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ABSTRACT
The paper presents the analysis of efficiency of dniginal approaches to the construction of thte eélinear
local features (LLF), which are used for digitajredl and image processing. The first approach sedban
generating of LLF set, which consists of separat@instructed efficient LLFs, each of which has atsn
algorithm for feature calculation. The second apploassumes the construction of an efficient LLt-\8hich
has a single algorithm for joint simultaneous cotapan of all features. The analysis is carried loytseveral
indicators that characterize the computational gualitative properties of the constructed LLFs.
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executes jointly simultaneously calculations fot al
1 |NTRODUC{TION ) _ the values of features in a set. In the latter case
Feature creation is one of the main stages of V'Suaspeak about aset of jointly computed features
data_processi_ng systems development and it aﬁeCtsQuaIitative indicators (for sets of jointly and
the final quality of the system. A local feature @f i gependently calculated LLFs) are determined by a
digital signal is usually a numerical charactetisti  get of corresponding kernels. The general formaati
the result of a transformation of digital signa#@®  of the problem of constructing an efficient (set of)
samples, which belong to a local analysis area [1].| | Fsimplies the constructing LLFs (or set of LLFs)
For linear local features (LLF) this transformatisn  \yith the best quality indicator and with specified
linear with co_nstant parameters. Taking into acl:,oup computational complexity [2-4]. Despite the seeming
that calculation of LLF values can be made in ginplicity of the presented formulation, we should
different ways (direct algorithms or fast convatj  5ccept the problem of constructing features anil the
recursive algorithms, etc.), a specific LLF is ggig extremely complex.
characterized by two components — a linearn the authors paper [2] the formal approach for
convolution kernel (we call it ds_F's kerne) and an  gfficient LLFs construction has been proposed,iand
algorithm for calculation of the convolution of the 4 papers [3, 4] this approach has been exteraled t
input signal/image and this kernel (we call ild$™s  he case of constructing an efficient set of jgintl
algorithm or algorithm for LLF values calculatign  cgicylated LLFs. These approaches allow us to desig
Moreover, if LLF's kernel determinegualitative an efficient LLF (or efficient set of LLFs) for the
characteristicsof the specific LLF, the algorithm for 1,55t applied problems. The termfficiency of LLF

LLF values calculation characterizesmputational refers to the satisfaction oo basic requirements
complexity of the feature. Sets of features, which _ algorithm for LLF values calculation has a

have not just one but several feature values fer th predetermined computational complexity value:

same IanaIyS|s a_re? of ab?lgltal s||gn_al, are “S'!"alﬁ’ﬂ‘h - LLF's kernel(s) is(/are) the best matched to a
to solve practical problems. It is essential, that given quality indicator.

calculation t?f the %orrezpogdlng featulre _vgluesag Under the preceding requirements efficient LLFs
set can be produced Dy several Independenty, e s to establish a reasonable balance between

algorithms as well as a general algorithm that two opposing groups of features:

Permission to make digital or hard copies of alpart of - features, which are optimal in the sense of some
this work for personal or classroom use is gramidout quality criteria and do not have suitable or fast
fee provided that copies are not made or distribdoe computation algorithm (e.g., features, obtained
profit or commercial advantage and that copies ligar using Karhunen-Loeve transfé)rm)' '

notice and the full citation on the first page. Topy ) . .
otherwise, or republish, to post on servers or |to ~ features, which are obtained by using fast

redistribute to lists, requires prior specific pesion algorithms and are not related to the contentef th
and/or a fee.
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problem and relevant quality indicators (e.g.,

features, obtained using fast Fourier transform

algorithm).
According to the information of author, the only
alternative approach of the feature constructibat t
satisfies all requirements mentioned above, exists.

was proposed by Prof. V.Labunets in 2013 and was
denoted as «multiparametric wavelet transforms»
[12,13]. Unfortunately, these papers do not provide

the method of solving the efficient LLFs constroati
problem, they only show that multiparametric (or
adaptive) wavelets exist and can be constructed.
Themain purpose of this papés to analyze/compare

{(bremb.am)f

Definition 2. A set of R jointly calculated LLFs over
the ring K is a pair ({hr (m)}mzoo,Rlvll—L,Aj, where
r=0R-
{h, (m)}m:oo’TMl_l is a set oR kernels, each of which
r=0,R-

is determined as a finite sequence over the King
and satisfies the following constraints:

h(0)20, OrO0,R-1 mOOM -1 h(m)#0;
Or0oR-1 h(M-1)z0;

the author's two approaches to constructing sets of

LLFs. The first approach constructs a set of festur
by constructing a set of efficient LLFs, each ofiethh
has its own algorithm for feature calculation. The

andA is an algorithm for joint calculation of a set of
linear convolutions of an arbitrary input signal
{X("}=ox= (M <N) over the ringk with a set of

second approach constructs an efficient set of LLFS arnels:

in which there is a single algorithm for computalg
features jointly. Short description of these apphes

is presented in the Section 2, where the known

information is collected. New results on analytical

M-1

v, (n)=h () ) = 2 (mdn—m),

n=M-1LN-]

@)
r=0R-1

and experimental analysis of these approaches are

presented in Sections 3 and 4.

2. SETSOF JOINTLY AND
INDEPENDENTLY CALCULATED
LINEAR LOCAL FEATURES OF

DIGITAL SIGNALS: BACKGROUND
This Section presents short reference information o
the efficient linear local features of the digisagnals:

basic definitions, equations and construction
methods. Full description may be found in the paper
[2-4].

Let N be a set of natural number& be a
commutative ring with unity,{x(n)}r’:‘:_ol be an input
signal of lengtiN over the ringK.

Definition 1. A linear local feature (LLF)of length

M over the ring K is a pair({h(m)}'\"_l

=0 ) where

{h(m)},'\;'z_ol is a linear convolution kernel of length,

To distinguish the elements of sets of indepenglent!
calculated LLFs from jointly calculated LLFs thestia
will be denoted as follows:

({hrset(m)}?;w’ Asetj 0

In author’s papers [2-4] we proposed a method for
construction of the sets of independently and fpint
calculated LLFs, based on designing (sets of)
sequences of kernel's samples in the formirafar
(mutual) recurrent sequence$LRS or LMRS,
respectively) [5,6,9]. For these (sets of) sequence
called NMC-(sets) sequencgsthe computational
complexity of calculating linear convolutions (1) o
(2) is minimal. For fixed parameters dinear
(mutual) recurrent relations (LRR or LMRR,
respectively) these sets of NMC sequences or NMC-
sets of sequences form a collection of sequences,
denoted, respectively D(M,K,C) or

which is determined as a finite sequence over theD(R M .T.K a). Here K is an order of LRR for

ring K and satisfies the constraint
h(m)¢ O,h(M —1)¢0, and A is an algorithm for

calculating a linear convolution (1) of an arbiyrar
input signal over the ringK with the kernel

o
y(n)=:z:jr<m)x(n—m), n=M-1N-1

A set of R independently calculated LbFlength M
over the rinK is a further set of LLFs:

1)
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samples of a sequend®js a number of sequences in
a set,T is an order of mutual recurrence (for sets),
and a are LRR's or LMRR’s coefficients
respectively. As it has been shown in papers [2-4],
the powers of these collections satisfy the retetio

OM >K 21 alac #0) O(K,M,c)<Cl k.
OM >K =21 R>T2>1

3
‘D (b,c,d)(R’M T K,aX S CRR(§A+K)—1 ‘CE&A +K=1)-1- )

1 NMC - normalized with minimal complexity

ISBN 978-80-86943-66-4
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Each sequence from the collection, along with its
parameters, is also characterized by a ®ebf
additional independent parameters degrees of
freedom The powers of degrees of freedom @ts
are determined in the following way [2-4]:

‘OD(M,K,C)‘ =K, ‘GEI(R,M,T,K,H)‘ =RK. (4)

The computational complexity of algorithma™

and A% for calculating relevant features or sets of
features for all NMC sequences or NMC sets of
sequences from collectionsd(M,K,c) and

O (R, M,T, K,a) is determined by these equations [2-
4]:
N

u(Aind )s vy ®)

R(K =1) = (R=1)& o4 +

set
dr=)e +(K+1)T(R-T2'1j ©

The problemsof construction of arfficient (set of)
LLF(s) are defined as follows [2-4]. Avarticular
problem of construction of an efficient set of LLi§s

defined as a problem of searching in a predefined

collection O(R,M,T,K,a) of such a set (with its
corresponding algorithm of joint calculation of L&F
A%®Y, for which the minimum condition for a

problem-specific objective functio® : K™ _ R is
fulfilled:

W(hy(0).....hy(M =1)....,hg4(0).....hg_y (M -1))

min (M

—
{hfel(m)}mzofoy .00 (RM,T,K,a)
r=0,R-

For a particular problem of construction of an
efficient LLF the drafting changes are related to a
collection D(M,K,c) and an objective function
w: kM L R.

The difference in the solutions of these probleies |
in the fact that in the first case a set of jointly

calculated LLFs is formed({hfa(m)}mﬂlfw—l,Ase‘)
r=0,R-1

and in the second case there is only one LLF
constructed ({t‘(m)}mz_ol,A). Note that using a
particular problem of constructing an efficient LitF
is possible to construct a set of independently

calculated features {({h;nd (m)}M—l A:“ q )} |
r=0,R-1

m=0 '
for example by their consequent construction with
appropriate modification of objective functions for
each of particular problems.
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The computational complexity of calculation of the
sets of LLFs and the number of their degrees of
freedom can be used as indicators or constraints in
the analysis of constructed sets of jointly and
independently calculated LLFs. Additionally, for
further analysis we can introduce a formalized oroti

of collections “comparability” of jointly and
independently calculated LLFs as follows.

Let's consider a set of LMRS{h,(m)}m:QT_l

(r =O,R—1), which  belongs to collection
0(RM,T,K,a) and satisfies a LMRR [3,4]:

brm: r=0T-1,m=0K-1,
min(K,m)
a(r)khr (m_k)+
k=1
h, (m)= min(r,T-1) min(K,m) v
+ 3, (m=k)+ o, (m),
t=1 k=0

r=T 0 m=K.

In case, when¢,(m)=0, LMRS and LMRR are
called homogeneoug5,6,9]. The following lemma
defines characteristics of the sequences in this se

Lemma (on solution of homogeneous LMRR).
Let T=R=1 and a homogeneous LMRR of order
(T.K)

hy ¢ (m_ k)’

r=0,R-1
determines the samples of the collection Rf
sequence:'{hr (m)}r=()(,)TJ:J; for the entire domain. Let
m=

) ia{k

t=1 k=0

()= 3y (m-i

us define matrixe€Q, (z) of size I XI , where each
g (2)
(qig (z) = qi‘j (z) Oi,j< min(r,t)) with an expression:

element is determined

K
Yawz -1 i=j,
k=1
qig(z)= 0, i<j, i,j=0r-1
Ko
zati_j)kz_k, i> j,
k=0

Then every r-th sequence of the collection for the
entire domain satisfies the following homogeneous

LRR:
K (r+1)
n(m)="S" e (m-s)
s=1

r=0,R-1,

Kr . . .
where the values{c;}sz1 are coefficients in the

:

matrix Q, (z) determinant:

r-1

detQ (2)) =[]

1=0

Kr
=1->'dz°.

s=1

K
[Za{)kz‘k -
k=1
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It is obvious, that under the lemma’s conditiote t Comparing the right part of this equation with the
sequence of the collection with numbesatisfies the  equation (6), one can assure of the following retat
homogeneous LRR with order not exceeding correctness:
tlg (r+1). Th|s pr.oyfad connection aI.I(.)vys us to give R(K ~1)~ (R-1)6 .y, +

e following definition for tomparability of jointly
and independently calculated LLF collections. +(K +1)T(R— T —1] <KR(R+1). (10)

Definition 3. A set of collections of LRSs
{](M,Kr,cr)}r:m and a collection of LMRRs Then the following statement is correct.
D(R,M ,T,K,a) are calledcomparable if these Statement 1.  Let  K,R,M,TON, Kz=1,

equations are valid: R>T=>2, sets of LLFs ({hfm(m)}mzoo,RMl—L , ASEt)
rOR-

K, =K (r +2),

r-1/ K . Kr ind M -1 ind

_|'(|)(kzla(')k zk —1) :1—;%“2‘3, r=0R-1 and {({hﬁ (m)}m:O A )}r:m_l are constructed
1= = S=

for comparable collections](R,M,T,K,a) and

The fact of compatibility means that one can specif {D (M K, ¢c )}r:o,T—l correspondingly,  while

for at least one (homogeneous) set of sequences fro

0(RM,T,K,a) exactly the same set of sequences
R-1

from {D (M,Kr,r:r )}r:m. Note also that although U(Aset)< Zu(A‘“d). (11)
r=0

there are more than one equal sets of sequences for

comparable collections the full match of sets of hi Kes | bl ) h
sequences doesn't happen. This statement makes it possible to confirm the

The results of this section allow us to make an Potential computationally benefits of jointly

analytical comparison of comparable sets of calculated LLFs in comparison with sets of
collections. independently calculated efficient LLFs designed fo

comparable collections.
3. COMPUTATIONAL AND

QUALITATIVE PROPERTIES: .
ANALYTICAL COMPARISON Features Setswith Equal Number of
Degr ees of Freedom

3.1 Comparison of Linear Local Features Equation (4) means that the number of degrees of

Setsfor Comparable Collections freedom for the specific efficient set of LLFs from
the collectionl (R, M,T, K,a) is equal toKR. From

the other hand, one can construgt independent
is an arbitrary efficient set of LLFs for a collect  ©fficient LLFs from collections{] (M'Kr'cr)}r:m

0(RM,T,K,a). Computational complexity of the in such a way, that the overall number of degrdes o

algorithm of calculation of the LLF, correspondilgy ~ freedom becomes equKR too. It is easy to prove
any set of sequences of this collection, satiges  that in this case the following equality is valid:

relations (5) and (6) are satisfied as equalifiésen

3.2 Comparison of Linear Local

Let N,RM,T,KON, and ({hfet(m)}crm—-, ASEtj
m=0,M -1

equation (6). From the other hand, one can corstruc == .\_
independent efficient LLFs R(R+1) 2R. (12)
{({hind (m)} . Aind)} ___ from the comparable Using (12) one can assure the following relation
r m=0M -1 r=0,R-1 o] .
. correctnessK, RR,M, TON, K=1, R=T=2):
O (R, M,T, K,a) set of collections
{](M,Kr,cr)}r:m. Then, taking into account R(K =1)=(R-1)&a0a + e
equations (5), computational complexity of LLF set +(K +1)T(R—T2_1j > KRR+1).
calculation {({h;“ (m)}mzw_l, & )}rzo,Tﬂ is
determined as follows: Statement 2. Let K,RM,TON,
Rl K=1 R=T=2=2, jointy and independently
Zu(p*i“d)gLKR(R+1)_ 9) calculated LLFs have equal number of degrees of
r=0 N-M+1 freedom (i.e. equation (12) is correct), while

relations (5) and (6) are satisfied as equalifi¢®en

Short Papers Proceedings 36 ISBN 978-80-86943-66-4
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;UI

-1
(13)

)

u(A:“d ) :

0

r

This statement makes it possible to confirm the

potential computational benefits of set of
independently calculated LLFs in comparison with
the set of jointly calculated efficient LLFs desigh
for equal number of degrees of freedom.

3.3 Comparison of the Computational
Complexity of Solving the Particular

Problem of Features Construction

Let O(R,M,T,K,a) and {](M,Kr,r:’)}rZQT_l are
comparable collections of jointly and independently

calculated LLFs. To compare the calculational
complexities of the solving of the particular tagsks

({hrset(m)}:;m ’ Asetj

{({hi”d( )}m_m,Aﬁ”d)}r oy construction  (see

LLFs and

R
. C
incremental search:" M+K)

CR

R(l<\/| +K-1)-1 (15)
1

ZCI\;+2+ r+l

Using (15) we can prove the following statement.

Statement 3. Let K,RRM, TON
K=1 R=T=2 M >RK+1.Then

R R r+1)K
Cr(m+k )1~ Cr(M+Kk-1)-1 > ZCM 2+ r+1)K

This statement makes it possible to confirm that
solving of the particular problem of jointly caletéd
LLFs construction is more difficult than the solgin
of the particular problem of independent calculated
LLFs. Direct numerical analysis of the ratio (16} f
useful parameters rang®1€21...32;R=1..4) shows
that it is much more difficult: values of the rafitb)
are in the range [5.7*10"9].

Unlike the situation is considered with an incre[aén

sequences in the collectioris(R,M,T,K,a) and
{](M,Kr,cr)}r:m. In the case of the collection
0(R,M,T,K,a) the number of sequences is defined

p033|ble to make an unambiguous conclusion. Direct
numerical analysis of the ratio (14) for parameters
ranges mentioned above shows that it is in theeang
[7.2*107-8, 3.97].

by equation (3). When we form the set of sequencesFinally, we can conclude that:

from the Collections{](M,Kr,cr)}r:m, we can

use two obvious strategies:
- exhaustive searclfoptimal solution) in this case
the number of sequences sets takes the form:

R-1

Mo (M. (r +1),ch :

r=0

- incremental searclquasi-optimal solution) in this

case we search for the sequence of itiecollection
when the sequence of thel()-th collection is found.

- quasi-optimal solutiorof the particular problem of
independently calculated LLFs construction, based o
the incremental search, is less difficult then the
optimal solution of the particular problem of jdint
calculated LLFs construction;

- optimal solution of the particular problem of
independently calculated LLFs construction, based o
the exhaustivesearch, may be radically difficult then
the optimal solution of the particular problem of
jointly calculated LLFs construction. So, when we a
going to find optimal solution, jointly calculated

The number of possible sets of sequences has théLFs are preferable.

form: r:ZjD (M,K(r+1),cr1.

3.4 Analytical Comparison: Conclusion
Analytical and numerical results presented in this

Taking into account equations (3), we can compare Section above make it possible to conclude that the

the
by

the computational complexity of solving
particular problem of LLFs construction

comparing the valueCE(ly+x )4 ~ CRlvisk—ja With

|_| C,\;+12+ (r+1)K (exhaustive search case) or
r=
R-1
C,S,l 2) (11 x (incremental search case).
r=0
It may be done by analyzing the following ratios:
R
exhaustive search(':'?&’I+K CR&"*K -2)- (14)
r+l
|_| CM 2+ r+1 K
Short Papers Proceedings 37

analytical analysis cannot provide the unambiguous
answer on the question what type of LLFs (sets of
independently or jointly calculated LLFS) is better
Therefore, we are trying to answer this questidngus
experiments.

4, COMPUTATIONAL AND
QUALITATIVE PROPERTIES:
EXPERIMENTAL COMPARISON

In order to complete the comparison of the sets of
independently and jointly calculated LLFs and to
compare them with existent typical ways of linear
local features calculations we will consider selera
illustrative tasks. In every task we will compare

ISBN 978-80-86943-66-4
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computational and qualitative properties of the
constructed LLFs.

Despite of the illustrative character of the chosen
tasks, they appear often in real applicationsnmlar
formulations, and explicit criteria and mathemdtica
model of the processing signal is necessary only to
point out the best (from typical ways of linear dbc
features calculations) set of feature kernels.

So, general problem statement is as follows. Let we
have a digital signal that may be interpreted as a
realization of the discrete stationary random pssce
X(n) with zero mean and autocorrelation function:

Rn)=D,0", n>0,
here D, =1, p= 095, for definiteness. We allow

that the length of the processing sigNak unlimited
and to perform the local analysis of the signathie
specific positionn, we have to us#=33 samples of
the signal (i.e. «processing windows):
X(no)r---, X(ng +M —1). Also, we allow that the
quality of the local analysis of the signal depends
directly on thequality indicator, that is given by the
following equation:

(16)

E[Mz‘l(Rz'lvrhr - J
JGZGD m=0 r:;_l +
S “
cleg) 2 R-2 R-1 <h:hr>2 .
b qrn &2 @0
Here {hr (m)}:;é)?% is a set of kernels that is used

for linear representation of the analyzed fragmant
the signal, E(...) - the mathematical expectation

operator. Obviously, the less the quality indicatar
better the set of features.

In the equation (17) the first term defines relativ
error of the representation of the signal fragment
using weighted sum of LLF's kernels, the seconehter
shows the correlation rate of the kernels, and the
denominator of the first term satisfies the equalit

E(:Z;:XZ(m)J =D,M (=33).

Let define thegeneral problem as followsve have to
obtain the set of kernels{hr (m)}r=m and
m=0M -1

algorithm(s) of calculation of the set of convoduts
(2) of the signal with these kernels, which provide
minimal value of the quality indicator (17) andisBt
certain restriction on the computational complexity
convolutions (2) calculation:

Short Papers Proceedings 38

{Ja - min (18)
U(-) < Upax-
Bellow, we provide several ways to solve the
problem (18). First and second methods (solutions,
that are ordinary used in digital signal and image
processing) use "optimal" kernels, that comes from
Karhunen-Loewe decomposition [7] of the fragment
of the discrete stationary random process (16). The
only difference between these methods is the
convolution algorithms. First methochéthod ) uses
the direct convolution algorithm, and the second on
(method 2 uses the fast convolution algorithm, that is
based on the Fast Fourier Transform (FFT) [8,10]
and optimal sectioning of the processing signal.[10
In practice, the second method is the de facto
standard for solutions of this type of problems.
Method 3uses the set of jointly calculated LLF's, and
methods 4-71use the sets of independently calculated
LLF's (description of these methods is given bejlow
It should be noted that the detail description had t
problem (18) whena=1 using the set of jointly
calculated LLF's was given in the paper [4]. Some
useful equations, that are used here for calculaifo
an error of representation of the fragment of the
discrete stationary random process using non-
orthogonal kernels, were given in that paper too.
We analyze solutions of the problem (18) for three
values of parameter, namely:

-group I a=1,

- group 2 a=0,

-group 3 a=1/2.
Solution of the problem (18) using sets of
independently or jointly calculated LLFs (methods 3
7) is performed by solving the particular problem (
of constructing an efficient set of LLFs. This
particular problem [2-4] means that the LLF's késne
are from the specific collection, and this colleatis
defined both by the task restrictions (the $ikzef the
"processing window" and the upper boung,, of

the calculational complexity of features calculajio
and subjective chosen parameteis,K,a and
{Er}r:m. In our experiments, parameters are as

follows:
* method 3

parameters:
T=2K=1 ayp=lag=la;=2a5,=1;

SIVTSAC) St

collection O (R, M,T, K,a) ,

» methods 4-7 collections

parameters:
- quasi-polynomialrhethod #:

Ck (_1)k+1ct<r+1)Kv (Kzl k=1,(r+1)K);

- quasi-exponentiahfethod %

= +DK) e, (k=1 k=1(+IK);

ISBN 978-80-86943-66-4
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The obtained experimental results allow us to make
two conclusions:

- quasi- Fibonacciniethod §:
1 2 1

R=12: ¢g=¢ =¢=1 - .
. 5 - N -the proposed efficient LLFs have advantage in

R=3: g =1/2 ¢=3/2, c¢=1/2 comparison with the traditional way of solving st&ch

R=4: type of problems, even when the “optimal’

- quasi-harmonic njethod J: kernels/bases exist; o

R=1: o} =1 - jointly and independently calculated efficient 4.

have comparable efficiency, i.e. neither of two

R=2: c; = xodw), cZ=-1 approaches has clear advantages.

R=3: ¢} =codw), ¢ = o (w)-1, c = -codw) g

R:4: 04 \ \ \

Presented collection names are derived from the’’ "\ \ \

names of the sequenceR¥2), that satisfy the v \ O\
homogeneous LMRS (8) with the same parameters. 025 M \ \

The calculational complexity of the independently °? .y N\

and jointly calculated LLFs is defined by equations ®'° L NERN
(5)-(6), that were used as equalities. 0.1 M ] \
Figures 1,3-5 present the obtained results, thatvsh 005 TR .
the dependence of the quality indicatdy, of the 0y 10 100 1000"
constructed features on the computational complexit o menods T method?

of the features calculation(...). These results lead

to the following conclusions.

For the first group of the tasksu£1, Fig.1)
quality indicators for the sets of independently
and jointly calculated LLFs (methods 3-4) are
significantly less (i.e. the quality is significhnt
higher) then the quality indicators obtained for
«optimal» kernels (obtained using Karhunen-
Loewe decomposition) and direct (method 1) or
fast (method 2) convolution algorithms.
Particularly,when the calculational complexity of
the features calculation satisfias,,, =40 the

quality of the set of jointly calculated LLHs six
time higher (vs method 2)!For this particular
case,Fig.2 shows four constructed kernels for the
jointly calculated LLFs. It is easy to see thatstne
kernels are similar to the «optimal» kernels
(sinusoids of different phases and frequencies),
that may be obtained using Karhunen-Loewe
transform.

For the first group of the tasksu£l, Fig.3)
quality indicators for the set of jointly calculdte
LLFs is less (i.e. the quality is higher) then the
quality indicators for the sets of independently
calculated LLFs.

For the 3% and & groups of the tasksagl,
Figs.4-5) quality indicator for all types of LLFs
depends significantly on the collection

Figure 1. Comparison of the proposed efficient
LLFs(methods 3-4) with traditional way of
features construction (methods 1-2);
task group 1: a=1.
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Figure 2. First four constructed kernelsfor the
jointly calculated LLFs (for convenience, we put
kernelsto therange[-1,1]).
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parameters. Therefore, changing these parameters 0

we can obtain different answers which type of
feature sets (set of jointly or set of independentl
calculated LLFs) is better. In practice, the best
type of LLFs may be found using global
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Figure 3. Analysis of the proposed efficient LLFs:
comparison of the sets of jointly (method 3) and
independently (methods 4-7) calculated LLFs;

optimization methods: genetic algorithms, task group 1. a=1.
simulated annealing, etc.
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Figure 4. Analysis of the proposed efficient LLFs:
comparison of the sets of jointly (method 3) and
independently (methods 4-7) calculated LLFs;
task group 2: a=0.
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Figure 5. Analysis of the proposed efficient LLFs:
comparison of the sets of jointly (method 3) and
independently (methods 4-7) calculated LLFs;
task group 3: a=1/2.

5. CONCLUSIONS

In this paper two approaches to the constructioa of
set of linear local features for digital signalse ar
analyzed. It is shown that, depending on the

comparison criteria the proposed approaches call}

have advantages and disadvantages. In the gener

case, it can be concluded that these approaches are

comparable by efficiency value (in terms of
parameters pair quality and computational
complexity). This fact allows the developer of a
particular signal or image processing system to

choose the approach that is convenient and/or

familiar to him. Conducted in the paper experiments

show, that the proposed approaches have convincing

advantages over a typical "best" way to solve the
model digital image analysis/representation problem

(in terms of parameters pair - quality and
computational complexity).
Short Papers Proceedings 40

Further research will be related to the following:

- development of alternative ways to introduce
efficient linear local features;

- development of numerical methods and algorithms
for a quick solution of the particular (and extetide
particular) problem of constructing an efficient eé
jointly calculated LLFs and set of independently
calculated efficient LLFs.
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