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ABSTRACT
In this paper we deal with edge preserving surface normal estimation and crease edge detection in discretized range
images. Such range images consist of few discrete quantization levels due to the data acquisition method (short
base distance stereo), or when the distance variation of the examined surface is low, compared to the disparity
quantization levels. We propose a method for normal estimation and crease edge detection using iso-range curves
and rotated bilateral filter based sampling. Iso-range curves are used to extract sparse, but reliable range image
points. Samples are first selected by a rotated weight matrix and a plane is fitted on such samples. Simple statistics
are gathered during the rotation of the weight matrix, in order to find the best fitting plane and extract crease edge
measure. Such information may be used for further range image processing: segmentation, mapping, localization,
object detection, recognition etc. Results are shown for both synthetic and real range images. It was shown that
applying the proposed method resulted in more accurate normal estimations, crease edges were not smoothed and
crease edges were successfully detected.
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1 INTRODUCTION
The apparatus for acquisition and processing of 3D
geometry data became affordable and compact thus
appearing in a wide range of applications (mobile
robotics, photogrammetry etc.). Several methods and
implementations are available for 3D sensing, each
balancing with different features. The optimal must be
chosen for each application (cost, precision, range etc).

Time of flight (ToF) based methods provide the most
accurate results even at long range at high costs. Con-
ventional stereo is widely used to reconstruct 3D geo-
metric data due to the low development price. Stereo
triangulation is based on disparity estimation between
the two viewpoints. Surface texture, geometry and
lighting affects the disparity estimation and thus the re-
constructed geometry. Feature points may be used for
more accurate matching between viewpoints but it re-
sults in a sparse disparity map. In case of homogeneous
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texture it might be impossible to estimate the geome-
try. For such reasons structured light based methods are
also used: one camera is substituted by a calibrated pro-
jector that emits a known or a series of known light pat-
terns thus homogeneous surfaces can be textured in this
way. Disadvantages are short range and non-passive
operation: it needs to emit enough light that could be
detected. In some cases active operation is not admissi-
ble.
Stereo camera based methods provide a dense dispar-
ity map based on similarity (normalized cross corre-
lation, sum of differences etc). Dense maps may be
transformed to a range image by associating a range
value based on the disparity measure and known op-
tical properties. Usually these depth maps are stored as
range images, where pixel intensity encodes the depth
(Z) coordinate value in order to keep beneficial proper-
ties of such images: regular sampling, vicinity informa-
tion, simple surface and triangle mesh generation etc.
In this paper we deal with range images to utilize spe-
cific features and errors associated with structured light
based image acquisition methods. The research aims to
provide a set of methods to handle range images that
were acquired using short baseline distance and the dis-
parity map was estimated using traditional (SAD: sum
of absolute differences or NCC: normalized cross cor-
relation) methods. Due to the short baseline distance
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disparity values are also small and quantized in image
space. Such quantization leads to the discretization of
range values as well:

zi = B f
1
di
, (1)

where zi is the calculated depth value from disparity di
using B baseline distance and f focal length. When
the disparity map was quantized (to pixels) the recon-
structed depth map would be quantized as well, and
would be inversely proportional to the disparity. Range
images Z(u,v), 0 ≤ u < n,0 ≤ v < m suffering from
strong quantization consist of few discrete range val-
ues:

|{Z(u,v)}|<< nm. (2)

Such strong quantization noise cannot be considered
random, and has significant effects on algorithms used
for low level range image processing. Hough transform
or RANSAC based model (ie. plane) fitting may easily
find better but improper explanations of surface parts
described by discrete range values. Such false surface
regions show as quantization levels, planar patches per-
pendicular to the z axis.

A framework is presented for processing such layered
range images, specifically edge-aware normal estima-
tion and edge detection. Our method consists of two
major steps: a preprocessing step, where low level fea-
tures are extracted first and postprocessing, where such
features are utilized for further analysis.

The preprocessing step involves layer separation, filter-
ing, skeleton extraction. First the quantized range im-
age is broken into binary images, each image describing
a layer. Each binary layer is filtered in order to reduce
noise, finally skeletons are extracted using thinning to
describe the layers. It is assumed that such skeletons
estimate iso-range curves on surfaces where the quan-
tization error is minimal. Due to perspective projec-
tion such centerline estimation in image space is biased.
However our results show that such error is not signifi-
cant in practical cases, only at extreme cases where the
surface is steep and the quantization step is significantly
large.

During postprocessing such skeletons are used in plane,
edge and corner detection. Such features can be used in
registration problems, mapping, localization, or object
detection.

This paper focuses on normal estimation in such sparse
range image point sets while keeping both jump and
crease edges. Surface normals provide low level fea-
tures used in subsequent processing steps in range im-
age understanding. The naive approach of local sur-
face estimation by plane fitting on a local neighborhood
of pixels lead to significant errors in discretized range

images. Based on the layer widths (surface orienta-
tion and quantization), the local neighborhood size and
the weighting, naive estimation would give significantly
different results. Using a small neighborhood for sam-
pling would mostly result in sampling from one layer,
thus providing a normal parallel to the depth direction.
Near layer edges a perturbation would be observed of
the incorrectly estimated surface normal. In order to
improve estimation, data uncertainty must be estimated.
As quantization is not random, spatial information may
be introduced for uncertainty estimation. In the pro-
posed method as a simplification, it is assumed that the
centerlines of layers carry reliable depth information,
these shall be used for model fitting, other layer pixels
are ignored.
In this paper the rotated bilateral sampling method is
proposed, by which edge aware fitting of models, in the
given example local planar segments for normal esti-
mation are possible. With side information of edges,
the estimation process may be sped up.
The paper is organized as follows: in section 2 related
work is presented, in section 3 the proposed algorithm
is shown. Results of simulation and real images are
presented in section 4, finally in section 5 results are
discussed and conclusions are drawn.

2 RELATED WORK
Bilateral filtering was introduced in [17]. Such filters
combine closeness (spatial) and similarity (value) fil-
tering in one general filter:

h(x) = k−1(x)
∫

∞

−∞

∫
∞

−∞

f(ξ )c(ξ ,x)s(f(ξ ), f(x))dξ

(3)

kr(x) =
∫

∞

−∞

∫
∞

−∞

c(ξ ,x)s(f(ξ ), f(x))dξ (4)

where f(x) denote the input image, h(x) the filtered out-
put. Functions c(ξ ,x) and s(f(ξ ), f(x)) define the close-
ness and similarity functions. Weights k(x) are applied
in order to preserve units.
On smooth regions where the variance of the values is
low, it acts as a standard domain filter. On regions con-
taining a sharp edge, where values differ significantly,
values would be taken only from samples similar to the
center value. As the kernel is not spatially invariant and
is based on the original image contents, FFT and other
methods are not applicable to speed up calculation.
Such filters are exceptionally popular for range image
processing as object boundaries are not blurred with
background information. Typical closeness and simi-
larity filters are Gaussian. In the proposed method the
filters are also Gaussian.
A hybrid solution with weighted median filtering is pre-
sented in [18] for range image upscaling using high res-
olution intensity images. Trilateral filters also take the
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gradient into consideration, in [14] such filters are used
for upscaling range images.

Bilateral filters were also proposed as edge detectors in
[8]. A high-pass closeness (domain) kernel is combined
with an inverted Gaussian similarity (range) kernel.

Several types of edges can be differentiated in range im-
ages. Step or jump edges show the most resemblance to
intensity image counterparts, they appear as depth dis-
continuities at object boundaries. Crease edges show as
a significant change in normal direction. Smooth edges
are identified by abrupt change of the surface curvature
while the normal changes gradually. Most papers do
not deal with smooth edges. According to the data ac-
quisition circumstances, false edges may appear around
regions of unknown depth values: using stereo triangu-
lation occlusion may happen or distances may be larger
than what the rangefinder can handle. Such edges must
be omitted or handled accordingly. If layered range im-
ages were handled as intensity images an other edge
type could be identified. These edges appear between
quantization levels but do not represent any type of real
edge. Such edges are usually noisy thus cannot be uti-
lized directly, this is a reason skeletons were introduced
instead of layer edges.

In [4] the bilateral grid was introduced for edge-aware
algorithms. The method involves transforming the im-
age to a higher dimensional grid along the similar-
ity axis, such that pixels representing different patches
(separated by an edge) are grouped into different grid
cells. This method can also be used to re-express the
bilateral filtering problem as a linear filter in a higher
dimensional space. Sampling rate over the spatial do-
main controls the smoothing, sampling rate of the range
axis defines the degree of edge preservation. Bilateral
filtering can be expressed as 3D convolution between
grid cells. The division by the weights are delayed, and
data are represented by a variety of homogeneous co-
ordinates. The dual operation of the grid generation is
division (by the homogeneous coordinate) and slicing.
Our representation is a specialized form of the bilateral
grid, where the spatial sampling rates are 1, the range
sampling corresponds to the available range layers, thus
one range pixel is associated to each grid cell.

Surface normals provide basic features for higher level
range image understanding such as segmentation, map-
ping, navigation, object recognition or detection. Au-
thors of [9] compare several methods (different vari-
ations of singular value decomposition and principal
component analysis, triangle based averaging) for sur-
face normal estimation evaluating the tradeoff between
precision and speed. Joint surface and surface normal
reconstruction is shown in [19] using statistical meth-
ods for improved robustness. In [1] normal estimation
is optimized for reduced computational demand trans-
forming range images to spherical coordinate system,

giving spherical range images. Normals may be directly
extracted from such representation. In [13] directional
joint bilateral filters are introduced to take edge direc-
tion into account during filtering. State of the art meth-
ods [6] involve integral images for surface normal esti-
mation in point clouds. Integral images simplify sum-
ming over a rectangular region as only the values at the
corners of the rectangle is needed.

The sampling matrix we proposed shows some resem-
blance to the one used in the Kuwahara filter and it’s
modifications [12]. The original filter uses four square
regions around the sampled point where mean of the
subregion is applied to the center pixel where the stan-
dard deviation is the lowest. Generalizations involve
rotated circular and elliptical filter kernels.

Several methods are used for fitting planar surfaces to
sample data. Hough-trasformation may be extended to
3D for plane detection [7, 2]. As the accumulator space
has a higher dimensionality accumulator space design
must be made carefully [3]. Model fitting in noisy data
and high number of outliers are usually done by using a
variation of the RANSAC algorithm [5]. Hybrid meth-
ods were also developed to fuse advantages of the meth-
ods. In [16] both Hough and RANSAC based methods
are used at multiple resolutions.

3 PROPOSED METHOD
In this section we present a new method for local sur-
face normal estimation in discretized range images. Es-
timated normals can be used for further analysis of the
images, such as segmentation [11], edge detection [10],
smoothing etc. while it also provides basic informa-
tion for higher level semantic analysis such as object or
landmark recognition.

3.1 Skeletonization
First the layered range image is broken into binary im-
ages representing each quantization value. Next these
binary images are filtered in order to reduce noise that
might be present near the edges of layers. Small de-
tached patches are removed from the layers using the
connected components algorithm. Morphological oper-
ations are applied in the resulting binary image: dilation
and erosion in order to smooth the transitions between
layers.

Next a thinning algorithm is applied for skeleton ex-
tractions. Skeletons are one pixel width lines that repre-
sent the centerline of binary images. There are numer-
ous thinning algorithms, [15] was implemented, that
produces few side branches. The resulting skeletons
are broken into skeleton segments: such segments con-
sist of skeleton pixels between junctions or endpoints.
Skeletons are pruned by removing remaining unwanted
short segments.
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In our framework we utilize these iso-range skeletons
for further processing. It is assumed that these iso-range
lines describe surface crossections that have minimal
quantization noise on linear surfaces. Centerline esti-
mation error due to projection is minimal in practical
cases. Figure 1 shows the iso-range skeletons of a sam-
ple simulated scene.

Figure 1: Iso-range skeletons extracted from each layer
of the discretized range image.

3.2 Surface normal estimation
Normal estimation is one of the most fundamental steps
in range image processing. Normals can be used for
plane segmentation, edge detection etc.

Previously we proposed a method [10] for surface nor-
mal estimation by a variation of the forward differ-
ence method but adapted for 3D iso-range curves. The
method can also be extended to utilize multiple layer in-
formation to estimate the gradient. Figure 2 illustrates
the process.

First the skeleton tangential orientation v is estimated
by sampling nFitLine number of skeleton points in im-
age space. The total least squares method is applied to
find the best fitting direction: the eigenvector related to
the larger eigenvalue of the corvariance matrix is eval-
uated. This tangential direction is also the tangential
of the skeleton in 3D, and it specifies a plane P. In
order to estimate the binormal p∗ must be identified
on an adjacent layer (li+1), where the skeleton of the
adjacent layer crosses P plane. By knowing the tan-
gential and the binormal, the surface normal n = b×v
can be calculated. By identifying several binormals,
not only on one adjacent layer, but on several, the nor-
mal estimation may be improved for planar regions, but
near edges normals may be smoothed. By default this
method identified one binormal on the following layer
thus being noise sensitive. Estimation failed or was ig-
nored near crease edges, due to the significant change
in layer skeleton orientation.

In this paper we present a method that overcomes such
problem, providing edge preserving surface normal es-

Figure 2: li: layer skeletons, v tangent, b binormal, n
normal direction

timation, using a rotated bilateral filter kernel for sam-
pling and principal component analysis (PCA). PCA
is an orthogonal transformation, which maximizes the
variance of the samples along the principal directions.
The eigenvectors and eigenvalues of the covariance ma-
trix define the principal directions and components.

First a set of sampling matrices are constructed as a
function of θ and N.

SN(θ)i, j =

{
e−(a

2+b2) if 0≤ φ ≤ π

0 otherwise

i, j ∈ 1..(2N +1)

(5)

where

a =
sin(φ)R

Ns2
, b =

cos(φ)R
Ns1

, (6)

R =
√
(i−N−1)2 +( j−N−1)2, (7)

φ = atan2( j−N−1, i−N−1)+π +θ . (8)

s1 and s2 modify the shape and weight falloff of the
sampled pixels. In our implementation we set θ =
i/18π , where i = 0..35. The constructed sampling ma-
trices are illustrated in Figure 3. SN(θ) matrices are
calculated only once and stored in a look-up table. To
modify the behavior around edges or corners the open-
ing angle may be changed by modifying the π constant
in (eq. 5).

Such matrices are used for sampling skeleton points in
image space for plane fitting. For each skeleton point a
sampling matrix is selected by taking skeleton distance
into account. Skeleton distance ds(p) is given during
skeletonization by the number of steps after the center-
line point is reached:

N(p) = max(Nmin,min(Nmax, [sNds(p)])) (9)

where Nmin and Nmax denote the minimal and maximal
size parameter of the sampling matrices, sN denote the
scale multiplier for selecting the size. Such selection of
the sampling size enables better adaptation to skeleton
(surface information) density.
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Figure 3: The constructed sampling matrices are sim-
ilar to folded bivariate Gaussian distribution pdfs, but
rotated by θ around the center point. It serves as defin-
ing weights for sampled skeleton pixels but the weights
are also modified by a bilateral filter. li denote layer
skeletons.

In order to estimate the local surface normal we first
estimate the covariance matrix of the sampled skeleton
points.

Σ(θ)=
0.5∑

N
k=1 wk(

∑
N
k=1 wk

)2−∑
N
k=1 w2

k

N

∑
k=1

wk (pk−p0)
T (pk−p0)

(10)
where p0 is the selected center point, pk are the sampled
skeleton points around the center in N radius. The esti-
mation of the cross-variances relative to p0 means that
the algorithm assumes that there are points mirrored to
p0 on the zero side of S(θ). To accept the samples Ns
number of points must be sampled from at least Nl num-
ber of layers.
Weights wk are given by the appropriate element of the
sampling matrix and a scaled difference in depth (Z):

wk = S(θ)i, j · exp(− (Z(pk)−Z(p0))
2

s2
3

) (11)

where Z(p) denotes the range component (z) of a pixel,
s3 defines the weight scale in depth coordinates and the
kth sampled pixel corresponds to the i, jth component
of S(θ).
Next eigenvalue-eigenvector decomposition is applied
for Σ(θ):

Σ(θ) = V(θ)Λ(θ)VT (θ) (12)

The eigenvector of the smallest eigenvalue is selected as
the normal n(θ). The smallest eigenvalue corresponds
to the least significant direction, which is the normal of
the best fitting plane at θ direction:

i∗(θ) = arg min
i=1..3

(|Λi,i(θ)|) (13)

λ
∗(θ) = |Λi∗(θ),i∗(θ)| (14)

n(θ) = V(θ)i∗(θ) (15)

At a given p0 point the normal n∗ is selected which was
estimated with the best fit:

n∗ = n(argmin
θ

(λ ∗(θ)) (16)

By using a-priori information about edges (position and
orientation), the rotation process may be ignored and
the appropriate S(θedge) sampling matrix may be used.
As mentioned in Section 2 other methods exist for nor-
mal estimation, which are based on different error func-
tions. Such methods can be easily integrated with the
sampling technique given in this paper. PCA was se-
lected to provide a baseline algorithm.

3.3 Edge detection
Edge detection in range images differs from how edges
appear in intensity images. Edge types have been sum-
marized in Section 2.

In our previous research [10] we have shown a method
for detection and classification of edges in such dis-
cretized range images. The method was also based on
skeleton extraction. Jump edges were detected by eval-
uating pixel local neighborhood for significant depth
changes and taking quantization levels into account.

In case the range map was acquired using stereo dispar-
ity map, the quantization function is usually not linear,
but may be already known or it can be identified from
the image itself.

For jump edge detection Zth(z) = σdZ(z) is selected
where dZ(z) is the quantization step at given z depth,
σ > 1. Equation

max(Z(p)−Z(p0))
||p−p0||<r

> Zth(Z(p0)) (17)

is satisfied near jump edges on the foreground surface.
To deal with false edges we not only look the adjacent
pixels, but in case of missing data the adjacent side of
the unknown region.

Crease edge detection was based on abrupt changes of
skeleton orientation. Such orientation and distances be-
tween skeletons encode the surface normal as the orien-
tation is a projection of the normal to the xy plane, dis-
tances carry information of the z component. Changes
in the orientation means changes in the normal but not
vice versa. In order to detect all create edges normal
reconstruction is needed.

We also propose a new method for crease edge detec-
tion. For surface normal estimation a rotated bilateral
sampling was used, resulting in a normal function of ro-
tation n(θ). We assume that along planar surfaces the
variance of such function is low, but on crease edges the
variance increases. An edge measure e is introduced as
the mean square error of normals at different rotations:
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e =
1
N ∑

θ∈Θ

(cos−1(n(θ) ·n))2
. (18)

4 RESULTS
In this section results of the proposed algorithm is pre-
sented. Both synthetic and real captured data are evalu-
ated 1.

4.1 Synthetic data
Sample scenes were constructed and rendered with
ground truth data: surface normals were available
directly from the modeling software. Values are
usually estimated for skeleton pixels only but all
pixels are filled in the image according to the closest
skeleton pixel (in image space). This leads to incorrect
visualization in many cases near endpoints of skeletons.

A simple bilateral-type of sampling is used in Figure
4. It can be seen that jump edges are correctly kept,
but crease edges are smoothed. This is normal as the
depth function part of the bilateral weight function still
produces high weights because of relatively small depth
differences on both sides of the edge. The sampling ma-
trix size was adapting to the local density of the skele-
tons.

Figure 4: Normal estimation using PCA and weighting
based on distance in images space and depth. Bound-
aries are mostly kept intact, crease edges are blurred.

Results using the proposed method is shown in Figure
5. Neither boundary nor crease edges were smoothed.
The number of missing normals is very low. Some cor-
ners were smoothed.

Normal estimation error distribution is shown in Figure
6. Evaluating only skeleton pixels shows faster error
fall-off as edges are not smoothed. The forward differ-
ence method shows slower fall-off, while the difference
of the error distribution for all pixels or skeleton pix-
els do not show significant difference. For the proposed

Figure 5: Normal estimation using the proposed
method. Neither boundaries nor crease edges are
smoothed. The number of unestimated normals is min-
imal.

° ° ° ° ° ° ° ° ° °

Figure 6: Normal estimation error distribution. For-
ward difference method is colored gray, proposed sam-
pling method is black. Errors for only skeletons pixels
are shown as solid, for all pixels as dashed lines.

method the distribution for all pixels is similar to the
compared method but still shows less uncertainty.

Identified crease edges are shown in Figure 7. Crease
edges are highlighted very well while object boundaries
are not highlighted due to the bilateral behavior of the
sampling matrix.

Figure 7: Crease edge detection using edge measure
given in equation (18)

1 http://dx.doi.org/10.6084/m9.figshare.1409432
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4.2 Captured data
Data were acquired using the Microsoft Kinect sensor.
In order to simulate even lower number of range lay-
ers the depth resolution was reduced manually. When
observing a surface where the variance in depth direc-
tion is small, the resulting scene may also contain a low
number of layers.

Figure 8 shows the reconstructed normal map of a
captured scene using the forward differences method.
The algorithm could not estimate normals around ob-
ject boundaries due to limited skeleton information near
borders and abrupt changes in skeleton directions cause
incorrect estimates which are rejected. The range im-
age contained only 28 depth layers. Due to noise nor-
mal estimation shows significant variance along planar
surfaces.

Figure 8: Normal estimation based on forward differ-
ence method. Normal estimation failed around object
borders. Crease edges appear smoothed.

Results of the rotated bilateral sampling algorithm is
shown in Figure 9. Edges are preserved and normals
show less variance on planar surfaces. Such smoothing
is due to the higher number of samples used in fitting
compared to the one (or few) skeleton point on adjacent
layer(s).

Estimated crease edges are shown in Figure 10. Due
to noise and the very low number of range layers some
false positive regions appear. Again this evaluation was
run only on skeleton pixels but for visualization pur-
poses data were interpolated using the nearest neighbor
method. Hence the large curved positive regions.

5 CONCLUSIONS
In this paper we have shown a method for surface nor-
mal estimation and crease edge detection. The method
is based on a set of sampling matrices that contain
weights, and are constructed in advance as a function
of size and orientation. Plane fitting is evaluated using
adaptive size for the sampling matrix and also incor-
porating distance weights, similar to bilateral filtering.

Figure 9: Normal estimation based on the proposed ro-
tated sampling and fitting. More edge points are pre-
served.

Figure 10: Crease edge map estimated using the edge
measure. Due to noise and the little number of layers
false positive regions appear.

This step produces a surface normal and a fitting error
measure for each orientation. Simple statistics are used
to select the best fitting plane and to identify a crease
edge score. The method can be easily extended to in-
corporate other fitting methods: such as simple least
squares, or apply two-step methods such as RANSAC.

We have presented examples of the output of the algo-
rithm for both simulation and real data. Results show
significant improvement compared to bilateral filtering
as crease edges are less prone to blurring. We also com-
pared a previously implemented method (forward dif-
ferences between layers) that was used for normal esti-
mation in heavily quantized range images. Although
the proposed algorithm runs slower than the forward
difference method, the results are more accurate: crease
edges are less blurred and normal variation is lower on
planar surfaces and data are estimated for more pixels.
A method for crease edge detection was also presented
based on the output of the normal estimation algorithm.
Future research involves smoothing heavily quantized
range images. Such results can successfully be used
for further range image processing: segmentation, map-
ping, localization, object detection, recognition etc.
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