
Unlimited Object Instancing in real-time

Szymon Jabłoński
Institute of Computer Science

Warsaw University of Technology
ul. Nowowiejska 15/19
00-665 Warsaw, Poland
s.jablonski@ii.pw.edu.pl

Tomasz Martyn
Institute of Computer Science

Warsaw University of Technology
ul. Nowowiejska 15/19
00-665 Warsaw, Poland

martyn@ii.pw.edu.pl

ABSTRACT
In this paper, we propose a novel approach to efficient rendering of an unlimited number of 3D objects in real-time.
We present a rendering pipeline that is based on a new computer graphics programming paradigm implementing
a holistic approach to the virtual scene definition. Using Signed Distance Functions (SDF) for a virtual scene
representation, we managed to control the content and complexity of the virtual scene with the use of mathematical
equations. In order to solve the limited hardware problem, especially the limited capacity of the GPU memory,
we propose a scene element repository which extends the idea of the data based amplification. The content of
the repository strongly depends on a 3D object visualization method. One of the most important requirements
of the developed pipeline is the possibility to render 3D objects created by artists. In order to achieve that, the
object visualization method uses Sparse Voxel Octree (SVO) ray casting. The developed rendering pipeline is fully
compatible with the available SVO algorithms. We show how to avoid occlusion errors which can occur in the
SDF and SVO integration single-pass rendering pipeline. Finally, in order to control the content and complexity
of the virtual scenes in an unlimited way, we propose a collection of global operators applicable to the virtual
scene distance function. Developed Unlimited Object Instancing rendering pipeline can be easily integrated with
traditional visualization methods, e.g. the triangle rasterization. The only hardware requirement for our approach
is the support for compute shaders or any GPGPU API.

Keywords
Computer graphics, voxel rendering, sparse voxel octree, signed distance function, instancing, data based amplifi-
cation, holistic programming paradigm, procedural graphics, level of detail

1 INTRODUCTION
Signed Distance Functions (SDF) derive from fractal
theory and their application to computer graphics orig-
inated with a method of ray-tracing quaternion Julia
sets [Hart89]. Among others, the paper showed that
SDF relatively simple equations can represent highly
detailed, complex geometry. This opened the door to
modeling and rendering very complex virtual scenes.
Unfortunately, the limitations of the then hardware did
not allow for the full use of the new approach. Ex-
cept for the Julia sets, SDF-based modeling and visu-
alization methods were usually limited to virtual scenes
consisting of only basic primitives and relatively simple
isosurfaces. In this paper, we present an algorithm that
significantly extends the idea of SDF based visualiza-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

tion in combination with the Sparse Voxel Octree 3D
object representation.

One of the most common indicators used to evaluate
the quality of the computer graphics is the virtual scene
complexity. In order to achieve realistic rendering re-
sults, the virtual scene must be represented as a collec-
tion of high-resolution 3D objects with detailed geome-
tries and materials.

In order to render complex scenes containing numer-
ous high-resolution 3D objects in real-time, the ren-
dering pipeline should be based on the three important
types of algorithms. The first one refers to the virtual
scene management. In order to process culling oper-
ations (e.g. the frustum inclusion test) in an efficient
way, we need to organize the scene using some sort of a
hierarchical spatial structure [Cao10]. The second type
of an algorithm deals with the level of detail (LOD)
management [Lueb02]. Using defined LOD evaluation
functions, we can select which visible objects should be
rendered with higher LOD and which could be rendered
without some details. Finally, the third type of an algo-
rithm is an instancing algorithm that is used to render
many instances of objects stored in the GPU memory

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2702 Computer Science Research Notes
http://www.WSCG.eu

Short Papers Proceedings 91 ISBN 978-80-86943-50-3



usually along with an affine transformation and material
parameters associated with each instance [Suther63].
Thanks to the constantly increasing computation power
and memory capacity of today’s GPUs, we can process
and render more and more polygons per frame. At the
same time, however, the complexity of objects in vir-
tual scenes is also increased. It means we must improve
the algorithms, which are used in computer graphics en-
gines, so as to increase the complexity of virtual scenes.
In this paper, we present a novel approach to an efficient
real-time rendering of a potentially unlimited number
of 3D objects. By using Signed Distance Functions for
the virtual scene representation, we extend the idea of
the object instancing. Thanks to the SDF representa-
tion integrated with Sparse Voxel Octrees (SVO), we
are able to render as many 3D objects created by artists
as we want in real-time. The foundation of the devel-
oped algorithm is a novel computer graphics paradigm
which we called Holistic Graphics Programming. By
redefining the notion of the virtual scene, we developed
a method for the virtual scene LOD management for
an unlimited number of 3D object—Unlimited Object
Instancing rendering pipeline (UOI).

2 RELATED WORK
There is a wide selection of literature about each
mentioned component of the developed UOI rendering
pipeline.
Over the years, many methods of the scene represen-
tation, LOD management and object instancing have
been developed. Also, there are many papers on the
Signed Distance Functions and Sparse Voxel Octrees.
However, there is no related work in the context of UOI
rendering pipeline algorithms that can be created by
integrating this idea with the holistic approach to the
scene representation, particularly in the context of visu-
alizing 3D objects created by artists. Therefore, below
we focus mainly on papers that are directly related to
each component of our approach.
As mentioned in the introduction, the most common
method to increase the complexity of the virtual scene is
the object instancing [Suther63]. The object instancing
is quite an old approach that can be placed in the con-
text of various visualization methods. The main idea
of the instancing is a compression of the virtual scene
description. Instead of storing an information about the
geometries of all instances of a given object in the scene
separately (e.g., of each tree in a forest scene), it is pos-
sible to store only the geometry data of a single object
and an additional buffer for the data that individualizes
the instances once they placed in the scene (e.g., trans-
formations that define the localization, size and orien-
tation of an instance in the world coordinates).
Deussen et al. presented a great example of how
to exploit the instancing approach to create realistic

plant ecosystems in non-real-time graphics en-
gines [Deussen98]. The geometry instancing approach
is very popular for creating realistic botanical scenes
due to the nature of plant structure with numerous
similar elements [Snyder87, Hart91, Hart92, Kay86],
and is commonly utilized in computer games. Using
the instancing approach it is possible to render many
instances of a given source object. However, in order
to create a realistic, highly detailed virtual scene,
each instance should have unique attributes. For this
goal the data based amplification approach can be
used to procedurally generate a variation of instances.
Procedural noises and random functions can also be
used to create unique, detailed variations of instances
objects on the fly.

The modern GPU APIs offer a hardware-accelerated
functionality for instancing geometry in real-time. Mar-
tyn showed how it can be utilized in the context of the
self-affine geometry of IFS for real-time visualization
of fractals [Martyn10]. Nevertheless, virtual scene ren-
dering with the geometry instancing is limited to low-
poly objects in real-time. It can still be used to render
botanical scenes in an efficient way, but there is a prob-
lem to process many instances of high-resolution ob-
jects in real-time even by means of today’s GPUs. The
reason is that the geometry instancing with the trian-
gle rasterization pipeline is limited by the object-space
computation complexity.

Signed Distance Functions are widely used in
the computer graphics from modeling and vi-
sualization of fractals [Reiner11], soft shadow
generation [Wright15, Keinert14] to the font render-
ing [Green07]. One of the first paper that utilized
this method of an object representation in the con-
text of visualization was [Hart89]. It presented the
idea of unbouding volumes which were used to
ray-trace quaternion Julia sets. The idea was later
extended by Hart et al. into the so-called Sphere
Tracing [Hart94, Hart97].

Given an object represented by the distance function,
sphere tracing relies on an iterative traversing a ray
from the eye through the projection plane towards the
object. For each iteration, we calculate an SDF esti-
mated distance to the object, and if the estimation is
smaller than a predefined value, the ray is considered to
hit the object.

For a single primitive object like AABB, the classic
ray–AABB intersection test will be much faster, be-
cause there is no need to perform many distance estima-
tions presented in sphere tracing. However, SDF func-
tions can be used to create highly detailed procedural
objects using SDF primitives with boolean operators.
Reiner et al. presented an introduction to an interac-
tive SDF ray marching pipeline with a procedural ob-
ject generation based on domain operations [Reiner11].

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2702 Computer Science Research Notes
http://www.WSCG.eu

Short Papers Proceedings 92 ISBN 978-80-86943-50-3



In the context of our work, the a most interesting op-
eration that can be applied to distance functions is the
object repetition generated by the modulo function in
either controlled or unlimited manner.

Thanks to the increased computation power of today’s
GPUs and newly developed Sparse Voxel Octree al-
gorithms, the high-resolution voxel-based representa-
tion is now ready for real-time applications. Due to
the screen-space computation complexity of the SVO
rendering pipeline, numerous high-resolution 3D ob-
jects can be processed in real-time using instancing ap-
proach. Cyril Crassin was able to perform visualization
of the global illumination using SVO and voxel cone
tracing [Crassin11]. There are also a few promising im-
plementations of efficient ray tracing of SVO [Laine10]
and even object animation, deformation and fracturing
in real-time [Bau11, Wil13, Domaradzki16]. For that
reason, the utilization of the SVO-based representation
seems to be a very promising solution for modeling and
visualization of 3D high-resolution objects. Moreover,
SVO offers a continuous and symmetrical method of
the LOD transition without any visible transition arti-
facts [Jab16].

3 UNLIMITED OBJECT INSTANCING
In this section, we describe requirements of the UOI
rendering pipeline in real-time. Keeping in mind the
hardware limitations like the limited capacity of the
memory or the computation precision, we need to
start with the proper definition of the UOI rendering
pipeline.

3.1 Unlimited Object Instancing defini-
tion

For the purposes of this work, the requirements and fea-
tures of the UOI rendering pipeline are defined as fol-
lows:

• A real-time rendering pipeline that is able to process
and render an unlimited number of objects in the vir-
tual scene. If it is possible to store a 3D object in the
GPU memory and render it in real-time, it should be
possible to store and render potentially unlimited in-
stances of this object with unique variations without
any noticeable performance hit or memory require-
ments increase.

• The possibility of visualizing 3D objects which were
created by artists.

• A continuous and symmetrical LOD management of
the virtual scene.

Considering the requirements above, it may seem that
the most serious development obstacle is the hardware
limitation. However, in our opinion, this is not the main
problem. Computer hardware is and, presumably, will

always be limited. In order to develop the UOI render-
ing pipeline, it’s necessary to change the current com-
puter graphics programming paradigm, for example, by
applying the holistic approach to the definition of the
virtual scene.

However, before we present the idea of the UOI render-
ing pipeline, we analyze some possible, naive designs
that could be created using the available algorithms.
Doing so, one can exclude algorithms and structures
that cannot be used in the context of the proper imple-
mentation of the Unlimited Object Instancing pipeline.

3.2 Naive Unlimited Object Instancing
For the polygonal representation of geometry, the hard-
ware instancing functionality, which is implemented in
all modern GPUs, can be used. On the other hand, for
a rendering pipeline that offers screen-space computa-
tion complexity like e.g. ray-casting, the software in-
stancing approach can be used to render numerous in-
stances of 3D objects. Both methods can be used to
render many instances of a given collection of 3D ob-
jects. However, memory requirements for the virtual
scene description would be increasing significantly be-
cause of the need of storing a unique data for each in-
stance (e.g. model-to-world space transformations).

The second possibility is to store the whole scene in a
single spatial structure like e.g. Sparse Voxel Octree.
Using the DAG algorithm it is possible to store and
render a scene object represented by a high-resolution
grid (even of 1283 resolution) [Kampe13] in real-time.
The high-resolution scene grid could be also used as a
virtual scene description. Then, 3D objects instancing
could be used. However, none of them could be directly
used to develop the proper UOI Instancing rendering
pipeline.

3.3 Issues with classic paradigm
In all modern games and virtual simulations taking
place in a 3D world, the virtual scene is defined as a
collection of objects. In order to process and render a
complex scene based on such a paradigm, it is neces-
sary to check out which 3D objects are visible from the
current point of view. Moreover, to execute the frus-
tum visibility and occlusion tests in an efficient way, it
is necessary to organize the objects implementing some
sort of a hierarchical spatial structure.

This standard approach to the scene representation de-
fines the classic real-time computer graphics program-
ming paradigm. For the purpose of our work, we called
it the Object-Based Graphics Programming. The main
features of this programming paradigm are:

• A virtual scene is defined as a collection of 3D ob-
jects.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2702 Computer Science Research Notes
http://www.WSCG.eu

Short Papers Proceedings 93 ISBN 978-80-86943-50-3



• The visibility and occlusion tests are executed to
classify objects to render.

• Hierarchical spatial structures are used to organize
the virtual scene and to increase the performance of
visibility tests.

Due to hardware limitations, it is neither possible to
store an unlimited collection of objects in the memory
nor to perform the visibility tests for all of them. In or-
der to develop the UOI rendering pipeline, we need to
change the computer graphics programming paradigm
to the paradigm which we called the Holistic Graphics
Programming.

4 HOLISTIC UNLIMITED OBJECT IN-
STANCING

The foundation of the UOI rendering pipeline is the
holistic approach applied to the virtual scene definition.
In the holistic architecture, we replace a collection of
objects with a single object—just the virtual scene ob-
ject. By controlling the LOD of the virtual scene ob-
ject, we will control the content and complexity of the
scene regarded as a single entity, processing potentially
an unlimited number of objects.
The example of the holistic approach can be found in
a few popular computer graphics algorithms. A great
example is the procedural terrain rendering, especially
when considered in the context of its local LOD man-
agement. Using tessellation shaders, the geometrical
complexity of the terrain geometry can be locally in-
creased or decreased by controlling a tessellation factor
for each patch of the terrain independently. The similar
approach is used in the holistic UOI rendering pipeline
to control the LOD of a scene.
The UOI rendering pipeline we developed is based on
the following four components:

1. Graphic asset repository
2. Virtual Scene representation
3. 3D object visualization
4. Global operators collection

4.1 Graphic asset repository
The Graphic asset repository contains a collection of
all visual ingredients which the scene is composed of.
In order to render the scene in real-time without using
the data streaming functionality, all visual assets like
3D geometries and materials need to be stored in the
GPU memory. The type and format of this data depend
on the visualization method. In our implementation, by
default, it is a collection of SVOs and textures.
Due to the limited memory capacity of GPUs, the
repository contains a finite number of elements. Then,
using the instancing approach with a data amplifica-
tion method, the elements are rendered with unique
variations, creating a complex, detailed virtual scene.

4.2 Virtual scene representation
The second component of the UOI rendering pipeline is
the way we apply the holistic approach to the scene rep-
resentation. In the proposed solution, we have imple-
mented it by means of Signed Distance Function—the
whole scene is represented by a signed distance func-
tion.

Since we use SDF, it is possible to create a highly de-
tailed complex scene from primitive distance functions
along with boolean operators. For the purpose of this
work, we do not use complex distance functions, and
the basic scene element is defined as the distance func-
tion for the cube primitive:

d = length(max(abs(p+o)−b),0) (1)

where:

d = distance to the object
p = point on ray from the eye
o = offset from scene origin
b = cube size

Using the SDF ray marching, we can generate cube
primitives efficiently. After that, each cube primitive
could be replaced with the 3D object represented by the
SVO. On the basis of the resulting nearest ray-cube in-
tersection, we can easily calculate a ray stop position
for the SVO ray casting.

Fig. 1 presents rendering results of a virtual scene rep-
resented by a distance equation with a single SDF com-
ponent.

Figure 1: Ray marched SDF based virtual scene with a
single SDF component. Rendered cube is shaded with
calculated ray cast start position. 590 FPS with Nvidia
GeForce GTX 660.

In order to add other elements to the scene, we can ex-
tend the global scene distance function by adding next
SDF components to the virtual scene SDF equation.

For each component of the virtual scene equation, we
have to calculate the value the component’s SDF at the
current iteration and process a minimum function per
the ray marching iteration.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2702 Computer Science Research Notes
http://www.WSCG.eu

Short Papers Proceedings 94 ISBN 978-80-86943-50-3



In the case of the virtual scene with three SDFs rep-
resenting smaller and smaller objects in the scene, the
distance equation can be expressed as follows:

d0 = length(max(abs(p+o0)−b0),0)
d1 = length(max(abs(p+o1)−b1),0)
d2 = length(max(abs(p+o2)−b2),0)

d = min(min(d0,d1),d2)

(2)

where:

d = distance to the object
d0,d1,d2 = distance to SDF component 0,1,2
p = point on ray from the eye
o0,o1,o2 = SDF component offset from scene origin
b0,b1,b2 = scene SDF component 0,1,2 cube size

Fig. 2 presents rendering results of a virtual scene rep-
resented by a distance equation with three SDFs.

Figure 2: Ray marched SDF based virtual scene with
the three SDF components. Rendered cubes are shaded
with calculated ray cast start positions. 490 FPS with
Nvidia GeForce GTX 660.

Obviously, the calculation of the unlimited number of
minimum functions is impossible on the limited hard-
ware. However, thanks to the simplicity and flexibil-
ity of the function-based scene representation, we are
able, in theory, to handle the unlimited number of scene
SDFs. It is possible because there is no need to store
a large scene data in the GPU memory. That means,
that the whole scene description of the highly complex
virtual scene can be saved as a simple equation which
makes the UOI rendering pipeline possible.

4.3 3D object visualization
Thanks to the use of distance functions as virtual scene
equation components it is possible to create complex
procedural objects. However, one of the main require-
ments of the developed rendering pipeline is the ability
to visualize 3D objects created by artists. To achieve
this goal, the cube primitives acquired from the SDF are
replaced with the SVO-based 3D object. Moreover, we

can use any available SVO algorithm for shading, ob-
ject deformation and LOD management. In the imple-
mented Unlimited Object Instancing rendering pipeline
framework, we used a simple SVO ray casting.
Fig. 3 presents rendering results of the virtual scene rep-
resented by distance equation with the three SDF com-
ponents with SVO based object ray casting.

Figure 3: Ray marched SDF based virtual scene with
the three SDF components integrated with SVO based
3D object ray casting. 220 FPS with Nvidia GeForce
GTX 660.
The main problem related to the integration of SDF
with SVO are potential occlusion errors. For SDF-
based virtual scenes utilized in the "standard" way, ray-
object intersection and occlusion errors would not hap-
pen.
If we want to replace SDF-based AABB boxes with
SVO 3D objects, we may face the situation that a ray
hits an AABB box but it misses an included SVO ob-
ject. The details of our occlusion fixing solution are
described in Sec. 5.

4.4 Global operator collection
The last component of our UOI rendering pipeline is
the Global operator collection which is used to con-
trol the content and complexity of the scene in the spirit
of the holistic paradigm. In order to create a complex
scene by using a finite collection of the scene elements,
global functions are applied to the SDF scene function.
As mentioned before, one of the main features of the
SDF functions is the possibility of multiplying objects
by modifying primitives’ distance functions.
The base operator that is used to obtain an unlimited
number of instances per SDF component is the Instanc-
ing Operator. With the SDF-based object representa-
tion, using the modulo function it is possible to create
objects in a controlled or unlimited way. The cube dis-
tance function 1 can be extended with Instancing oper-
ator as:

cell = f loor((p+ size∗0.5)/size)

p = mod(p+ size∗0.5,size)− size

d = length(max(abs(p)−b),0)
(3)

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2702 Computer Science Research Notes
http://www.WSCG.eu

Short Papers Proceedings 95 ISBN 978-80-86943-50-3



where:

cell = object instance grid cell
size = repeat interval
d = distance to the object
p = point on the ray
b = cube size

Instancing operator can be applied in any dimension,
creating a 1D/2D/3D grid with the instanced cube ob-
jects. An important feature of the repetition function
is that we acquire the cell id of every generated object.
This information is then used by the all remaining op-
erators as a unique input for the noise algorithms. In
addition, we take advantage of the information to fix
the occlusion errors. Fig. 4- 5 present rendering results
of the virtual scene with applied Instancing operator.

Figure 4: 2D Instancing operator applied for the single
SDF component virtual scene. 215 FPS with Nvidia
GeForce GTX 660.

Figure 5: 3D Instancing operator applied for the single
SDF component virtual scene. 160 FPS with Nvidia
GeForce GTX 660.

As one can see in the figures 4 - 5 Instancing opera-
tor does not cause any noticeable performance loss re-
gardless of the instancing dimension or a number of in-
stances present in the scene.

Following the holistic approach, Global operators are
applied to the whole scene. It means that we cannot
control each object on the virtual scene independently.

Based on the operator’s features, the developed Global
operators have been classified into two groups.

4.4.1 Object operators
Object operators are used to control geometry and ma-
terial data of the generated objects. Using the cell id
acquired from the instancing operator as an input to the
procedural noise algorithm (e.g. Perlin/Simplex noise),
we can apply unique variations to generated objects.
We have developed the following Object operators:

1. Object type operator—to choose an SVO data
buffer which is used in the visualization algorithm.

2. Material type operator—to apply unique values
for the objects material (e.g. albedo, roughness,
metalness values).

3. Existence operator—the most advanced operator in
the group. Using a noise function with the user in-
put and features of the SDF representation, we can
control the existence of generated objects. It is im-
plemented by dynamically creating a new SDF ele-
ment and performing the boolean subtraction from
the virtual scene distance function. Also, if an SDF
cube intersects another one it must be added to the
final distance function with the boolean union oper-
ator. The same algorithm is used to fix the occlusion
errors (see Sec. 5).

4.4.2 Transformation operators
The second group of the operators is used to apply an
affine transformation to each generated object. We de-
veloped the following Transformation operators:

1. Translation operator—used to apply a translation
transformation.

2. Scale operator—used to apply scale transforma-
tion.

3. Rotation operator—used to apply rotation transfor-
mation.

All Transformation operators are limited to the bound-
aries of the SDF component grid cell.

5 IMPLEMENTATION DETAILS
In this section, we describe important implementation
details of our UOI rendering pipeline. We have imple-
mented our method using OpenGL 4.5 API with C++14
but any other graphics interface or programming lan-
guage can be used. All included shader source code
listings are prepared in GLSL language. Due to the
simplicity of SDF ray marching with sphere tracing, the
presented approach can be easily implemented and inte-
grated into all popular game engines. The only require-
ment is the support for programmable compute shaders.

5.1 Virtual scene visualization
The virtual scene visualization is directly based on clas-
sic SDF ray marching. The main extension is that in

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2702 Computer Science Research Notes
http://www.WSCG.eu

Short Papers Proceedings 96 ISBN 978-80-86943-50-3



order to solve a potential occlusion error, ray marching
is executed multiple times. Therefore, we need to take
the previous hit distance into account and add it to the
ray marching start position in the next iteration. Also,
for an SVO-based 3D object rendering it is necessary to
calculate the volume ray casting start and stop positions
so as to perform SVO ray-casting. Listing 1 presents a
simplified, SDF with SVO rendering pipeline compute
shader code.

struct HitResult {
vec3 cell;
float distance;
int lod;
int material;

};

HitResult RayMarch(vec3 origin,vec3 direction) {
HitResult hit;
float distanceDelta = Near + OcclusionDelta;
float travel = 0.0;
vec3 position = origin;

for(int i = 0; i < RayIterations; ++i) {
position = position + direction * distanceDelta;
hit = ObjectCube(position, size, lod, material);
HitResult hit2 = ObjectCube(position, size2,

lod2, material2);

if(hit2.distance < hit.distance)
hit = hit2;

<Occlusion resolve>
distanceDelta = hit.distance;
travel += distanceDelta;

if(travel > Far) {
hit.distance = Far;
return hit;

}

if (distanceDelta - Precision < 0.001) {
hit.distance = travel;
return hit;

}
}

hit.distance = Far;
return hit;

}

void main(void) {
for (int k = 0; k < OcclusionIterations; ++k) {

HitResult hit = RayMarch(position, direction);

if (hit.material) // material < 0 means no hit
{

vec3 hitPosition = position + direction *
hit.distance;

float size = (1.0 / hit.size.x);

vec3 rayStart = hitPosition * size;
vec3 rayStop = GetRayStop(hitPosition,

direction, size);
bool missed = true;

<Object LOD calculation>
<ObjectRayCast>

if (!missed) // save result
return;

}

Listing 1: Unlimited Object Instancing rendering
pipeline simplified visualization source code.

5.2 Occlussion error fixing
The biggest implementation challenge for the SDF and
SVO rendering pipeline implementation is potential ob-
ject occlusion errors. In order to tackle this problem, we
need to execute multiple ray marching iterations, one
for each occlusion error.

We developed two methods for occlusion fixing. Both
of them are using an occlusion stack that is used to save
a previous hit information—the grid cell 3D vector and
the SDF component id.

The first method is a cell estimation. If we again hit the
same object, we set a current distanceDelta to the de-
fined Escape value which allows for omitting the cur-
rent object.

However, this method will not work if two different
SDF components intersect. Also, there is need to save
the history of the occurred occlusions in the stack. In
this case, we need to use the second, more universal
method. Using the data from the previous occlusion
error, we calculate the distance for the scene cell and,
using the subtraction operator, we cut it from the scene
SDF function. Listing 2 presents the source code for
this method.

vec3 occlusionCell;
int occlusionID;

float interval = SceneIntervals[occlusionID];
vec3 offset = vec3(occlusionCell.x * interval,

occlusionCell.y * interval,
occlusionCell.z * interval); vec3 q = (position +

SceneOffsets[occlusionID]) - offset;

float occluder = ObjectCell(q,
SceneSizesOccluder[occlusionID]);

hit.distance = max(-occluder, hit.distance);

Listing 2: Occlusion error fixing methods for SDF wih
SVO rendering pipeline.

6 RENDERING AND PERFORMANCE
TEST RESULTS

All depicted timings were obtained on Intel Core i5
2500K CPU with NVidia GeForce GTX 660 GPU and
with NVidia GeForce GTX 980. All algorithms were
implemented using OpenGL 4.5 API with C++14 for
Windows 10 64-bit. We used Stanford Repository mod-
els as a test object [Stanford11].

The presented rendering results show that the developed
rendering pipeline is efficient and offers real-time per-
formance even for a medium power hardware. Unfortu-
nately, the results also show that the SDF based virtual
scene representation suffers for a visible regularity of
the object distribution. Also, SDF ray marching seems
to be slower than for example some sort of the uniform
grid traversal algorithm like 3D-DDA.

Using instancing operator we create an infinite uniform
grid with defined cell size and interval. The obvious

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2702 Computer Science Research Notes
http://www.WSCG.eu

Short Papers Proceedings 97 ISBN 978-80-86943-50-3



Figure 6: The virtual scene with 2D instancing operator
applied. 50 FPS on Nvidia GeForce GTX 660, 183 FPS
on Nvidia GeForce GTX 980.

Figure 7: The virtual scene with 3D instancing operator
applied. 20 FPS on Nvidia GeForce GTX 660, 67 FPS
on Nvidia GeForce GTX 980.

Figure 8: The virtual scene with instancing, type and
material operators applied. 35 FPS on Nvidia GeForce
GTX 660, 98 FPS on Nvidia GeForce GTX 980.

alternative seems to be a procedural definition of an in-
finite uniform grid along with a variation of the Bre-
senham algorithm for the grid traversal. Such a method
would be compatible with the remaining components
of the holistic approach and could be applied for, e.g.,
figures 8 - 11. It would presumably offer better perfor-
mance results thanks to the simplicity of the uniform
grid traversal. However, for the rest of the presented
figures SDF it could be not applied.

First, with SDF we can efficiently use many indepen-
dent SDF components to represent the virtual scene.
It means that the virtual scene may contain N uniform
grids with different attributes and the possible intersec-

Figure 9: The virtual scene with translation and rota-
tion operators applied. 27 FPS on Nvidia GeForce GTX
660, 81 FPS on Nvidia GeForce GTX 980.

Figure 10: The virtual scene with existence operators
applied. 31 FPS on Nvidia GeForce GTX 660, 80 FPS
on Nvidia GeForce GTX 980.

Figure 11: The virtual scene with translucent objects.
34 FPS on Nvidia GeForce GTX 660, 55 FPS on Nvidia
GeForce GTX 980.

tion between their cells. Such a virtual scene is pre-
sented in the figures 12 - 15. For virtual scenes like
those, we could not use the traditional uniform grid
traversal algorithm. Moreover, we are not limited only
to SVO based 3D objects. Using SDF ray marching we
could render highly complex 3D objects and calculate
all necessary data for realistic shading like normal vec-
tors, ambient occlusion or even soft shadows. For these
reasons, SDF based virtual scene representation seems
to be a better solution than the procedural uniform grid
for Unlimited Object Instancing rendering pipeline.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2702 Computer Science Research Notes
http://www.WSCG.eu

Short Papers Proceedings 98 ISBN 978-80-86943-50-3



Figure 12: The virtual scene with two SDF components
- one for Stanford objects and one for the grass ob-
jects. 24 FPS on Nvidia GeForce GTX 660, 100 FPS
on Nvidia GeForce GTX 980.

Figure 13: The virtual scene with three SDF compo-
nents - one for Stanford objects, one for the grass and
one for the trees. 32 FPS on Nvidia GeForce GTX 660,
93 FPS on Nvidia GeForce GTX 980.

Figure 14: The virtual scene with three SDF compo-
nents - one for Stanford objects, one for the grass and
one for the trees. 23 FPS on Nvidia GeForce GTX 660,
57 FPS on Nvidia GeForce GTX 980.

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented a novel approach to efficient
rendering of an unlimited number of 3D objects in real-
time. Thanks to the newly proposed computer graph-
ics paradigm—the Holistic Graphics Programming, we
created rendering pipeline that can process as many
unique instances of 3D objects as we want in real-time.
Using a Signed Distance Function, we limited memory
requirements for the virtual scene description, making

Figure 15: The virtual scene with three SDF compo-
nents - one for Stanford objects, one for the grass and
one for the trees. 29 FPS on Nvidia GeForce GTX 660,
65 FPS on Nvidia GeForce GTX 980.

processing an unlimited number of the 3D object for
each SDF component possible. Moreover, taking ad-
vantage of a collection of developed Global operators
we are able to control the content and the complexity of
the virtual scene in a procedural way.

Thanks to the Sparse Voxel Octrees integrated with
the SDF representation, we are able to render high-
resolution 3D objects created by artists. In order to inte-
grate the SDF-based scene with SVO-based objects, we
developed an occlusion fixing algorithm. Finally, the
developed single pass rendering pipeline can be easily
integrated with the e.g. triangle rasterization pipeline
for animated, user-controlled objects.

An obvious step forward would be an implementation
of Global operators that can be used to create dynamic
scenes. A good idea seems to be the usage of the
dynamic sparse textures to control objects’ movement
and the existence of the SDF components on the vir-
tual scene. Also, a further optimization and extension
for the SDF ray marching rendering pipeline should be
considered. For example the distance field based soft
shadow should be easy to implement to increase the
depth and immersion of the virtual scene.

8 REFERENCES
[Bau11] Bautembach, D., Animated sparse voxel oc-

trees, Bachelor Thesis, University of Hamburg,
2011.

[Cao10] Cao, X., Zhang, Y., Gao, S., Teng, R., Wang,
X., The design and implement of Scene Manage-
ment in 3D engine SR, 2010 International Con-
ference on Mechanic Automation and Control
Engineering, pages 183-186.

[Crassin11] Crassin, C., Neyret, F., Sainz, M., Green,
S., and Eisemann, E., Interactive indirect illumi-
nation using voxel cone tracing, Computer Graph-
ics Forum (Proceedings of Pacific Graphics 2011),
vol. 30, no. 7, sep 2011.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2702 Computer Science Research Notes
http://www.WSCG.eu

Short Papers Proceedings 99 ISBN 978-80-86943-50-3



[Deussen98] Deussen, O., Hanrahan, P., Lintermann,
B., Mesh, R., Pharr, M., Prusinkiewicz, P., Real-
istic modeling and rendering of plant ecosystems,
Proceedings of SIGGRAPH 98, Orlando, Florida,
July 19-24, 1998, In Computer Graphics Pro-
ceedings, Annual Conference Series, 1998, ACM
SIGGRAPH, pages 275-286.

[Domaradzki16] Domaradzki, J., Martyn, T., Fractur-
ing Sparse-Voxel-Octree objects using dynam-
ical Voronoi patterns, Computer Graphics, Vi-
sualization and Computer Vision WSCG 2016.
Full Papers Proceedings / Pan Zhigeng, Skala Va-
clav (red.), Computer Science Research Notes,
vol. 2601, 2016, Vaclav Skala - UNION Agency,
ISBN 978-80-86943-57-2, pages 37-46.

[Green07] Green, C., Improved alpha-tested magni-
fication for vector textures and special effects,
Proceeding SIGGRAPH ’07 ACM SIGGRAPH
2007 courses, pages 9-18.

[Hart89] Hart, J., C., Sandin, D., J., Kaufmann, L.,
H., Ray Tracing Deterministic 3-D Fractals Com-
puter Graphics 23(3), (Proc. SIGGRAPH 89,)
July 1989, pages 289-296.

[Hart91] Hart, J., C., DeFanti, T., A., Efficient anti-
aliased rendering of 3D linear fractals. Computer
Graphics (SIGGRAPH 91 Proceedings), 25:91-
100, 1991.

[Hart92] Hart, J., C., The object instancing paradigm
for linear fractal modeling. In Proceedings of
Graphics Interface 92, pages 224-231, 1992.

[Hart94] Hart, J., C., Sphere Tracing: A Geometric
Method for the Antialiased Ray Tracing of Im-
plicit Surfaces, The Visual Computer, Volume 12,
pages 527-545.

[Hart97] Hart, J., C., Implicit Representations of
Rough Surfaces Computer Graphics forum, Vol-
ume 16, Issue 2, June 1997, pages 91-99

[Jab16] Jabłoński, Sz., Martyn, T., Real-Time Ren-
dering of Continuous Levels of Detail for Sparse
Voxel Octrees, Computer Graphics, Visualization
and Computer Vision WSCG 2016. Short Papers
Proceedings / Skala Vaclav (red.), Computer Sci-
ence Research Notes, vol. 2602, 2016, Vaclav
Skala - UNION Agency, ISBN 978-80-86943-58-
9, pages 79-88.

[Kampe13] Kämpe, V., Sintorn, E., Assarsson, Ul,
High Resolution Sparse Voxel DAGs, ACM
Trans. Graph., vol. 32, no. 4, pages 1-13.

[Kay86] Kay, T., L., Kajiya, J., T., Ray tracing com-
plex scenes, Computer Graphics, SIGGRAPH 86
Proceedings, 20(4):269-278, 1986.

[Keinert14] Keinert, B., Schäfer, H., Korndörfer, J.,
Ganse, U., Stamminger, M., Enhanced Sphere
Tracing, STAG: Smart Tools and Apps for Graph-

ics, 2014, pages 1-8.
[Laine10] Laine, S., and Karras, T., Efficient sparse

voxel octrees, in Proceedings of the 2010 ACM
SIGGRAPH Symposium on Interactive 3D
Graphics and Games, ser. I3D 2010. New York,
NY, USA: ACM, 2010, pages 55-63.

[Lueb02] Luebke D., Watson B., Cohen, J., D., Reddy,
M., and Varshney, A., Level of Detail for 3D
Graphics, New York, NY, USA: Elsevier Science
Inc., 2002.

[Martyn10] Martyn T., Chaos and graphics: Realistic
rendering 3d ifs fractals in real-time with graph-
ics accelerators, Comput. Graph., vol. 34, no. 2,
pages 167-175, Apr. 2010.

[Reiner11] Reiner, T., Mückl, G., Dachsbacher, C., In-
teractive modeling of implicit surfaces using a
direct visualization approach with signed distance
functions, Computers and Graphics, Volume 35
Issue 3, June, 2011, pages 596-603.

[Stanford11] The Stanford 3D Scanning Repository,
Stanford University, 22 Dec 2010, Retrieved 17
July 2011.

[Suther63] Sutherland, I., E., Sketchpad: A man-
machine graphical communication system, Pro-
ceedings of the Spring Joint Computer Confer-
ence, 1963.

[Snyder87] Snyder, J., M., Barr, A., H., Ray tracing
complex models containing surface tessellations,
Computer Graphics SIGGRAPH 87 Proceedings,
21(4):119-128, 1987.

[Wil13] Willcocks, C. G., Sparse volumetric defor-
mation, Ph.D. dissertation, Durham University,
2013.

[Wright15] Dynamic Occlusion with Signed Distance
Fields, Advances in Real-Time Rendering in
Games, SIGGRAPH 2015.

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2702 Computer Science Research Notes
http://www.WSCG.eu

Short Papers Proceedings 100 ISBN 978-80-86943-50-3


