed Spring Constant Damper Viscous
Length Stiffness Coefficient Damping Coefficient

l0 (m) k (kg · s−2) σ (kg · s−1)
Four-bar Linkage 4.000 200.000 15.000

Slider-crank Mechanism 0.000 300.000 40.000

Double Inverted Pendulum 1.000 400.000 30.000

Quick Return Mechanism 0.100 100.000 5.000

Table 6. Initial configuration of the four-bar linkage

Body Reference Point Reference Point First Unit Vector of Second Unit Vector of
Number Horizontal Position Vertical Position Direction Cosines Direction Cosines

i (–) xi (m) yi (m) αi
1, α

i
2 (–) βi

1, β
i
2 (–)

1 1.414 −1.414 0.707, −0.707 0.707, 0.707

2 4.828 −2.828 1.000, 0.000 0.000, 1.000

3 5.414 −1.414 −0.707, 0.707 −0.707, −0.707

Table 7. Initial configuration of the slider-crank mechanism

Body Reference Point Reference Point First Unit Vector of Second Unit Vector of
Number Horizontal Position Vertical Position Direction Cosines Direction Cosines

i (–) xi (m) yi (m) αi
1, α

i
2 (–) βi

1, β
i
2 (–)

1 1.414 1.414 0.707, 0.707 −0.707, 0.707
2 8.106 1.414 0.966, −0.259 0.259, 0.966

3 13.384 0.000 1.000, 0.000 0.000, 1.000
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Table 8. Initial configuration of the double inverted pendulum

Body Reference Point Reference Point First Unit Vector of Second Unit Vector of
Number Horizontal Position Vertical Position Direction Cosines Direction Cosines

i (–) xi (m) yi (m) αi
1, α

i
2 (–) βi

1, β
i
2 (–)

1 0.000 0.000 1.000, 0.000 0.000, 1.000

2 2.000 0.000 1.000, 0.000 0.000, 1.000

3 4.000 3.000 0.000, 1.000 −1.000, 0.000

Table 9. Initial configuration of the quick return mechanism

Body Reference Point Reference Point First Unit Vector of Second Unit Vector of
Number Horizontal Position Vertical Position Direction Cosines Direction Cosines

i (–) xi (m) yi (m) αi
1, α

i
2 (–) βi

1, β
i
2 (–)

1 0.500 0.866 0.500, 0.866 −0.866, 0.500
2 1.000 1.732 −0.259, −0.966 0.966, −0.259
3 0.741 0.766 −0.259, −0.966 0.966, −0.259
4 0.811 4.371 −0.707, 0.707 −0.707, −0.707
5 0.103 5.078 1.000, 0.000 0.000, 1.000

It is important to note that, for all the multibody models considered as numerical examples, the
initial conditions ensure the fulfillment of the algebraic constraint equations at both position
and velocity levels. In fact, the four rigid multibody systems begin their time evolutions having
zero initial generalized velocities and the resulting motions are the effects of the combination of
the gravity force field with the force fields exerted by the spring-damper elements. Employing
the D’Alembert-Lagrange principle of virtual work in conjunction with the Lagrange multiplier
technique, the differential-algebraic equations of motion of the four multibody systems assumed
as numerical examples are formally derived in the framework of the planar NACF. In order
to enforce the rigidity of all the bodies of the four multibody systems under examination,
an appropriate set of intrinsic constraint equations formed by the normalization conditions of
the orientation parameters is taken into account in the derivation of the equations of motion.
Subsequently, the index-three form of the differential-algebraic equations of motion based on the
planar NACF is transformed into the index-one counterpart by using the augmented formulation,
while the generalized acceleration vectors of the constrained multibody systems are calculated
employing the Udwadia-Kalaba method. To this end, the multibody system equations of motion
based on the planar NACF are implemented and solved in a general-purpose computer program
for the dynamic analysis of rigid multibody systems developed in the MATLAB simulation
environment. The numerical integration algorithm implemented for the numerical solution of the
resulting set of ordinary differential equations of motion is the Adams-Bashforth method, which
is a six-order explicit linear multistep algorithm with a constant time step. Since the Adams-
Bashforth algorithm is not a self-starting numerical integration procedure, a sixth-order Runge-
Kutta scheme is used for the first six time steps of the dynamic simulations. However, after the
first six time steps, the Adams-Bashforth algorithm is an effective numerical integration scheme
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Table 10. Parameters of the numerical simulations

Time Step Time Span Constraint Tolerance
Δt (s) T (s) ε (m)

10−3 5 10−12

Table 11. Violations of the algebraic constraints in the planar NACF

Model Name Maximum Norm of the Maximum Norm of the
Constraint Violation Constraint Violation
at the Position Level at the Velocity Level

max
t∈[0,T ]

(‖C‖) (m) max
t∈[0,T ]

(‖Ċ‖) (m · s−1)

Four-bar Linkage 1.256 · 10−15 2.126 · 10−14

Slider-crank Mechanism 3.689 · 10−15 2.925 · 10−14

Double Inverted Pendulum 9.630 · 10−13 1.088 · 10−14

Quick Return Mechanism 9.269 · 10−13 8.615 · 10−15

which requires only one evaluation of the system state function at each time step for marching
forward the numerical solution of the dynamic equations on the time grid and, therefore, efficient
dynamic simulations can be performed. The numerical parameters used to perform the numerical
integration of the system equations of motion and to carry out the iterative numerical procedure
for enforcing the constraint equations are reported in Table 10. In particular, in order to obtain
a numerical solution of the multibody system equations of motion which is physically correct
and numerically stable, the direct correction method is used to satisfy the algebraic equations
arising from the intrinsic normalization conditions of the rigid bodies as well as the extrinsic
constraints associated with the kinematic joints. For this purpose, in analogy with the well-
known generalized coordinate partitioning technique, the direct correction method represents an
effective and efficient constraint stabilization algorithm for enforcing the algebraic equations of
the kinematic constraints at the position and velocity levels without altering the structure of the
dynamic equations. The maximum norms of the constraint violations at the position and velocity
levels for the complete time evolution of the four multibody systems considered as illustrative
examples are reported in Table 11. As expected, for all the multibody systems examined in
this section, the maximum norms of the constraint violations at the position and velocity levels
are below the tolerance prescribed in the iterative procedure that is employed in the computer
implementation of the direct correction algorithm used for the numerical stabilization of the
algebraic constraints. Thus, the dynamic behaviors of the four illustrative examples predicted
by means of numerical simulations are consistent with the geometric topologies of the rigid
multibody systems and comply with the physics of the constrained mechanical systems. In order
to carry out a comparative study for the multibody formulation developed in this paper, the
numerical results obtained by using the planar NACF are compared with the numerical results
obtained employing the recently developed planar RPCF with Euler parameters as well as the
conventional methodology based on the planar RPCF with Euler angles [68]. In Fig. 6, the
vertical displacement of the centroid G2 of the second body of the four-bar linkage is shown.
Fig. 7 represents the horizontal displacement of the centroid G3 of the third body of the slider-
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Fig. 6. Vertical displacement of the point G2 of the four-bar linkage – (circle) planar NACF, (square)
planar RPCF with Euler parameters, (diamond) planar RPCF with Euler angles
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Fig. 7. Horizontal displacement of the point G3 of the slider-crank mechanism – (circle) planar NACF,
(square) planar RPCF with Euler parameters, (diamond) planar RPCF with Euler angles

crank mechanism. In Fig. 8, the vertical displacement of the centroid G3 of the third body of the
double inverted pendulum is shown. Fig. 9 represents the horizontal displacement of the centroid
G5 of the fifth body of the quick return mechanism. In Figs. 6, 7, 8, and 9, the circles denote
the numerical solutions computed by using the planar NACF, the squares indicate the numerical
solutions obtained employing planar RPCF with Euler parameters, and the diamonds represent
the numerical solutions calculated with the use of the planar RPCF with Euler angles. A complete
overlapping of the numerical results obtained using these three different formulation procedures
is found and, therefore, there is a very good agreement between the dynamic behaviors predicted
by using the proposed planar NACF, the planar RPCF with Euler parameters, and the planar
RPCF with Euler angles. Therefore, the numerical results presented in this section demonstrate
the analytical accuracy, the physical consistency, and the correct computer implementation of
the planar multibody formulation based on natural absolute coordinates developed in this paper.
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Fig. 8. Vertical displacement of the point G3 of the double inverted pendulum – (circle) planar NACF,
(square) planar RPCF with Euler parameters, (diamond) planar RPCF with Euler angles

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

H
or

iz
on

ta
l d

is
pl

ac
em

en
t (

m
)

Fig. 9. Horizontal displacement of the point G5 of the quick return mechanism – (circle) planar NACF,
(square) planar RPCF with Euler parameters, (diamond) planar RPCF with Euler angles

7. Conclusion

The principal research objective of the authors is the development of new, efficient, and ef-
fective analytical methods and/or computational procedures in order to obtain accurate dy-
namic models [15, 27–29, 80], perform reliable parametric identifications using experimental
data [16, 30–32, 36], and devise optimal control strategies for rigid-flexible multibody systems
leveraging on the deep connections between multibody dynamics, system identification, and
control theory [10,33,34,37,38,78]. In particular, an analytical method encapsulated in a com-
putational framework for modeling rigid multibody systems in a two-dimensional space was
elaborated in this investigation. The computational framework described in this paper is based
on the use of a set of two-dimensional natural absolute coordinates and, therefore, is called pla-
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nar Natural Absolute Coordinate Formulation (NACF). As demonstrated in this investigation,
in the context of the redundant formulation approaches for performing a nonlinear dynamic
analysis of planar rigid multibody systems, the planar NACF represents a viable alternative
to the well-known planar Reference Point Coordinate Formulation (RPCF). In the kinematic
description of the planar NACF, the Cartesian coordinates of a reference point and the Cartesian
components of two unit vectors associated with a body-fixed reference system are used for
identifying the general configuration of a rigid body in a two-dimensional space. In virtue of
the separation of variable principle featured by the kinematic description that characterizes the
planar NACF, the algebraic equations that model the kinematic joints can be systematically
obtained in terms of simple mathematical expressions derived by means of elementary geomet-
ric considerations. More importantly, in the planar NACF, the mass matrix of a general rigid
body is a constant positive-definite symmetric matrix and, consequently, the inertia quadratic
velocity vector that absorbs the centrifugal and Coriolis inertia terms vanishes. Since in the
planar NACF the orientation of a rigid body is represented by using redundant rotational co-
ordinates, an additional set of constraint equations enters in the analytical formulation of the
equations of motion. This additional class of algebraic equations arises from the normalization
conditions of the orientation parameters which are formed by a set of direction cosines and
are referred to as intrinsic constraints in order to conceptually distinguish them from the ex-
trinsic constraints deriving from the mathematical representation of the kinematic pairs that
identify the mechanical joints. As discussed thoroughly in the paper, the planar NACF allows
for obtaining a systematic definition of the analytical quantities necessary for the deduction
of the differential-algebraic equations of motion which can be readily obtained for a general
multibody system using a standard assembly procedure. In the paper, the index-three form of the
dynamic equations is directly transformed into the corresponding index-one form by using the
augmented formulation, while the generalized acceleration vector of a general multibody system
is obtained employing an analytical formulation based on the Udwadia-Kalaba methodology.
Moreover, the recently developed direct correction method is formulated in terms of natural
absolute coordinates and is used in this work as a constraint stabilization technique for automa-
tically counteracting the drift phenomenon of the algebraic constraint equations. Therefore, the
combination of the Uwadia-Kalaba equations with the direct correction approach devised in this
investigation ensures that the constraint equations are enforced at the position, velocity, and ac-
celeration levels, leading to accurate numerical solutions of the differential-algebraic equations
of motion that are consistent with the multibody system geometry and comply with the funda-
mental laws of classical mechanics. In order to demonstrate the effectiveness of the proposed
computational methodology by using numerical experiments, a general-purpose multibody code
was developed in the MATLAB simulation environment and four simple numerical examples
of open-loop and closed-loop multibody systems were analyzed in the framework of the planar
NACF. For this purpose, the numerical resolution of the differential-algebraic multibody system
equations of motion was carried out with the use of the standard Adams-Bashforth numerical
integration method and, at the same time, the direct correction approach was employed to adjust
the resulting state vector at each time step. In order to perform a comparative analysis for the
four numerical examples examined in the paper, the multibody system equations of motion were
also formulated using the recently developed planar RPCF with Euler parameters as well as the
conventional planar RPCF with Euler angles. A very good agreement was found between the
numerical results obtained by using the planar NACF, the planar RPCF with Euler parameters,
and the planar RPCF with Euler angles.
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