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ABSTRACT
This paper describes a method for registration and tracking of deformable objects from points clouds taken from
depth cameras. Our method uses a reference model of the object in order to detect rigid and deformed regions
in the input cloud. It is based on the fact that deformed objects normally have areas that are not affected by the
deformations. These parts are found iteratively allowing to register the object using a chain of rigid transformations.
Deformed regions are detected as those that do not satisfy rigidity constrains. Results show that correspondences
of points belonging to both rigid and deformed regions can be accurately established with the reference model even
in cluttered scenes.
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1 INTRODUCTION

The research presented in this paper is motivated by
the need to detected deformations in elastic volumes for
augmented reality applications and mechanical simula-
tions. The field of computer vision already presents im-
portant advances in the tracking of non-rigid surfaces
using monocular images [?]. These methods are usu-
ally based on geometric constraints applied to the ana-
lytical models of the objects to be detected. These mod-
els define the deformable objects as surfaces, and seek
for results that are visually attractive. However, their
physical behaviour involves properties such as elastic-
ity, which affect their mechanical behaviour that cannot
be well modelled with the cited techniques.

In the last years a great research effort has been done
in the field of 3D reconstruction and object tracking
thanks to the emergence of commodity depth cameras.
They can give depth information for image pixels, usu-
ally using infrared technology. These kind of devices
are particularly appropriate for the problem stated in
this work as they allow to obtain a point cloud repre-
sentation of the scene easily in real-time.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

The basis of 3D object recognition involves finding a set
of correspondences between a known reference object
and the reconstructed scene. This problem is ususally
solved under rigidity assumptions that allows register-
ing the scene using an euclidean transformation. How-
ever, in the case of deformed objects the complexity of
the problem increases as there is no a unique transfor-
mation that registers all the scene points with the refer-
ence.

In this work we pose the problem of deformable object
registration as a recursive rigid registration problem. In
our approach non deformed parts of the model are it-
eratively registered, representing the scene as a chain
of rigid transformations. As a result points correspond-
ing to deformed regions can be precisely detected and
matched with the reference object in a straightforward
manner. The main contribution of this method mainly
relies on its simplicity which enables fast and robust
implementations.

The paper is organized in four main sections: the "Re-
lated Work" section introduces the reader in the state
of the art and develop tools, the "Method Overview"
presents the execution pipeline of the method, the "Re-
sults" section is where are performed and discussed
the data obtained, and "Conclusion and Future Work"
shows the conclusion reached and open the following
step in the investigation line.

2 RELATED WORK
The registration of 3D scenes is a well known problem
that can be defined as the alignment of two different
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point clouds representing the same scene. The emer-
gence of depth cameras, such as Kinect, has spawned
new interests in this line during the last years. One of
the most representative works in this area was devel-
oped in [?] describing the techniques that are nowadays
most used to register 3D objects. The main contribu-
tion of this research was a representation of objects as
point clouds based on 3D feature histograms [?]. This
representation describes the local geometry of object
points relative to their neighbourhood that can be used
to match point correspondences between different re-
constructions. The work resulted in an open source li-
brary called Point Cloud Library (PCL) [?].

Most of the research works, like [?] and [?], assume
rigid conditions for the objects to be scanned. Under
this assumption point clouds can be aligned using a sin-
gle euclidean transform. The most common registration
techniques rely on the use of 3D keypoints detectors
and descriptors in order to get correspondences that al-
low to find the transformation.

Some 3D detectors have been developed inspired by 2D
image detectors like SIFT [?]. For now, a small set of
detectors has been proposed specifically for 3D point
clouds and range maps being ISS [?] and NARF [?] the
most representatives.

Concerning descriptors, a commonly accepted taxon-
omy divides the descriptors in local, such as 3DSC [?],
FPFH [?] or SHOT [?]; and global, as CVFH [?], ESF
[?] or VFH [?]. Local descriptors are calculated for
individual points being suitable for handling cluttered
scenes and partially occluded objects. Global descrip-
tors encode the object geometry, having higher invari-
ance and being more descriptive. They are very suitable
for the retrieval and classification of objects with poor
geometric structure.

There are also very relevant advances in the registration
of 3D scenes containing deformable elements. Works
like [?], [?] or [?] illustrate cited procedure based on
iterative minimization techniques. The input data is
aligned with the reference model by minimizing an en-
ergy function that depends on various geometrical con-
straints. The main problem of these kind of methods
is the existence of local minima in the objective func-
tion that cannot be always avoided. Method described
in [?], simultaneously solves correspondences between
points on source and reference clouds using an energy
function that penalizes huge deformations and favours
rigidity and consistency. The method implements a
graph of nodes, whose nodes are chosen by uniform
sampling, and each node have influence over the de-
formation of the nearby nodes. The computational cost
is exponential with respect to the nodes and depends on
the resolution used to generate the graph. The approach
presented in [?], implements non-rigid reconstruction
pipeline on the GPU and his approach include a custom

Figure 1: Detection Flow Diagram has 3 phases (Model
Initialization, Rigid Detection Pipeline and Non-Rigid
Pipeline).

RGB-D camera. The deformations between two scans
are given by ARAP framework [?] that measures defor-
mations existing between a pair of meshes. This type of
registration is not useful when the goal is to detect de-
formations, because they perform deformations in the
corresponding representation during the input data ag-
gregation process.

Our method, unlike [?] or [?], is not based on iterative
minimization frameworks. Instead we rely on simpler
point correspondences that, besides simplicity, allow to
avoid local minima as we can directly obtain the in-
volved transformations once point correspondences are
found.

3 METHOD OVERVIEW
The method proposed is designed to detect the defor-
mations on the surface of the object. Given a refer-
ence model and the objects found in the scene, the
method detects correspondences between the reference
model and the model found in the scene, including un-
deformed and deformed regions. Figure 1 illustrates,
the detection flow, divided in three phases. In the first
phase, the reference model is initialized; in the second
phase, the rigid regions considered as undeformed re-
gions are detected; in the third phase, the non rigid
regions considered as deformed regions are detected.
The internal representation of the real world is based
on point clouds, without edges.

In the initialization phase, the 3D keypoints of the
model and their descriptors are computed from its point
cloud representation. With the reference model initial-
ized, the tracking is performed using a sequence of 3D
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scans of the state of the scene as input. In the rigid de-
tection phase, following the same procedure as in the
initialization, the keypoints and descriptors are com-
puted from the point cloud of the scene. Once the
3D keypoints and descriptors are computed, the key-
points are matched between the reference model and
the scene, based on their descriptors information. Then
all the correspondences are grouped in order to clus-
ter the set of correspondences into instances that are
present in the scene. An instance is defined as a sub-
set of keypoints of the reference model matched with
scene keypoints that satisfy a geometric consistency
with the reference model. The best instance is used
to calculate a rigid transformation to seek points cor-
responding to undeformed regions. With all the unde-
formed regions, the non-rigid detection phase is started
with the non-matched points from the previous phase
as input. Points of deformed regions are transformed
with the best rigid transformation obtained in the previ-
ous phase. After applying the transformation, a radius
search is executed to find for each non-matched point
of the reference model the corresponding point in the
scene.

The following subsections explain the phases in more
detail.

3.1 Model Initialization
The reference model is represented as a point cloud. It
can be loaded from a CAD or captured from a 3D scan-
ner, provided that it is undeformed. The initialization
process consists in the selection and computation of a
set of keypoints and their descriptors from the cloud.

In order to obtain a good representation which enables
a stable tracking, it is important to perform a proper se-
lection of keypoints. There are well known detectors
such as ISS and NARF which use the gradient of the
surface around the vicinity to detect representative key-
points. Although there are good candidates to perform
the matching of rigid surfaces, they are not appropriate
to deformable models because the surface gradient is
not invariant.

For this reason, a uniform downsampling is used in or-
der to obtain the keypoints. Although this approach is
not the best choice for rigid models, it works well with
deformable models since it ensures a good distribution
of keypoints along the surface of the object.

Once keypoints are selected SHOT descriptors are used
to define each keypoint. SHOT descriptor shows a good
balance between recognition accuracy and time com-
plexity [?]. The SHOT descriptor encodes information
on the topology of the surface in an area that stores in-
formation about the neighbourhood of a point. The area
is divided into 32 bins, with 8 divisions along the az-
imuth, 22 along the elevation and 2 along the radius.

Figure 2: a: Reference model with all points as key-
points b: Scene that contains the reference model sam-
pled with uniform downsampling to choose the key-
points. The keypoints are colored in blue.

Figure 3: Two possible transformations corresponding
to two instances of Fig.2(a). The purple transformation
fit better than the brown transformation.

3.2 Rigid Detection Pipeline
The rigid detection pipeline starts with extraction of the
keypoints and descriptors of the scene. This process is
done using the same method as in the model initializa-
tion, i.e. using a uniform downsampling. But, in this
case the frequency of the sampling is lower because of
performance reasons (Figure 2 ).

Once the 3D keypoints and descriptors are computed,
the descriptors are used in order to match the keypoints
of the current scene and the keypoints of the reference
model. All the correspondences obtained are grouped
into subsets or instances. These instances are built en-
forcing geometric constraints between pairs of corre-
spondences [?]. If there are not enough matches to
allow a correspondence grouping, the scene is down-
sampled again iteratively increasing the sampling fre-
quency.
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After obtaining the set of instances, a rigid transforma-
tion is obtained from the instance with the higher num-
ber of correspondences (see Figure 3). The rigid trans-
formation is computed as in [?]. It can be computed
with a minimum of three points to obtain the position
and orientation with 6 DOF.

This result is used to partially register the scene with
the reference. However, points not belonging to the se-
lected instance may still not be aligned if the scene has
deformations. In order to detect this situation an inlier
test is performed using the distance between the points
of the partially registered scene and their correspon-
dences in the reference model. For points classified as
outliers the registration process is executed again itera-
tively. This approximation is very effective to represent
those deformations which can be expressed as chain
of rigid transformations. The iterative process stops
when a maximum number of iterations is reached, or a
fixed percentage of correct matches is obtained. These
thresholds are configured depending on the particular
problem domain, the number of deformations and the
result of the deformation.

3.3 Non-Rigid Detection Pipeline
When the stop criteria is reached, the non-rigid detec-
tion phase begins with the non-matched points from the
rigid detection phase as input. In this phase, the trans-
formation of the best set of correspondence grouping is
used to register deformed points near from correspond-
ing points in the scene. So, this transformation is a first
approximation to the place where finally the deformed
points could be localized in the scene.

With the first approximation performed, a radius search
is executed for each non-matched point. The search
is based on a threshold used as max distance between
each reference model point and its corresponding scene
point. The point of the scene closest to each searched
point of the reference model, is taken as correspondence
of the point. In addition, only non-matched points of
the reference model and scene are used for the phase of
non-rigid detection. The rest of the points are not tak-
ing into account for this phase. It improves the point
search time and reduces the possible false positive in
the matching process.

4 RESULTS
In this section we present a set of three experiments that
show the results obtained using the proposed method.
The experiments are divided into two groups: syn-
thetic experiments that measure the accuracy and per-
formance of the proposed method under controlled con-
ditions using cad models, and not synthetic experiments
that are focused to evaluate the method using models
and scenes obtained with depth sensors. The solution
used to obtain the models and scenes to the last group

Figure 4: a: Reference model without deformations b:
Detail of the candidate region to be deformed corre-
sponding to the model c: Detail of the deformed region
corresponding to the model

is Structure Sensor for mobile devices [?] with a sim-
ple 3D scanner. For all the experiments, only the point
cloud corresponding to the vertices of the models and
scenes are used in the method.

The experiments have been performed in a computer
with Intel Core i5 3.2GHz, 8 GB of RAM DDR3
665MHz and Windows 8 64 bits operative system.

4.1 Synthetic Experiments
In the first experiment, the performance is evaluated us-
ing the model in Figure 4 (a). The model has 11798
points. The same model with a translation in one axis
and two rotation in different axes is defined as model to
be detected, so that the two models are misaligned. The
aim is measuring the used time in the different detection
tasks. The five main task involved in the process of de-
tection are normal computation, sampling, descriptors
computation, correspondences computation and corre-
spondence grouping. Figure 5 shows the times for the
different tasks against the sampling factor. The sam-
pling factor is steadily reduced by 20% in each test,
thereby increasing the number of keypoints used for the
detection process.

The main execution time corresponds to the correspon-
dences computation task. The normals computation
task and the sampling task are constant with very
low cost in terms of time. Moreover the descriptors
computation, correspondences computation and cor-
respondence grouping tasks increase proportionally
to the number of points and therefore inversely to
sampling factor.

For the second experiment, the model with the defor-
mation in Figure 4 is inserted in a cluttered scene (see
Figure 6). The scene is translated in one axis and is
rotated twice in different axes to produce a misalign-
ment with the model. Different level of noise is applied
to each dimension of the 19836 points (see Fig6(a,b)).
The noise has a uniform distribution between -1 and 1
that is multiplied by a maximum displacement for each
intensity level of noise.
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Figure 5: Time of five main task involved in the process of detection

Figure 6: a: Original Scene (without noise) b: Scene
with random noise in the vertices

Figure 7 shows the characterization of the different
points in rigid or non-rigid region. The 0 column is
the reference case with 11579 points corresponding to
the rigid region and 189 point corresponding to the non-
rigid region. The classification errors measure the num-
ber of points incorrectly classified respect to the refer-
ence case. The max displacement of each level of noise
introduced to the scene is a percentage of the unit world
(average distance of all points to its closest point) fixed
in 0.0060702.

In most cases, the characterization of the point in rigid
or non-rigid is correct and hence the matches are cor-
rect. Only the case with the 18% of the max displace-
ment of the noise presents high classification errors,
however the obtained matches are correct. Thereby the
characterization of points which are wrong classified is
incorrect but the matches obtained are correct.

The experiments with random noise demonstrate how
robust the method is. While the models preserve the
surface, it is possible to determine the deformation be-
tween the reference model and the scene with a reason-
able error due to the noise.

Figure 7: Characterization of the scene (Fig.6(a)) points
in rigid or non-rigid with different percentage of word
unit (0.0060702) used as max distance in each level of
noise

4.2 Not Synthetic Experiments
The next set of experiments are performed to identify
deformations using Structure Sensor to capture the ref-
erence model and the scene. The reconstructions ob-
tained present noise but preserve the topological infor-
mation of the object upon which the detection will be
run. The following set of experiment is performed un-
der the cited assumption.

As a general rule for the figures in the section, the green
model represents the reference in the experiments. The
blue lines, show a representative subset of the corre-
spondences detected. A representative number of cor-
respondences, and not all, are drawn for better visual-
ization of the correspondences in the experiments.

Figure 8(a, b) shows the acquired pillow model used as
reference. In this case a soft pillow is used. On the other
hand, Figure 8(c,d) shows the second acquired pillow
model with a deformed region produced by a force ap-
plied in the centre of the pillow.
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Figure 8: a,b: Reference model without deformations
c,d: Model with deformed regions e: Reference model
with the deformed region in red color and undeformed
region in green f: Rigid correspondences f: Non-rigid
correspondences

The method detects the deformed and undeformed re-
gions (see Fig.8(e)), using as input the pillow reference
model from Figure 8(b) and the second model from Fig-
ure 8(d). For each point of undeformed region (see
Fig.8(f)) and for each point of deformed region (see
Fig.8(g)), the correspondences between reference and
the model are calculated. The green points of the pillow
in Figure 8(g) represent the points of the scene detected
as corresponding points of the deformed region. The
execution time is about 4.55 second using 2067 key-
points of 10336 points of the reference model and 2654
keypoints of 10380 points of the second model.
Using the same reference model as in the previous
experiment, the experiment is performed in cluttered
scene (see Fig.9(a,b,c,d)). Figure 9(a,b) shows the state
of the scene before the pillow deformation, and Figure
9(c,d) shows the state of the scene after the pillow de-
formation performed in the centre of it. The reference
model has been segmented from the reconstruction ob-
tained in Figure 9(b).
The distinction between deformed and undeformed is
displayed in Figure 9(e). The point matching for unde-
formed regions are shown in Figure 9(f) and the de-
formed regions in Figure 9(g). The execution takes
about 5.48 seconds using 2425 keypoints of 6015 points
of the reference model and 2926 keypoints of 14478
points of the scene.

4.3 Discussion
The sampling for the model and the scene directly in-
fluences in the time execution and in conjunction with
the threshold used in the rigid detection pipeline are
main sensible parameters. Both determine the good-
ness of the result and depend on the resolution and on
the characteristic topology of the reference model. Bad
parametrization of the values produces bad characteri-
zation of the some points like deformed points, but nev-
ertheless the match between the reference model and
the scene is good.
The proposed method does not work with full deforma-
tion or greatly exaggerated deformations and fails if it is

Figure 9: a,b: Reference model without deformations
in a cluttered scene c,d: Model with deformed regions
in a cluttered scene e: Reference model with the de-
formed region in red color and undeformed region in
green f: Rigid correspondences f: Non-rigid correspon-
dences

folded upon itself. It is necessary a region undeformed,
large enough compared to the reference for searching
the possible deformed regions. Also fails with mod-
els that are not topologically characterizable or without
enough surface characterizable. An pragmatic example
of this case is a sphere. It is impossible to know which
points have been exactly deformed because any section
of the surface is identical to any other section of the
sphere.

When the objects present joints also can be approached
as a chain of transformations (see Fig.10). In Figure
10, the reference model has two deformation produced
by two rotations in two different parts of the humanoid,
one in the waist and other one in the left elbow of the
humanoid (see Fig.10(a,b)). In Figure 10(c), the two
deformations respect to the reference model are de-
tected and their corresponding points are matched in
Figure 10(d).

In general the execution time is less than 1 second when
the sampling factor is not too small and it increases the
number of keypoints in the detection process. Thereby
it might be possible the real-time execution, selecting
the suitable values for the sampling factor and rigid de-
tection threshold.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we have presented a 3D registration
framework for deformable object tracking that can
easily detect rigid and deformed regions. We propose
the use of correspondence grouping that allows to
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Figure 10: a: Reference model without deformations
b: Model with deformed regions c: Reference model
with the deformed region in red color and undeformed
region in green d: Non-rigid correspondences

obtain a chain of rigid transformations for undeformed
regions. This solution allows detecting deformed
regions in a straightforward manner using a simple
radius search. By this way, each point of the deformed
region is matched with the closest point in the reference
scene.

Unlike the solutions found in the state of the art, our
approach relies in a simple 3D point correspondence
strategy that allows converging fast and at the same time
avoiding local minima.

Experiments have shown that the method behaves prop-
erly in cluttered scenes and it is particularly suitable
for point clouds captured using commodity depth cam-
eras. Moreover, the set of experiments performed in
an uncontrolled environment proves the validity of the
method. The method make it possible to isolate the
undeformed regions and search for the deformed re-
gions. Additionally, the set of experiments concerning
to the chain of deformations shows that it can be suit-

able to obtain a chain of rigid transformations wherever
needed.

As future work it is planned to extend the method
integrating a frame-to-frame tracking strategy. This
would allow to get a more stable and faster conver-
gence, avoiding to compute in each frame all the point
correspondence grouping. Moreover it would also
make it easier to filter the input cloud detecting more
outliers.

Finally, the work exposed is the first step in the devel-
opment of a system for modelling elastic objects us-
ing physical mass-spring simulation techniques. Once
completed, the registration could be further improved
introducing mechanical constraints to the proposed in-
stance grouping algorithm.
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