
Ray Tracing API Integration for OpenGL Applications 
 

Wei-Hao Lai 

Industrial Technology  
Research Institute 

195, Sec. 4, Chung Hsing Rd., 
Chutung, Hsinchu, 

 31040, Taiwan 

WeiHaoLai@itri.org.tw 

Chang-Yu Tang 

Industrial Technology  
Research Institute 

195, Sec. 4, Chung Hsing Rd., 
Chutung, Hsinchu, 

31040, Taiwan 

CYTang@itri.org.tw 

Chun-Fa Chang 

National Taiwan  
Normal University 

162, Sec. 1, Heping E. Rd., 
Taipei City 

106, Taiwan 

chunfa@ntnu.edu.com

ABSTRACT 
Ray tracing is one of the most important rendering techniques in computer graphics. By means of simulating 

reflection and refraction of light transportation, ray tracing generates more photorealistic images than scanline 

rendering. However, the high computational cost is the main disadvantage of ray tracing algorithm. In recent years, 

the computing power of GPU has increased dramatically, and general-purpose computing on graphics processing 

units (GPGPU) has become popular. Many scholars have presented some physically based rendering methods with 

CUDA or OpenCL in order to improve image quality and increase rendering speed. Because rasterization is the 

mainstream in the gaming industry, there is still a long way to go to make ray tracing accepted by the industry in 

the near future. We introduce a ray tracing API integration for OpenGL applications that can replace the original 

OpenGL rasterization with ray tracing by simply adding a few lines of code, and the ray tracing algorithm in this 

API is parallelized by OpenCL. 

Keywords 
3D Rendering, Ray Tracing, Game Engine, Parallel Computing, OpenCL

1. INTRODUCTION 
Ray tracing is widely used in the special effects and 

3D animation industry. These commercial products 

emphasize photorealistic scenes and high quality 

lighting effects. Scenes and animations are rendered 

offline, so the speed is not the primary concern. 

However, due to the boom of 3D game industry, 

customers nowadays are not only asking for vivid 

scenes, but also instant interactions. Using general-

purpose computing on graphics processing units 

(GPGPU) architecture, ray tracing now can be 

parallelized by GPU to make real-time rendering 

possible. 

Rasterization is the main image synthesis method in 

the 3D game industry (e.g., OpenGL, Direct3D, and 

Vulkan). Beside the consideration of speed, the reason 

why it might be difficult to replace rasterization with 

ray tracing is that developers need to be familiar with 

the new structure of API to alter the original source 

code. In this paper, we propose an OpenGL-like API 

to substitute the OpenGL native rasterization to ray 

tracing, helping developers achieve the global 

illumination effects with minimal modifications. 

OpenGL 3.0 introduced a deprecation mechanism to 

simplify future revisions of the API [Shr09a]. The 

direct-mode rendering using glBegin and glEnd 

function calls is one of the deprecated features. Vertex 

buffer object (VBO) is considered to be a more 

efficient way to make draw calls instead. VBO allows 

vertex array data to be stored in high-performance 

graphics memory on the server side and promotes 

efficient data transfer. We will show a few OpenGL 

applications with our ray tracing API integration to 

demonstrate its feasibility. 

The ray tracing API integration is separated into two 

parts. The first part is collecting parameters from 

OpenGL API calls, redirecting each call to our API 

and capture parameters from original OpenGL source 

code at the same time. The other part is the ray tracing 

program written in OpenCL based on C99. 

Due to the innate limitation, ray tracing algorithm 

starts when the whole scene data is ready. Once the ray 

tracing kernel is called, the API returns the rendered 

frame back to OpenGL and displays the frame on 

screen by the render-to-texture method. In other words, 

OpenGL would not rasterize the frame, but only 

display the frame rendered by our ray tracing API. 

The paper is organized as follows. Section 2 provides 

an overview of the related work. In section 3, we 

describe the implementation and structure of our ray 

tracing API integration. More details about ray tracing 

Permission to make digital or hard copies of all or part 

of this work for personal or classroom use is granted 

without fee provided that copies are not made or 

distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first 

page. To copy otherwise, or republish, to post on 

servers or to redistribute to lists, requires prior specific 

permission and/or a fee. 

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2703 Computer Science Research Notes
http://www.WSCG.eu

Poster's Proceedings 1 ISBN 978-80-86943-51-0



algorithm implementation are shown in section 4. 

Some experiment results and comparison between our 

method and the original OpenGL are in section 5. 

Finally, we conclude in section 6. 

2. Related Work 
The PowerVR OpenRL is a flexible low level API for 

accelerating ray tracing in both graphics and non-

graphics applications [Img17a]. By writing OpenRL 

shading language (RLSL), developers can obtain full 

control of ray tracing logic. There are three types of 

shaders in OpenRL. Vertex shader handles vertex 

positions in the scene. Frame shader sets rays and 

sampling methods. A ray shader defines the ray color 

and the energy that a ray contains. 

The OptiX is an application framework for achieving 

optimal ray tracing performance on the GPU [Nvi17a]. 

OptiX provides a simple, recursive, and flexible 

pipeline for accelerating ray tracing algorithms. Many 

professional 3D computer graphics software are using 

it as a plug-in (e.g., AutoCAD, Maya, and Lightworks). 

Though Optix is a powerful and mature framework, it 

only works on Nvidia graphic cards. Considering 

OpenGL cross-platform feature, our ray tracing API 

integration has to minimize dependency as far as 

possible. 

Brian Paul started the Mesa project in 1993 [Pau17a],   

which is an open-source implementation of the 

OpenGL specification. Mesa implements a translation 

layer between a graphics API such as OpenGL and the 

graphics hardware drivers in the operating system 

kernel. Our method is quite similar to Mesa. The 

difference is instead of simulating the OpenGL 

pipeline, we use ray tracing instead. 

OpenCL is the open standard for cross-platform and 

parallel programming of diverse processors found in 

personal computers, servers, mobile devices, and 

embedded platforms [Khr17a]. An OpenCL program 

is divided to run on host and device. The host is the 

main CPU used to configure kernel execution. The 

device is the component that contains the processing 

units that will execute the kernel. A host can trigger 

multiple kernels to do diverse missions, and assign to 

different devices. 

3. Ray Tracing API Integration 
The ray tracing API integration has two parts. The first 

part is called the function calls redirection, which is 

responsible for parameters collection. When OpenGL 

API works, the parameters are packed and redirected 

to our API for later use. The second part is a ray tracer 

written in OpenCL, which undertakes the parameters 

from the previous step and passes them to a kernel 

program. After receiving the parameters from the host, 

the kernel program implements ray tracing in parallel. 

In this paper, the ray tracing API integration is easy to 

use. Programmers only need to include a header file, 

and then an OpenGL application would automatically 

render with ray tracing, but without the original 

rasterization. 

3.1 Supported OpenGL Versions 
According to OpenGL 3.0 specification, the fixed 

function pipeline as well as most of the related 

OpenGL functions and constants were declared 

deprecated. These deprecated elements and concepts 

were commonly referred to legacy OpenGL [Seg17a]. 

How to distinguish a legacy OpenGL source code is 

not a difficult task. One typical sign that a program is 

using Legacy OpenGL is immediate mode. Immediate 

mode is using glBegin and glEnd with glVertex and 

glColor in between them 

The advantages of legacy OpenGL are built-in lighting 

model, procedural-base method, etc. GPU hardware 

architecture improves in leaps and bounds. The fixed 

function pipeline is unable to match the flexibility. 

The OpenGL Shading Language (GLSL) has been 

added to allow for increasing flexibility of the 

rendering pipeline at the vertex and fragment level. 

Nevertheless, there are still some OpenGL 

applications use the immediate mode, such as 

education courses and tutorial websites because it is 

easier to learn. 

We concentrate on applications that use client-side 

VBO, and give those applications the ray tracing 

integration support, but we do not support immediate 

mode starts with glBegin and ends with glEnd. Due to 

unified shading architecture, we do not know how the 

vertex attribute pointers are used in GLSL. The 

applications containing GLSL program would be 

skipped by our ray tracing integration API. However, 

modern OpenGL programs must contain at least one 

GLSL program. The problem is solved by creating a 

hint module added at the front of every vertex attribute 

pointer to tell our API what those VBOs actually do, 

and then read GLSL programs, trying to interpret by 

our API. The idea is inspired by the OpenRL 

programming model [Img17a]. 

3.2 API structure 
Figure 1 shows the ray tracing API integration flow 

chart. As we can see on the leftmost side is a common 

OpenGL application flow containing model data 

loading, light adjusting, data pointer definition, draw 

calls, and synchronization. At the middle is what our 

API does to the OpenGL API. These OpenGL API 

calls would not present their original behaviors, but 

execute data collection and transfer data to our 

specification. The rightmost is the ray tracing flow 

chart. We start up a ray tracing kernel when the 

program meets the synchronization point. A space-

partitioning data structure called KD-tree is used to 

boost the ray-triangle intersection test in the algorithm. 

The test scenes in our experiments are static because 

every time an object moves, the tree must be rebuilt

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2703 Computer Science Research Notes
http://www.WSCG.eu

Poster's Proceedings 2 ISBN 978-80-86943-51-0



Figure 1: Ray tracing API integration flow chart. The leftmost green flow is user scope, and it is about the execution 

sequence of an OpenGL application. The middle is about capturing parameters from original OpenGL functions. 

The rightmost is the ray tracing procedure written in OpenCL.

and our implementation would not be able to reach 

real-time performance. Danilewski, et al. [Dan10a] 

constructed a binned SAH KD-tree with CUDA to 

solve the dynamic scene problem and declared their 

method could reach real-time, but now we just focus 

on our method that works on static scenes. 

3.3 Supported Function Calls 
Legacy OpenGL applications use built-in matrix 

manipulation functions to change the position of 3D 

objects, fixed-function lighting model to add effects, 

and client-side VBO to upload data. These actions are 

done during the data preparation stage in our ray 

tracing API integration. The ray tracing kernel in our 

API would wait until synchronization call signal. 

Table 1 shows all supported function calls, which are 

enough for a simple OpenGL application execute 

smoothly. Chapter 5 shows some results rendered by 

our ray tracing API and detail analysis would be 

discussed later. 

Table 1: Supported function calls. The extension 

column represents some features that legacy OpenGL 

does not support. 

4. Ray Tracing 
In this section, we will talk about the rendering 

algorithm in our ray tracing API. The rendering 

method is a ray tracing program developed with 

OpenCL. 

4.1 Overview 
Ray tracing describes a method for producing visual 

images constructed in 3D computer graphics 

environments [Whi05a]. To implement ray tracing 

algorithm, the steps are as follows. First, construct 

vectors from observer to each sample on the image 

plane. These vectors are deemed as lights in the space. 

Second, calculate intersections with all 3D geometrics 

in the scene and compute the color using lighting 

models. Then, the third step is to generate new rays 

according to reflection models and refraction models. 

4.2 Implementation Details 
Back to Figure 1, rightmost: we build an acceleration 

data structure called KD-tree. This step helps us 

conserve some unnecessary intersection calculations 

and improve rendering speed. Our ray tracing kernel is 

inspired by Whitted ray tracer model [Whi05a], but 

there are some differences in detail. In OpenCL, we 

create a kernel that execute in parallel, though the 

model is not. The second point is that the original 

model expresses in recursive style. However, OpenCL 

does not support recursion.  Consequently, it is 

necessary to convert recursion to iteration-based 

implementation. 

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2703 Computer Science Research Notes
http://www.WSCG.eu

Poster's Proceedings 3 ISBN 978-80-86943-51-0



The intersection test is one of the most time-

consuming computation in ray tracing algorithm. A 

reputable intersection computation method gains more       

computational efficiency. The Möller-Trumbore 

algorithm is a fast ray-triangle intersection algorithm 

[Mol05a]. It calculates the intersection of a ray and a 

triangle in three dimensional space without needing 

precomputation of the plane equation of the plane that 

contains the triangle. In our implementation, triangle 

and sphere object types are supported. 

We apply the diffuse part of Phong shading [Pho75a] 

of illumination when intersection points are calculated. 

Some other physical effects such as reflection and 

refraction are also implemented in our API. It is worth 

notice that while using our ray tracing integration API, 

we can add these effects in an OpenGL application 

program though the original source code does not have 

these effects. The most common used accelerating 

structure of ray tracing algorithm are BVH-tree and 

KD-tree. We wrote a KD-tree for our API, and we 

refer to Pharr et al [Pha04a]. The KD-tree is a binary 

tree in which every node is a k-dimensional point. 

Every non-leaf node can be thought of as implicitly 

generating a splitting hyperplane that divides the space 

into two parts. While doing a ray intersection test, 

traverse through a KD-tree can prune half of the 

triangles that are not hit, preventing the unnecessary 

intersection being computed. 

5. RESULTS 
This section presents the results obtained by our ray 

tracing API integration. The experiment environment 

is according to Table 2. The image resolution is set to 

800*600. 

Specifications 

OS Windows 10 pro x64 

CPU Intel i7-6700K 

RAM DDR4 2666 32GB 

NVIDIA®  GeForce GTX TITAN X 

CUDA Cores 3072 

Memory 12 GB G5 

TFLOPS 7  

Table 2: Experiment environment 

Figure 2 are images rendered by the original OpenGL 

rasterization and our ray tracing API integration. The 

left pictures are rendered by OpenGL and the right 

ones are rendered by our API. The picture at the 

bottom-right has a hard shadow effect that is 

undoubtedly easy to ray tracing, but OpenGL would 

need a bunch of GLSL code to achieve the same result. 

Figure 3 shows more results rendered by our API. The 

top-left is a Cornell box with a reflective red wall and 

a dragon in it. The top-right is a glass cube and a 

dragon in a Cornell box. The paired images at the 

bottom is a dragon and Sponza separately. Table 3 

shows the frame per second (FPS) of each scene. B. & 

D. represents Cornell box and dragon. The “w/ Reflec.” 

and “w/ Refrac.” mean “with reflection” and “with 

refraction”. These features only affect our API 

integration, so OpenGL column has no test results. 

Although our ray tracing API is still slower than 

rasterization. However, it is worth to be mentioned that 

in most test cases, the FPS data of our API are above 

30 FPS, which is the minimum threshold of real-time 

rendering. This means that the hardware is now able to 

bear such large amount of computing throughput. 

 
Figure 2: The comparison of rendering results between 

original OpenGL (left) and our ray tracing API 

integration (right). 

 
Figure 3: More experiments by proposed method. 

Table 3: FPS comparison between OpenGL and our 

API 

 # Tri. OpenGL Our API 

Cornell 

Box 

34 5730.58 FPS 261.72 FPS 

B. & D. 100,034 5149.60 FPS 53.62 FPS 

B. & D. w/ 

Reflec. 

100,034 --------- 50.40 FPS 

B. & D. w/ 

Refrac. 

100,034 --------- 49.30 FPS 

Sponza 262,267 2612.49 FPS 14.39 FPS 

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2703 Computer Science Research Notes
http://www.WSCG.eu

Poster's Proceedings 4 ISBN 978-80-86943-51-0



Table 4: Detail information about ray intersections

Typically the intersection test is a bottleneck of the ray 

tracing algorithm. Except the construction of KD-tree, 

we make the rest actions all done by GPU to benefit 

from its parallelization. According to Table 3 and 

Table 4, if the average intersections per second is 

around a hundred thousand, the FPS can be 50 or even 

more. While rendering the Sponza scene, the average 

intersections come up to a million, but the FPS still 

remains around 14.  

6. Conclusion 
The contribution of this paper is the introduction  of a 

ray tracing API integration for OpenGL applications. 

Our API makes it much easier to develop a ray tracing 

based application by using OpenGL code at hand. 

Moreover, a ray tracing based application can reach 

interactive speed is in practice. Our API still have a lot 

of room for improvement. For example, we can use 

Monte Carlo path tracing techniques mentioned by 

Keller et al. [Kel12a]. Another improving direction is 

to break the limit of static scenes. Danilewski et al. 

[Dan10a] constructed SAH KD-tree on GPU with 

CUDA, which could achieve real-time rendering of 

dynamic scenes. 

7. Acknowledgement 
This work is supported in part by the Ministry of 

Science and Technology (Taiwan) grant MOST 103-

2221-E-003-010-MY3, the Industrial Technology 

Research Institute grant D0-10404-28-3, and by the 

Institute for Information Industry. 

8. REFERENCES 
[Dan10a] Danilewski, P., Popov, S., & Slusallek, P. 

Binned sah kd-tree construction on a gpu. Saarland 

University, 1-15. 

[Img17a] Imagination T. OpenRL SDK - Imagination 

Community. Retrieved January 4, 2017, from 

https://community.imgtec.com/developers/powerv

r/openrl-sdk/  

[Kel12a] Keller, A., Premoze, S., & Raab, M. 

Advanced (Quasi) Monte Carlo Methods for Image 

Synthesis. In ACM SIGGRAPH 2012 Courses. 

[Khr17a] Khronos Group. OpenCL - The open 

standard for parallel programming of 

heterogeneous systems. Retrieved January 4, 2017, 

from https://www.khronos.org/opencl/ 

[Pau17a] Paul, B. Mesa Introduction. Retrieved 

January 4, 2017, from http://www.mesa3d.org/  

[Mol05a] Möller, T., & Trumbore, B. Fast, minimum 

storage ray/triangle intersection. In ACM 

SIGGRAPH 2005 Courses (p. 7). ACM. 

[Nvi17a] NVIDIA C. NVIDIA OptiX Ray Tracing 

Engine | NVIDIA Developer. Retrieved January 4, 

2017, from https://developer.nvidia.com/optix 

[Pha04a] Pharr, M., & Humphreys, G. Physically 

based rendering: From theory to implementation. 

Morgan Kaufmann.  

[Pho75a] Phong, B.T. Illumination for computer 

generated pictures. Communications of the ACM, 

18(6), 311-317. 

[Seg17a] Segal, M., & Akeley, K. The OpenGL 

Graphics System: A Specification (Version 3.0 - 

September 23, 2008). Retrieved January 4, 2017, 

from https://www.opengl.org/registry/doc/glspec 

30.20080923.pdf 

[Shr09a] Shreiner, D., & Bill The Khronos OpenGL 

ARB Working Group. OpenGL programming 

guide: the official guide to learning OpenGL, 

versions 3.0 and 3.1. Pearson Education, 2009. 

[Whi05a] Whitted, T. An improved illumination 

model for shaded display. In ACM Siggraph 2005 

Courses (p. 4). ACM.
 

 KD-tree  build 

time (second) 

Triangle intersections 

per frame 

Sphere intersections 

per frame 

Avg. Intersections 

per second 

Cornell Box 0.000044 4113244 480000 17550.2216 

B. & D. 0.503594 3805833 480000 79929.7464 

B. & D. w/ Reflec. 0.503594 4868135 539321 107290.7937 

B. & D. w/ Refrac. 0.503594 5125656 501409 114139.2495 

Sponza 1.512600 15000425 480000 1075776.5810 

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2703 Computer Science Research Notes
http://www.WSCG.eu

Poster's Proceedings 5 ISBN 978-80-86943-51-0




