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ABSTRACT 
The paper presents the analysis of efficiency of two original approaches to the construction of the sets of linear 
local features (LLF), which are used for digital signal and image processing. The first approach is based on 
generating of LLF set, which consists of separately constructed efficient LLFs, each of which has its own 
algorithm for feature calculation. The second approach assumes the construction of an efficient LLF set, which 
has a single algorithm for joint simultaneous computation of all features. The analysis is carried out by several 
indicators that characterize the computational and qualitative properties of the constructed LLFs. 
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1. INTRODUCTION 
Feature creation is one of the main stages of visual 
data processing systems development and it affects 
the final quality of the system. A local feature of a 
digital signal is usually a numerical characteristic - 
the result of a transformation of digital signal/image 
samples, which belong to a local analysis area [1]. 
For linear local features (LLF) this transformation is 
linear with constant parameters. Taking into account, 
that calculation of LLF values can be made in 
different ways (direct algorithms or fast convolution, 
recursive algorithms, etc.), a specific LLF is 
characterized by two components – a linear 
convolution kernel (we call it as LLF's kernel) and an 
algorithm for calculation of the convolution of the 
input signal/image and this kernel (we call it as LLF's 
algorithm or algorithm for LLF values calculation). 
Moreover, if LLF's kernel determines qualitative 
characteristics of the specific LLF, the algorithm for 
LLF values calculation characterizes computational 
complexity of the feature. Sets of features, which 
have not just one but several feature values for the 
same analysis area of a digital signal, are usually used 
to solve practical problems. It is essential, that 
calculation of the corresponding feature values in a 
set can be produced by several independent 
algorithms as well as a general algorithm that 

executes jointly simultaneously calculations for all 
the values of features in a set. In the latter case we 
speak about a set of jointly computed features. 
Qualitative indicators (for sets of jointly and 
independently calculated LLFs) are determined by a 
set of corresponding kernels. The general formulation 
of the problem of constructing an efficient (set of) 
LLFs implies the constructing LLFs (or set of LLFs) 
with the best quality indicator and with specified 
computational complexity [2-4]. Despite the seeming 
simplicity of the presented formulation, we should 
accept the problem of constructing features and their 
sets extremely complex. 
In the author's paper [2] the formal approach for 
efficient LLFs construction has been proposed, and in 
the papers [3, 4] this approach has been extended to 
the case of constructing an efficient set of jointly 
calculated LLFs. These approaches allow us to design 
an efficient LLF (or efficient set of LLFs) for the 
most applied problems. The term “efficiency of LLF” 
refers to the satisfaction of two basic requirements: 
− algorithm for LLF values calculation has a 

predetermined computational complexity value; 
− LLF's kernel(s) is(/are) the best matched to a 

given quality indicator. 
Under the preceding requirements efficient LLFs 
enable us to establish a reasonable balance between 
two opposing groups of features: 
− features, which are optimal in the sense of some 

quality criteria and do not have suitable or fast 
computation algorithm (e.g., features, obtained 
using Karhunen-Loeve transform); 

− features, which are obtained by using fast 
algorithms and are not related to the content of the 
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problem and relevant quality indicators (e.g., 
features, obtained using fast Fourier transform 
algorithm). 

According to the information of author, the only 
alternative approach of the feature construction, that 
satisfies all requirements mentioned above, exists. It 
was proposed by Prof. V.Labunets in 2013 and was 
denoted as «multiparametric wavelet transforms» 
[12,13]. Unfortunately, these papers do not provide 
the method of solving the efficient LLFs construction 
problem, they only show that multiparametric (or 
adaptive) wavelets exist and can be constructed.  
The main purpose of this paper is to analyze/compare 
the author's two approaches to constructing sets of 
LLFs. The first approach constructs a set of features 
by constructing a set of efficient LLFs, each of which 
has its own algorithm for feature calculation. The 
second approach constructs an efficient set of LLFs, 
in which there is a single algorithm for computing all 
features jointly. Short description of these approaches 
is presented in the Section 2, where the known 
information is collected. New results on analytical 
and experimental analysis of these approaches are 
presented in Sections 3 and 4.  

2. SETS OF JOINTLY AND 
INDEPENDENTLY CALCULATED 
LINEAR LOCAL FEATURES OF 
DIGITAL SIGNALS: BACKGROUND 
This Section presents short reference information on 
the efficient linear local features of the digital signals: 
basic definitions, equations and construction 
methods. Full description may be found in the papers 
[2-4].  
Let N be a set of natural numbers, K be a 

commutative ring with unity, ( ){ } 1
0

−
=

N
nnx  be an input 

signal of length N over the ring K. 

Definition 1. A linear local feature (LLF) of length 

M over the ring K is a pair ( ){ }( )Amh M
m ,1

0
−

= , where 

( ){ } 1
0

−
=

M
mmh  is a linear convolution kernel of length M, 

which is determined as a finite sequence over the 
ring K and satisfies the constraint 

( ) ( ) 01,0 ≠−≠ Mhmh , and A is an algorithm for 

calculating a linear convolution (1) of an arbitrary 
input signal over the ring K with the kernel 

( ){ } 1
0

−
=

M
mmh : 

( ) ( ) ( ) .1,1,
1

0

−−=−= ∑
−

=
NMnmnxmhny

M

m

 (1) 

A set of R independently calculated LLF of length M 
over the ring K is a further set of LLFs:  
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−
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Definition 2. A set of R jointly calculated LLFs over 

the ring K is a pair ( ){ } 







−=

−= Amh
Rr
Mmr ,

1,0
,1,0 , where 

( ){ }
1,0

,1,0
−=

−=
Rr
Mmr mh  is a set of R kernels, each of which 

is determined as a finite sequence over the ring K 
and satisfies the following constraints: 

( ) ( )
( ) ;011,0

;01,01,0;000
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≠−∈∃−∈∀≠

MhRr

mhMmRrh

r

r  

and A is an algorithm for joint calculation of a set of 
linear convolutions of an arbitrary input signal 

( ){ } 1,0 −= Nnnx  ( )NM <  over the ring K with a set of 

kernels: 

( ) ( ) ( ) ( ) ( )

.1,0,1,1

,*
1

0

−=−−=

−== ∑
−

=

RrNMn

mnxmhnxnhny
M

m
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To distinguish the elements of sets of independently 
calculated LLFs from jointly calculated LLFs the last 
will be denoted as follows: 

( ){ } 







−=

−= set

Rr
Mmset

r Amh ,
1,0

,1,0 � 

In author’s papers [2-4] we proposed a method for 
construction of the sets of independently and jointly 
calculated LLFs, based on designing (sets of) 
sequences of kernel’s samples in the form of linear 
(mutual) recurrent sequences (LRS or LMRS, 
respectively) [5,6,9]. For these (sets of) sequences, 
called NMC-(sets) sequences1, the computational 
complexity of calculating linear convolutions (1) or 
(2) is minimal. For fixed parameters of linear 
(mutual) recurrent relations (LRR or LMRR, 
respectively) these sets of NMC sequences or NMC-
sets of sequences form a collection of sequences, 
denoted, respectively ( )cKM ,,℘  or 

( )aKTMR ,,,,℘ . Here K is an order of LRR for 

samples of a sequence, R is a number of sequences in 
a set, T is an order of mutual recurrence (for sets), c  
and a  are LRR’s or LMRR’s coefficients 
respectively. As it has been shown in papers [2-4], 
the powers of these collections satisfy the relations: 

( ) ( ) 1
2,,0,1 −

−+≤℘≠≥>∀ K
KMK CcMKaaKM , 

( )( ) ( ) ( ) .,,,,

11

111,,
RK

KMR
RK

KMRdcb CCaKTMR

TRKM

−−+−+ −≤℘

≥≥≥>∀
 (3) 

                                                           
1 NMC - normalized with minimal complexity 
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Each sequence from the collection, along with its 
parameters, is also characterized by a set Θ of 
additional independent parameters – degrees of 
freedom. The powers of degrees of freedom sets Θ 
are determined in the following way [2-4]: 

( ) ( ) RKK aKTMRcKM =Θ=Θ ℘℘ ,,,,,, , . (4) 

The computational complexity of algorithms indA  

and setA  for calculating relevant features or sets of 
features for all NMC sequences or NMC sets of 
sequences from collections ( )cKM ,,℘  and 

( )aKTMR ,,,,℘ is determined by these equations [2-

4]: 

( )
1

2
+−

≤
MN

N
KAu ind , (5) 

( )
( ) ( )

( ) 

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


















 −−++

+ξ−−−

+−
≤

2

1
1

11

1
T

RTK

RKR

MN

N
Au

add
set . (6) 

The problems of construction of an efficient (set of) 
LLF(s) are defined as follows [2-4]. A particular 
problem of construction of an efficient set of LLFs is 
defined as a problem of searching in a predefined 
collection ( )aKTMR ,,,,℘  of such a set (with its 

corresponding algorithm of joint calculation of LLFs 
setA ), for which the minimum condition for a 

problem-specific objective function RK →Ψ RM:  is 
fulfilled: 

( ) ( ) ( ) ( )( )

( ){ } ( )
.min

1,,0,,1,,0

,,,,

1100

1,0
,1,0 aKTMRmh

RR

Rr
Mmset

r

MhhMhh

℘∈

−−

−=
−=

→
−−Ψ KKK

(7) 

For a particular problem of construction of an 
efficient LLF the drafting changes are related to a 
collection ( )cKM ,,℘  and an objective function 

RK →Ψ M: . 
The difference in the solutions of these problems lies 
in the fact that in the first case a set of jointly 

calculated LLFs is formed ( ){ } 







−=

−= set

Rr
Mmset

r Amh ,
1,0

,1,0  

and in the second case there is only one LLF 

constructed ( ){ }( )Amh M
m ,1

0
−

= . Note that using a 

particular problem of constructing an efficient LLF it 
is possible to construct a set of independently 

calculated features ( ){ }
1,0

1

0 ,
−=

−
=

















Rr

ind
r

M

m
ind
r Amh , 

for example by their consequent construction with 
appropriate modification of objective functions for 
each of particular problems. 

The computational complexity of calculation of the 
sets of LLFs and the number of their degrees of 
freedom can be used as indicators or constraints in 
the analysis of constructed sets of jointly and 
independently calculated LLFs. Additionally, for 
further analysis we can introduce a formalized notion 
of collections “comparability” of jointly and 
independently calculated LLFs as follows. 
Let’s consider a set of LMRS ( ){ } 1,0 −= Mmr mh  

( )1,0 −= Rr , which belongs to collection 

( )aKTMR ,,,,℘  and satisfies a LMRR [3,4]: 

( )
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t

r
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k

r
k
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  (8) 

In case, when 0)( ≡ϕ mr , LMRS and LMRR are 

called homogeneous [5,6,9]. The following lemma 
defines characteristics of the sequences in this set. 

Lemma (on solution of homogeneous LMRR).  
Let T=R≥1 and a homogeneous LMRR of order 
(T,K) 

( ) ( ) ( )

1,0

,
011

0

−=

−+−= −
===
∑∑∑

Rr

kmhakmhamh tr

K

k

r
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t
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determines the samples of the collection of R 
sequences ( ){ }

K,1,0
;1,0

=
−=

m
Rrr mh  for the entire domain. Let 

us define matrixes ( )zQr  of size rr × , where each 

element ( )zqr
ij  is determined 

( ) ( ) ( )( )trjizqzq t
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r
ij ,min, <∀≡  with an expression: 
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Then every r-th sequence of the collection for the 
entire domain satisfies the following homogeneous 
LRR:  

( ) ( )
( )

1,0,
1

1

1 −=−= ∑
+

=

+ Rrsmhcmh
rK

s
r

r
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where the values { }Kr
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sc 1=  are coefficients in the 

matrix ( )zQr  determinant:  
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It is obvious, that under the lemma’s conditions, the 
sequence of the collection with number r satisfies the 
homogeneous LRR with order not exceeding 

( )1+rK . This proved connection allows us to give 
the following definition for “comparability” of jointly 
and independently calculated LLF collections. 

Definition 3. A set of collections of LRSs 

( ){ } 1,0,, −=℘ Rr
r

r cKM  and a collection of LMRRs 

( )aKTMR ,,,,℘  are called comparable, if these 

equations are valid: 
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The fact of compatibility means that one can specify 
for at least one (homogeneous) set of sequences from 

( )aKTMR ,,,,℘  exactly the same set of sequences 

from ( ){ } 1,0,, −=℘ Rrrr cKM . Note also that although 

there are more than one equal sets of sequences for 
comparable collections the full match of sets of 
sequences doesn’t happen.  
The results of this section allow us to make an 
analytical comparison of comparable sets of 
collections.  

3. COMPUTATIONAL AND 
QUALITATIVE PROPERTIES: 
ANALYTICAL COMPARISON  

3.1 Comparison of Linear Local Features 
Sets for Comparable Collections 

Let N∈KTMRN ,,,, , and ( ){ } 







−=

−= set

Mm
Rrset

r Amh ,
1,0
;1,0  

is an arbitrary efficient set of LLFs for a collection 
( )aKTMR ,,,,℘ . Computational complexity of the 

algorithm of calculation of the LLF, corresponding to 
any set of sequences of this collection, satisfies the 
equation (6). From the other hand, one can construct 
independent efficient LLFs 

( ){ }( ){ }
1,01,0 ,

−=−= Rr
ind
rMm

ind
r Amh  from the comparable 

( )aKTMR ,,,,℘  set of collections 

( ){ } 1,0,, −=℘ Rr
r

r cKM . Then, taking into account 

equations (5), computational complexity of LLF set 

calculation ( ){ }( ){ }
1,01,0 ,

−=−= Rr
ind
rMm

ind
r Amh  is 

determined as follows: 

( ) ( ).1
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N
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Comparing the right part of this equation with the 
equation (6), one can assure of the following relation 
correctness: 

( ) ( )

( ) ( )1
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Then the following statement is correct. 

Statement 1. Let ,,,, N∈TMRK  1≥K , 

2≥≥ TR , sets of LLFs ( ){ } 



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


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−= set
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Mmset
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M

m
ind
r Amh  are constructed 

for comparable collections ( )aKTMR ,,,,℘  and 

( ){ } 1,0,, −=℘ Rrrr cKM  correspondingly, while 

relations (5) and (6) are satisfied as equalities. Then 

( ) ( )∑
−

=
<

1

0

R

r

ind
r

set AuAu . (11) 

This statement makes it possible to confirm the 
potential computationally benefits of jointly 
calculated LLFs in comparison with sets of 
independently calculated efficient LLFs designed for 
comparable collections. 

3.2 Comparison of Linear Local  
Features Sets with Equal Number of 
Degrees of Freedom 
Equation (4) means that the number of degrees of 
freedom for the specific efficient set of LLFs from 
the collection ( )aKTMR ,,,,℘  is equal to KR. From 

the other hand, one can construct R~  independent 

efficient LLFs from collections ( ){ } 1~,0,, −=℘ Rr
r

r cKM  

in such a way, that the overall number of degrees of 
freedom becomes equal KR too. It is easy to prove 
that in this case the following equality is valid: 

( ) RRR 21~~ =+ . (12) 

Using (12) one can assure the following relation 
correctness ( ,,,~,, N∈TMRRK  2,1 ≥≥≥ TRK ): 

( ) ( )

( ) ( )1~~

2
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+ξ−−−
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RTK

RKR add

. 

Statement 2. Let ,,,, N∈TMRK  
2,1 ≥≥≥ TRK , jointly and independently 

calculated LLFs have equal number of degrees of 
freedom (i.e. equation (12) is correct), while 
relations (5) and (6) are satisfied as equalities. Then  
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( ) ( )∑
−

=
>

1~

0

R

r

ind
r

set AuAu . (13) 

This statement makes it possible to confirm the 
potential computational benefits of set of 
independently calculated LLFs in comparison with 
the set of jointly calculated efficient LLFs designed 
for equal number of degrees of freedom. 

3.3 Comparison of the Computational 
Complexity of Solving the Particular 
Problem of Features Construction 
Let ( )aKTMR ,,,,℘  and ( ){ } 1,0,, −=℘ Rr

r
r cKM  are 

comparable collections of jointly and independently 
calculated LLFs. To compare the calculational 
complexities of the solving of the particular tasks of 

LLFs ( ){ } 







−=

−= set

Mm
Rrset

r Amh ,
1,0
;1,0  and 

( ){ }( ){ }
1,01,0 ,

−=−= Rr
ind
rMm

ind
r Amh  construction (see 

Section 2), we have to compare the number of 
sequences in the collections ( )aKTMR ,,,,℘  and 

( ){ } 1,0,, −=℘ Rr
r

r cKM . In the case of the collection 

( )aKTMR ,,,,℘  the number of sequences  is defined 

by equation (3). When we form the set of sequences 

from the collections ( ){ } 1,0,, −=℘ Rr
r

r cKM , we can 

use two obvious strategies: 
- exhaustive search (optimal solution): in this case 
the number of sequences sets takes the form: 

( )( )∏
−

=
+℘

1

0

,1,
R

r

rcrKM ; 

- incremental search (quasi-optimal solution):  in this 
case we search for the sequence of the r-th collection 
when the sequence of the (r-1)-th collection is found. 
The number of possible sets of sequences has the 

form: ( )( )∑
−

=
+℘

1

0

,1,
R

r

rcrKM . 

Taking into account equations (3), we can compare 
the computational complexity of solving the 
particular problem of LLFs construction by 

comparing the value ( ) ( )
RK

KMR
RK

KMR CC 111 −−+−+ −  with 

( )
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++−
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KrMC  (exhaustive search case) or 
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++−
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R
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It may be done by analyzing the following ratios: 

exhaustive search: ( ) ( )

( )
( )∏
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−+
++−

−−+−+ −
1
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111
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KrM
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incremental search: ( ) ( )

( )
( )∑

=

−+
++−

−−+−+ −
R
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Kr
KrM

RK
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RK
KMR

C
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1

11
12

111 . (15) 

Using (15) we can prove the following statement.  

Statement 3. Let N∈TMRK ,,,  
1,2,1 +>≥≥≥ RKMTRK . Then 

( ) ( ) ( )
( )∑

−

=

−+
++−−−+−+ >−

1

0

11
12111

R

r

Kr
KrM

RK
KMR

RK
KMR CCC . 

This statement makes it possible to confirm that 
solving of the particular problem of jointly calculated 
LLFs construction is more difficult than the solving 
of the particular problem of independent calculated 
LLFs. Direct numerical analysis of the ratio (15) for 
useful parameters range (M=21...32; R=1..4) shows 
that it is much more difficult: values of the ratio (15) 
are in the range [1, 5.7*10^9]. 
Unlike the situation is considered with an incremental 
search, it the case of exhaustive search it is not 
possible to make an unambiguous conclusion. Direct 
numerical analysis of the ratio (14) for parameters 
ranges mentioned above shows that it is in the range 
[7.2*10^-8, 3.97].  

Finally, we can conclude that:  
- quasi-optimal solution of the particular problem of 
independently calculated LLFs construction, based on 
the incremental search, is less difficult then the 
optimal solution of the particular problem of jointly 
calculated LLFs construction; 
- optimal solution of the particular problem of 
independently calculated LLFs construction, based on 
the exhaustive search, may be radically difficult then 
the optimal solution of the particular problem of 
jointly calculated LLFs construction. So, when we are 
going to find optimal solution, jointly calculated 
LLFs are preferable.  

3.4 Analytical Comparison: Conclusion 
Analytical and numerical results presented in this 
Section above make it possible to conclude that the 
analytical analysis cannot provide the unambiguous 
answer on the question what type of LLFs (sets of 
independently or jointly calculated LLFs) is better. 
Therefore, we are trying to answer this question using 
experiments.  

4. COMPUTATIONAL AND 
QUALITATIVE PROPERTIES: 
EXPERIMENTAL COMPARISON 
In order to complete the comparison of the sets of 
independently and jointly calculated LLFs and to 
compare them with existent typical ways of linear 
local features calculations we will consider several 
illustrative tasks. In every task we will compare 
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computational and qualitative properties of the 
constructed LLFs.  
Despite of the illustrative character of the chosen 
tasks, they appear often in real applications in similar 
formulations, and explicit criteria and mathematical 
model of the processing signal is necessary only to 
point out the best (from typical ways of linear local 
features calculations) set of feature kernels.  
So, general problem statement is as follows. Let we 
have a digital signal that may be interpreted as a 
realization of the discrete stationary random process 

( )nX  with zero mean and autocorrelation function: 

( ) 0, ≥ρ= nDnR n
x ,  (16) 

here 95,0,1 =ρ=xD , for definiteness. We allow 

that the length of the processing signal N is unlimited 
and to perform the local analysis of the signal in the 
specific position 0n  we have to use M=33 samples of 

the signal (i.e. «processing window»): 
( ) ( )1,, 00 −+ MnXnX K . Also, we allow that the 

quality of the local analysis of the signal depends 
directly on the quality indicator, that is given by the 
following equation:  
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Here ( ){ }
1,0
;1,0

−=
−=

Mm
Rrr mh  is a set of kernels that is used 

for linear representation of the analyzed fragment of 
the signal, ( )KE  - the mathematical expectation 

operator. Obviously, the less the quality indicator the 
better the set of features. 
In the equation (17) the first term defines relative 
error of the representation of the signal fragment 
using weighted sum of LLF's kernels, the second term 
shows the correlation rate of the kernels, and the 
denominator of the first term satisfies the equality: 

( ) ( )33
1

0

2 ==







∑

−

=
MDmXE x

M

m

.  

Let define the general problem as follows: we have to 

obtain the set of kernels ( ){ }
1,0
;1,0

−=
−=

Mm
Rrr mh  and 

algorithm(s) of calculation of the set of convolutions 
(2) of the signal with these kernels, which provide 
minimal value of the quality indicator (17) and satisfy 
certain restriction on the computational complexity of 
convolutions (2) calculation: 

( )



≤
→α

....

min

maxuu

J
 (18) 

Bellow, we provide several ways to solve the 
problem (18). First and second methods (solutions, 
that are ordinary used in digital signal and image 
processing) use "optimal" kernels, that comes from 
Karhunen-Loewe decomposition [7] of the fragment 
of the discrete stationary random process (16). The 
only difference between these methods is the 
convolution algorithms. First method (method 1) uses 
the direct convolution algorithm, and the second one 
(method 2) uses the fast convolution algorithm, that is 
based on the Fast Fourier Transform (FFT) [8,10] 
and optimal sectioning of the processing signal [10]. 
In practice, the second method is the de facto 
standard for solutions of this type of problems. 
Method 3 uses the set of jointly calculated LLF's, and 
methods 4-7 use the sets of independently calculated 
LLF's (description of these methods is given bellow). 
It should be noted that the detail description of the 
problem (18) when α=1 using the set of jointly 
calculated LLF's was given in the paper [4]. Some 
useful equations, that are used here for calculation of 
an error of representation of the fragment of the 
discrete stationary random process using non-
orthogonal kernels, were given in that paper too.  
We analyze solutions of the problem (18) for three 
values of parameter α, namely:  
 - group 1: α=1,  
 - group 2: α=0,  
 - group 3: α=1/2.  
Solution of the problem (18) using sets of 
independently or jointly calculated LLFs (methods 3-
7) is performed by solving the particular problem (7) 
of constructing an efficient set of LLFs. This 
particular problem [2-4] means that the LLF's kernels 
are from the specific collection, and this collection is 
defined both by the task restrictions (the size M of the 
"processing window" and the upper bound maxu  of 

the calculational complexity of features calculation), 
and subjective chosen parameters aKT ,,  and 

{ } 1,0 −= Rr
rc .  In our experiments, parameters are as 

follows:  
• method 3: collection ( )aKTMR ,,,,℘ , 

parameters: 
1,1,1,1,2 10111001 ====== aaaaKT ; 

• methods 4-7: collections  ( ){ } 1,0,, −=℘ Rr
r

r cKM , 

parameters: 
- quasi-polynomial (method 4): 

( ) ( ) ( )( )KrkKCc k
Kr

kr
k 1,1,1,1 1

1 +==−= +
+ ; 

- quasi-exponential (method 5): 

( )( ) ( )( )KrkKKrc kr
k 1,1,1,1 1 +==ρ+= − ; 
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- quasi- Fibonacci (method 6): 
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- quasi-harmonic  (method 7): 
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Presented collection names are derived from the 
names of the sequences ( 2≥R ), that satisfy the 
homogeneous LMRS (8) with the same parameters.  
The calculational complexity of the independently 
and jointly calculated LLFs is defined by equations 
(5)-(6), that were used as equalities. 
Figures 1,3-5 present the obtained results, that show 
the dependence of the quality indicator αJ  of the 

constructed features on the computational complexity 
of the features calculation ( )Ku . These results lead 

to the following conclusions. 
− For the first group of the tasks (α=1, Fig.1) 

quality indicators for the sets of independently 
and jointly calculated LLFs (methods 3-4) are 
significantly less (i.e. the quality is significantly 
higher) then the quality indicators obtained for 
«optimal» kernels (obtained using Karhunen-
Loewe decomposition) and direct (method 1) or 
fast (method 2) convolution algorithms. 
Particularly, when the calculational complexity of 
the features calculation satisfies 40max =u  the 

quality of the set of jointly calculated LLFs is six 
time higher (vs method 2)! For this particular 
case, Fig.2 shows four constructed kernels for the 
jointly calculated LLFs. It is easy to see that these 
kernels are similar to the «optimal» kernels 
(sinusoids of different phases and frequencies), 
that may be obtained using Karhunen-Loewe 
transform.  

− For the first group of the tasks (α=1, Fig.3) 
quality indicators for the set of jointly calculated 
LLFs is less (i.e. the quality is higher) then the 
quality indicators for the sets of independently 
calculated LLFs.  

− For the 2nd and 3rd groups of the tasks (α<1, 
Figs.4-5) quality indicator for all types of LLFs 
depends significantly on the collection 
parameters. Therefore, changing these parameters 
we can obtain different answers which type of 
feature sets (set of jointly or set of independently 
calculated LLFs) is better. In practice, the best 
type of LLFs may be found using global 
optimization methods: genetic algorithms, 
simulated annealing, etc. 

The obtained experimental results allow us to make 
two conclusions:  
- the proposed efficient LLFs have advantage in 
comparison with the traditional way of solving such a 
type of problems, even when the “optimal” 
kernels/bases exist;  
- jointly and independently calculated efficient LLFs 
have comparable efficiency, i.e. neither of two 
approaches has clear advantages. 
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Figure 1. Comparison of the proposed efficient 

LLFs (methods 3-4) with traditional way of 
features construction (methods 1-2);  

task group 1: α=1. 
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Figure 2. First four constructed kernels for the 

jointly calculated LLFs (for convenience, we put 
kernels to the range [-1,1]). 
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Figure 3. Analysis of the proposed efficient LLFs: 
comparison of the sets of jointly (method 3) and 
independently (methods 4-7) calculated LLFs; 

task group 1: α=1.  
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Figure 4. Analysis of the proposed efficient LLFs: 
comparison of the sets of jointly (method 3) and 
independently (methods 4-7) calculated LLFs; 

task group 2: α=0.  
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Figure 5. Analysis of the proposed efficient LLFs: 
comparison of the sets of jointly (method 3) and 
independently (methods 4-7) calculated LLFs; 

task group 3: α=1/2. 

5. CONCLUSIONS 
In this paper two approaches to the construction of a 
set of linear local features for digital signals are 
analyzed. It is shown that, depending on the 
comparison criteria the proposed approaches can 
have advantages and disadvantages. In the general 
case, it can be concluded that these approaches are 
comparable by efficiency value (in terms of 
parameters pair - quality and computational 
complexity). This fact allows the developer of a 
particular signal or image processing system to 
choose the approach that is convenient and/or 
familiar to him. Conducted in the paper experiments 
show, that the proposed approaches have convincing 
advantages over a typical "best" way to solve the 
model digital image analysis/representation problem 
(in terms of parameters pair - quality and 
computational complexity). 

Further research will be related to the following: 
- development of alternative ways to introduce 
efficient linear local features; 
- development of numerical methods and algorithms 
for a quick solution of the particular (and extended 
particular) problem of constructing an efficient set of 
jointly calculated LLFs and set of independently 
calculated efficient LLFs.  
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