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Abstract

We study the multiplicity of critical points for continuously differentiable functionals on real Banach spaces. We
prove that a functional which satisfies the assumptions of the Saddle Point Theorem and moreover is bounded from
below has at least three critical points. Apparently, there is a global minimizer and a saddle point and we show the
existence of a third critical point. The idea of the proof is based on the minus-gradient flow. This result is closely
related to the three critical points theorem of H. Brezis and L. Nirenberg which assumes a local linking. Finally,
we apply the result on the Dirichlet problem for semilinear stationary PDEs. The analysis includes, for example,
the existence of multiple stationary solutions of bistable (or Allen-Cahn) equation and semipositone problems.
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1 Introduction and main result

The critical point theory has proved to be a very important and efficient tool in mathematics. It readily became
one of fundamental building blocks of nonlinear analysis. Especially, the connection with the existence theory for
differential equations has attracted a lot of attention. Now it is a standard way of proving miscellaneous results
such as bifurcation theorems, mentioned existence results for differential equations, stability results in the theory
of dynamical systems and many others (see, e.g., J. Mawhin, M. Willem [24]).

We study the multiplicity of critical points for continuously differentiable functionals on real Banach spaces
which has certain saddle-type geometry. In 1978 P. H. Rabinowitz [32] introduced the Saddle Point Theorem which
became quickly an essential part of the critical point theory and one of principal minimax theorems. It relies on
a special geometrical assumption which naturally abstracts the idea of saddle points in finite dimension. In this
paper we show that if the considered functional satisfies the P. H. Rabinowitz’s saddle assumption (denoted below
by (R)) together with the Palais-Smale compactness condition and additionally is bounded from below, it has at
least three critical points.

The following theorem is our main result. We denote by BY (R) the open ball with the radius R > 0 in the
subspace Y ⊂ X centered at the origin, by ∂BY (R) the corresponding sphere in Y and by X∗ the dual space of X.

Theorem 1.1. Let X be a real Banach space, X = Y ⊕ Z where Y 6= {o} is finite dimensional. Assume that
F ∈ C1(X,R), is bounded from below and satisfies

(R) there exists R > 0 such that max
u∈∂BY (R)

F (u) < inf
u∈Z

F (u),

and the Palais-Smale condition

(PS) every sequence {un} ⊂ X such that {F (un)} ⊂ R is bounded and ‖F ′(un)‖X∗ → 0 possesses a convergent
subsequence.

Then F has at least three critical points.

The existence of two critical points in Thm. 1.1, specifically the global minimizer and a saddle point, follows
immediately from one of minimization principles and from the Saddle Point Theorem. More ambitious problem is
to show the presence of a third critical point.

Thm. 1.1 uses the splitting X = Y ⊕ Z where Y is a finite dimensional subspace. For dimY = 1 there exists a
mountain range of F formed along the subspace Z separating X into two parts. Consequently, there is a minimizer
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(a) The graph of function F (·, ·, 0)
for F given by (1.1) with its critical
points.

(b) The graph of function F given
by (1.2) illustrating a saddle which is
not covered by the assumption (BN).

(c) Contours of function F
given by (1.2) with the zero
contour being highlighted and
squeezed by two parabolas,
see (1.3).

Figure 1

on each side of that mountain range, since we assume that the functional is bounded from below. However, the
subspace Z does not have the separation property provided dimY > 1. Hence, there need not be a second minimizer
in this case.

As an example consider the function F : R3 → R defined by

F (x, y, z) =
(
x2 + y2) (x2 + y2 − 1

)
+
y

4
+ z2. (1.1)

One can easily show that the function F satisfies assumptions of Thm. 1.1 with Y = {(x, y, 0)} and Z = {(0, 0, z)}
for which dimY = 2. Nonetheless, the function F has a unique minimizer. More precisely, F has the global
minimizer and two saddle points (see Fig. 1a).

Consequently, we encounter a challenging aspect in the proof of existence of third critical point. We treat the
case in which the dimension of subspace Y in X = Y ⊕Z is not necessarily equal to one and thus, Z need not have
the separation property.

There is a well-known result of H. Brezis and L. Nirenberg which is very similar to Thm. 1.1. We formulate it
in the following way (see H. Brezis, L. Nirenberg [6, Thm. 4]).

Theorem 1.2. Let X be a real Banach space, X = Y ⊕Z where Y is finite dimensional. Assume that F ∈ C1(X,R),
F (o) = 0, is bounded from below with infu∈X F (u) < 0, satisfies

(BN) there exists R > 0 such that {
F (u) ≤ 0 for u ∈ BY (R),

F (u) ≥ 0 for u ∈ BZ(R),

and the Palais-Smale condition (PS). Then F has at least two nonzero critical points.

The difference between Thm. 1.1 and H. Brezis’ and L. Nirenberg’s Thm. 1.2 is in the saddle geometry as-
sumptions (R) and (BN). The assumption (BN) puts conditions on the local linking and is restricted only to
the neighborhood of the origin which is supposed to be a critical point. Nevertheless, it controls the behavior of
the corresponding functional on whole balls BY (R), BZ(R). Consequently, for example the function F : R2 → R
defined by

F (x, y) =
(
y − x2) (y − 2x2)+ x6 + y6, (1.2)

does not satisfy (BN) (see Fig. 1b). Note that F (0, 0) = 0, (0, 0) ∈ R2 is a saddle point and the zero sublevel set

F 0 =
{

(x, y) ∈ R2 : F (x, y) ≤ 0
}
,

lies between two parabolas, specifically,

F 0 ⊂
{

(x, y) ∈ R2 : x2 ≤ y ≤ 2x2} . (1.3)

Hence, there is no splitting X = R2 = Y ⊕ Z such that (BN) is satisfied (see Fig. 1c).
On the contrary, the assumption (R) is not local and bounds the infimum of the functional over the whole

subspace Z. However, it controls the behavior of the functional only on the sphere ∂BY (R) and not on the whole
ball BY (R) in the subspace Y . Consequently, the assumption (R) involves other types of saddles (e.g., the function
F given by (1.2)). Moreover, in the case of Thm. 1.1 the initial saddle point guaranteed by the Saddle Point
Theorem is not a priori localized at the origin.
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Besides this closest result of H. Brezis and L. Nirenberg, we want to emphasize another related references.
G. Bonanno in [4, 5] studies a characterization of the mountain pass geometry introduced firstly in the Mountain
Pass Theorem by A. Ambrosetti and P. H. Rabinowitz in [2] and which was lately generalized by P. Pucci and
J. Serrin in [29] and by N. Ghoussoub and D. Preiss in [15]. He proves in [4] that the generalized mountain pass
geometry is equivalent to the existence of two local minima provided the functional is bounded from below as in our
case. The proof is based on the above mentioned separation of the underlying space into two parts by a mountain
range which is formed along a sphere given by the mountain pass geometry. As an immediate consequence he
obtains a three critical points theorem. In [5] the author studies a more general case of functionals bounded from
below only on bounded subsets.

The literature about the critical point theory is wide and rapidly increases. There are many related references
connected with uniqueness or multiplicity of critical points. Let us briefly mention some other relevant and extending
papers to our issues. From the papers which deal with the uniqueness of critical points we emphasize the works
of A. C. Lazer, E. M. Landesman, D. R. Meyers [19] and R. Manásevich [23] where the uniqueness of global
saddle points is shown. Their results are based also on the splitting X = Y ⊕ Z and use concavity and convexity
assumptions on the functional on these subspaces.

From the papers that deal with the multiplicity of critical points we want to highlight the following ones besides
the above discussed works of H. Brezis, L. Nirenberg [6] and G. Bonanno [4, 5]. Let us mention the paper of
P. H. Rabinowitz [30] which studies, using topological degree, whether the presence of two critical points implies
the existence of a third one. This work was later followed by A. Castro and A. C. Lazer in [7]. They also use the
splitting X = Y ⊕ Z and concavity and convexity assumptions. More recently, three critical points problems was
studied by B. Ricceri in, e.g., [33], and four critical points theorems by Z. Liu and J. Sun [22].

Furthermore, there are many works that use symmetry assumptions, e.g., the evenness of the functional, to
show that there exist multiple and possibly infinitely many critical points (see, e.g., P. H. Rabinowitz [31, Sec. 8–
9]). As an example, one can mention the result of D. C. Clark from [10] which is based on the properties of the
Ljusternik-Schnirelmann category. There are also several extensions of these results for perturbations of symmetric
functionals (see, e.g., P. H. Rabinowitz [31, Sec. 10]).

Many authors follow the above listed results. For example, D. Kandilakis, N. C. Kourogenis, N. S. Papageor-
giou [17] and X. Wu [34] generalize Thm. 1.2 of H. Brezis and L. Nirenberg for nonsmooth functionals. Further,
S. Li and M. Willem extend Thm. 1.2 in their paper [20] into the case in which the dimension of Y in X = Y ⊕ Z
is not finite.

Our paper is organized as follows. In Sec. 2 we sum up all needed fundamental results and tools. Further, in
Sec. 3 we show a topological lemma, whose application is crucial in the proof of Thm. 1.1. Then in Sec. 4 we present
the complete proof of Thm. 1.1 based on the idea of minus-gradient flow. In the last Sec. 5 we apply Thm. 1.1 on
the Dirichlet boundary value problem for stationary semilinear PDEs which include, e.g., stationary problems for
bistable (or Allen-Cahn) equation and semipositone problems.

2 Preliminaries

In this preliminary section we sum up fundamental results which are later needed in the proof of Thm. 1.1. The
first statement is one of minimization principles which we apply to show the existence of the global minimizer of
the functional F in Thm. 1.1 (see, e.g., P. H. Rabinowitz [31, Thm. 2.7]).

Theorem 2.1. Let X be a real Banach space. Assume that F ∈ C1(X,R), is bounded from below and satisfies
(PS). Then c = infu∈X F (u) is a critical value of F .

The second result is the Saddle Point Theorem due to P. H. Rabinowitz [32] which guarantees the existence of a
second critical point of F in Thm. 1.1 besides the global minimizer (see also the survey paper P. H. Rabinowitz [31,
Thm. 4.6]).

Theorem 2.2. Let X be a real Banach space, X = Y ⊕ Z where Y 6= {o} is finite dimensional. Assume that
F ∈ C1(X,R) and satisfies (R) and (PS). Then F possesses a critical value c ≥ infu∈Z F (u).

The idea of the proof of a third critical point of F in Thm. 1.1 is based on the construction of a minus-gradient flow.
However, the notion of gradient is not available, since we work on a Banach space. Despite this fact, we can use
the so-called pseudo-gradient vector field introduced by R. S. Palais [28] who also proved the following statement
about the existence of a pseudo-gradient for smooth functionals on Banach spaces (see also P. H. Rabinowitz [31,
Lem. A.2]).

Theorem 2.3. Let X be a real Banach space. If F ∈ C1(X,R), then there exists a pseudo-gradient vector field
v : X \ Γ→ X for F , where Γ = {u ∈ X : F ′(u) = o}, i.e., a locally Lipschitz mapping v : X \ Γ→ X such that for
all u ∈ X \ Γ the following hold:

(i) ‖v(u)‖X ≤ 2‖F ′(u)‖X∗ ,

(ii) 〈F ′(u), v(u)〉 ≥ ‖F ′(u)‖2X∗ .

The last result presented in this section is a consequence of the Ekeland Variational Principle which provides
the existence of a Palais-Smale subsequence (i.e., a subsequence satisfying the assumptions of the Palais-Smale
condition) of every minimizing sequence of a functional which is bounded from below (see I. Ekeland [13, Thm. 2.2]).
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Theorem 2.4. Let X be a real Banach space. Assume that F : X → R is Fréchet differentiable, bounded from
below and a sequence {un} ⊂ X satisfies F (un) → infu∈X F (u). Then there exists a sequence {νn} ⊂ X such that
the following hold:

(i) F (νn) ≤ F (un) for all n ∈ N,

(ii) ‖un − νn‖X → 0,

(iii) ‖F ′(νn)‖X∗ → 0.

3 Topological lemma

Besides the fundamental results from Sec. 2, we apply a topological argument as is usual in proofs of variational
statements. We need the following lemma, which says in other words that a continuous homotopy in a finite
dimensional space which deforms a sphere centered at the origin into a convex set separated from the origin has to
cross the origin.

Lemma 3.1. Let Y 6= {o} be a finite dimensional normed linear space. Assume that h : [0, 1]× ∂BY (R)→ Y is a
continuous mapping such that:

(i) h(0, u) = u for all u ∈ ∂BY (R),

(ii) there exists a convex set K ⊂ Y such that o /∈ K and h(1, u) ∈ K for all u ∈ ∂BY (R).

Then there exist t0 ∈ (0, 1) and u0 ∈ ∂BY (R) such that h(t0, u0) = o.

Proof. Let w ∈ h(1, ∂BY (R)) be arbitrary and fixed. Construct a continuous homotopy H : [0, 2]× ∂BY (R) → Y
as

H(t, u) =

{
h(t, u), t ∈ [0, 1] ,

h(1, u) + (t− 1)(w − h(1, u)), t ∈ (1, 2] .

Furthermore, let π : Y \ {o} → ∂BY (R) be the radial projection of Y \ {o} onto ∂BY (R), i.e., π(u) = Ru
‖u‖Y

.

Obviously, π is continuous on Y \ {o}.
Assume by contradiction that the statement of lemma does not hold, i.e., h(t, u) 6= o for all t ∈ [0, 1] and all

u ∈ ∂BY (R). Then also

H(t, u) 6= o for all t ∈ [0, 2] and u ∈ ∂BY (R). (3.1)

Indeed, for t ∈ [0, 1] there is H(t, u) = h(t, u) 6= o for all u ∈ ∂BY (R) via the assumption. For t ∈ (1, 2] there is

H(t, u) = h(1, u) + (t− 1) (w − h(1, u)) ,

i.e., H(t, u) is a convex combination of w ∈ K and h(1, u) ∈ K. Since K is a convex set and o /∈ K by the
assumption, we obtain that H(t, u) 6= o also for all t ∈ (1, 2] and u ∈ ∂BY (R). Hence, (3.1) holds true.

Therefore, the mapping π ◦H : [0, 2]× ∂BY (R)→ ∂BY (R) is well-defined and continuous. Moreover,

π(H(0, u)) = π(h(0, u)) = π(u) = u for all u ∈ ∂BY (R),

and

π(H(2, u)) = π(w) =
Rw

‖w‖Y
for all u ∈ ∂BY (R).

This shows that the sphere ∂BY (R) is contractible into the point Rw
‖w‖Y

∈ ∂BY (R) (see, e.g., P. Drábek, J. Milota [12,

Def. 5.1.8]). However, every finite dimensional sphere is not contractible (see, e.g., P. Drábek, J. Milota [12,
Lem. 5.1.10]), a contradiction.

4 Proof of Theorem 1.1

After the brief summary of required tools, we present in this section the complete proof of Thm. 1.1 divided into
several steps. Throughout the section we suppose that the assumptions of Thm. 1.1 are satisfied. We introduce the
following notation for the brevity

a = max
u∈∂BY (R)

F (u), b = inf
u∈Z

F (u).

Hence, there is a < b by (R).
Let us start with the following lemma about the existence of at least two critical points of the functional F . It

is an immediate consequence of Thm. 2.1 and Thm. 2.2.
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Lemma 4.1. Let the assumptions of Thm. 1.1 be satisfied. Then there exist at least two critical points uM , uS ∈ X
of F such that

F (uM ) = min
u∈X

F (u), F (uS) ≥ b.

Particularly, there is F (uM ) < F (uS).

Denote by Γ = {u ∈ X : F ′(u) = o} the set of all critical points of the functional F . We prove Thm. 1.1 by
contradiction. Hence, we suppose that uM , uS are the only critical points of F , i.e.,

Γ = {uM , uS} . (4.1)

Since F ∈ C1(X,R), Thm. 2.3 provides the existence of a pseudo-gradient vector field v : X \ Γ→ X satisfying
for all u ∈ X \ Γ

‖v(u)‖X ≤ 2‖F ′(u)‖X∗ , (4.2)

〈F ′(u), v(u)〉 ≥ ‖F ′(u)‖2X∗ . (4.3)

The continuity of F and the inequalities F (uS) ≥ b > a imply that there exists ρS > 0 such that F (u) > a+b
2

> a

for all u ∈ B(uS , ρS), where B(uS , ρS) denotes the closed ball in X with the radius ρS > 0 centered at uS ∈ X.
We define sets

H = B(uS , ρS), G = B
(
uS ,

ρS
2

)
. (4.4)

Similarly, for every n ∈ N there exists ρn > 0 such that B(uM , ρn) ∩ H = ∅ and F (u) < F (uM ) + 1
n

for all

u ∈ B(uM , ρn). We define further the sets

Bn = B(uM , ρn), An = B
(
uM ,

ρn
2

)
. (4.5)

Let n ∈ N be given. Define mappings h : X → [0, 1], fn : X → [0, 1] as

h(u) =


0, u ∈ G,
2
ρS
‖u− uS‖X − 1, u ∈ H \G,

1, u ∈ X \H,
fn(u) =


0, u ∈ An,
2
ρn
‖u− uM‖X − 1, u ∈ Bn \An,

1, u ∈ X \Bn.
(4.6)

Furthermore, define r : [0,∞)→ (0, 1] as

r(s) =

{
1, s ∈ [0, 1],
1
s
, s ∈ (1,∞).

(4.7)

It is not hard to see that all the mappings h, fn, r are Lipschitz on their domains. Finally, we define the following
operator gn : X → X via the mappings h, fn, r and the locally Lipschitz pseudo-gradient vector field v as

gn(u) =

{
−fn(u)h(u)r(‖v(u)‖X)v(u), u ∈ X \ Γ,

0, u ∈ Γ.
(4.8)

Thus, the mapping gn is locally Lipschitz on X (thanks to the definition of h and fn) and ‖gn(u)‖X ≤ 1 for all
u ∈ X.

We consider the following initial value problem on the Banach space X with an initial condition u ∈ X which
defines a minus-gradient flow for the functional F

dw(t)

dt
= gn(w(t)), t ∈ [0,∞),

w(0) = u.

(4.9)

The construction of the minus-gradient flow (4.9) is adopted from P. H. Rabinowitz [31, Thm. A.4] where one can
find also the proof of the following statement.

Lemma 4.2. Let the assumptions of Thm. 1.1 and (4.1) be satisfied and n ∈ N be given. Then the following hold:

(i) For every given u ∈ X there exists a unique solution of (4.9) and it exists for all t ∈ [0,∞).

(ii) Denoting by wn(t, u) the image of the unique solution of (4.9) with given u ∈ X at t ∈ [0,∞), the operator
wn : [0,∞)×X → X is continuous on [0,∞)×X.

(iii) The function F (wn(·, u)) : [0,∞)→ R is decreasing for every given u ∈ X.
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In the rest of this section we analyze the restriction of the mapping wn from Lem. 4.2 (ii) to [0,∞)× ∂BY (R).
In other words we deform the finite dimensional sphere ∂BY (R) ⊂ Y into the whole space X by the minus-gradient
flow (4.9). We find a third critical point of F via this deformation which contradicts (4.1).

Since ∂BY (R) is a compact set and F (wn(t, ·)) : ∂BY (R) → R is continuous for every given t ∈ [0,∞), there
exists

max
u∈∂BY (R)

F (wn(t, u)) for every t ∈ [0,∞).

Lemma 4.3. Let the assumptions of Thm. 1.1 and (4.1) be satisfied and n ∈ N be given. Then the limit

cn = lim
t→∞

max
u∈∂BY (R)

F (wn(t, u))

exists, can be also characterized as cn = inft∈[0,∞) maxu∈∂BY (R) F (wn(t, u)) and satisfies cn ≤ a.

Proof. Consider the function ϕ : [0,∞)→ R defined as

ϕ(t) = max
u∈∂BY (R)

F (wn(t, u)) .

The function ϕ is bounded from below, since the functional F is bounded from below as well. Moreover, ϕ is
decreasing. Indeed, let t1 < t2. Using the compactness of the set ∂BY (R) and the continuity of the mapping
F (wn(t, ·)) for every given t ∈ [0,∞), we find u1, u2 ∈ ∂BY (R) such that

F (wn(t1, u1)) = max
u∈∂BY (R)

F (wn(t1, u)) , F (wn(t2, u2)) = max
u∈∂BY (R)

F (wn(t2, u)) .

Then using the definition of u1 and the fact that F (wn(·, u2)) is decreasing by Lem. 4.2 (iii), we obtain the following
estimate

ϕ(t1) = F (wn(t1, u1)) ≥ F (wn(t1, u2)) ≥ F (wn(t2, u2)) = ϕ(t2).

Thus, ϕ is bounded from below and decreasing. This implies that there exists cn ∈ R such that

cn = lim
t→∞

ϕ(t) = inf
t∈[0,∞)

ϕ(t) ≤ ϕ(0) = a.

We distinct two qualitatively different cases in the proof of the existence of a third critical point – the existence
of a second global minimizer or a second minimax. This corresponds to the following two possibilities, respectively:

(i) for all n ∈ N there is cn ≤ F (uM ) + 1
n

,

(ii) there exists n0 ∈ N such that cn0 > F (uM ) + 1
n0

,

where cn ∈ R are defined by Lem. 4.3. We treat these two cases separately for the sake of lucidity.

4.1 Second global minimizer

In this subsection we analyze the case in which

cn ≤ F (uM ) +
1

n
for all n ∈ N.

From the decomposition of the space X into X = Y ⊕ Z, there exist unique yM ∈ Y and zM ∈ Z such that the
global minimizer uM ∈ X of F given by Lem. 4.1 satisfies

uM = yM + zM .

Since F (uM ) < b, there is uM /∈ Z or equivalently yM 6= o. Hence, there exists δ > 0 sufficiently small such that

o /∈ BY (yM , δ),

where BY (yM , δ) denotes the closed ball in the subspace Y with the radius δ > 0 centered at yM ∈ Y .
Moreover, let P : X → Y be the projection of X onto Y along Z. Thus, P is a linear mapping such that

kerP = Z and thanks to the finite dimension of Y also continuous (see, e.g., P. Drábek, J. Milota [12, Rem. 2.1.19]).
Obviously, P (uM ) = yM .

Lemma 4.4. Let the assumptions of Thm. 1.1 and (4.1) be satisfied, cn ≤ F (uM ) + 1
n

for all n ∈ N and δ > 0 be

sufficiently small that o /∈ BY (yM , δ). Then for every n ∈ N there exist tn ∈ [0,∞) and un ∈ ∂BY (R) such that

F (wn(tn, un)) ≤ F (uM ) +
2

n
and ‖P (wn(tn, un))− yM‖X > δ.
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Proof. Assume by contradiction that there exists ñ ∈ N such that for all t ∈ [0,∞) and u ∈ ∂BY (R) there is

F (wñ(t, u)) > F (uM ) +
2

ñ
or ‖P (wñ(t, u))− yM‖X ≤ δ. (4.10)

From the definition of cñ and from the assumption that cñ ≤ F (uM ) + 1
ñ

there has to exist t̃ ∈ [0,∞) such that for
all u ∈ ∂BY (R) there is

F (wñ(t̃, u)) ≤ max
u∈∂BY (R)

F (t̃, u) ≤ F (uM ) +
2

ñ
. (4.11)

This implies that for t = t̃ the former inequality in (4.10) does not hold for any u ∈ ∂BY (R) and thus, the latter
one has to be true,

‖P (wñ(t̃, u))− yM‖X ≤ δ for all u ∈ ∂BY (R). (4.12)

Applying Lem. 3.1 with K = BY (yM , δ) for the continuous mapping P ◦wñ : [0, t̃]× ∂BY (R)→ Y , we obtain that
there exist t0 ∈ (0, t̃) and u0 ∈ ∂BY (R) such that P (wñ(t0, u0)) = o. Then

wñ(t0, u0) ∈ Z,
because of kerP = Z. This is a contradiction, since the following inequality holds using the fact that the function
F (wñ(·, u0)) is decreasing by Lem. 4.2 (iii)

F (wñ(t0, u0)) ≤ F (wñ(0, u0)) = F (u0) ≤ a < b = inf
u∈Z

F (u).

Lem. 4.4 guarantees the existence of a sequence {wn(tn, un)} ⊂ X such that

F (wn(tn, un)) ≤ F (uM ) +
2

n
and ‖P (wn(tn, un))− yM‖X > δ for all n ∈ N.

Particularly, there is F (wn(tn, un)) → F (uM ) = minu∈X F (u) for n → ∞. Moreover, the following inequalities
hold for all n ∈ N

δ < ‖P (wn(tn, un))− yM‖X = ‖P (wn(tn, un)− uM )‖X ≤ ‖P‖L(X,Y )‖wn(tn, un)− uM‖X .
Since Y 6= {o}, the projection P given by the decomposition X = Y ⊕ Z satisfies ‖P‖L(X,Y ) ≥ 1 and there is

‖wn(tn, un)− uM‖X >
δ

‖P‖L(X,Y )

> 0 for all n ∈ N. (4.13)

Consequently, {wn(tn, un)} ⊂ X is a minimizing sequence and Thm. 2.4 yields that there exists a sequence {νn} ⊂ X
such that:

(i) F (νn) ≤ F (wn(tn, un)) for all n ∈ N,

(ii) ‖wn(tn, un)− νn‖X → 0,

(iii) ‖F ′(νn)‖X∗ → 0.

Taking into account the statements (i) and (iii) and the Palais-Smale condition (PS), we obtain

νn → ν0 ∈ X (at least for a subsequence).

Since F ∈ C1(X,R), the statements (i) and (iii) yield moreover

F (νn)→ F (ν0) = F (uM ) = min
u∈X

F (u) and F ′(νn)→ F ′(ν0) = o.

Hence, ν0 is a global minimizer and thus, a critical point of F . Furthermore, the statement (ii) yields

‖wn(tn, un)− ν0‖X ≤ ‖wn(tn, un)− νn‖X + ‖νn − ν0‖X → 0.

Since ‖wn(tn, un)− uM‖X > δ
‖P‖L(X,Y )

> 0 for all n ∈ N by (4.13), there is

‖ν0 − uM‖X ≥
δ

‖P‖L(X,Y )

> 0,

and consequently, ν0 6= uM .
This is a contradiction with the assumption (4.1) that uM and uS are the only critical points of F .
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4.2 Second minimax

In this subsection we analyze the latter case in which there exists n0 ∈ N such that

cn0 > F (uM ) +
1

n0
.

Let us denote for the simplicity c0 = cn0 and w0 = wn0 , i.e., we suppose

c0 = lim
t→∞

max
u∈∂BY (R)

F (w0(t, u)) > F (uM ) +
1

n0
.

Firstly, we show the following lemma about the realization of c0 at a point u0 ∈ ∂BY (R).

Lemma 4.5. Let the assumptions of Thm. 1.1 and (4.1) be satisfied and n0 ∈ N be given. Then there exists
u0 ∈ ∂BY (R) such that

c0 = lim
t→∞

F (w0(t, u0)).

Proof. The following inequality holds using the characterization of c0 via the infimum from Lem. 4.3 and standard
properties of infimum and supremum

c0 = lim
t→∞

max
u∈∂BY (R)

F (w0(t, u)) = inf
t∈[0,∞)

max
u∈∂BY (R)

F (w0(t, u))

≥ sup
u∈∂BY (R)

inf
t∈[0,∞)

F (w0(t, u)) = sup
u∈∂BY (R)

lim
t→∞

F (w0(t, u)).

We assume by contradiction that the statement of lemma does not hold, i.e.,

lim
t→∞

F (w0(t, u)) < c0 for all u ∈ ∂BY (R). (4.14)

Firstly, we show that under the assumption (4.14) there is

sup
u∈∂BY (R)

lim
t→∞

F (w0(t, u)) < c0. (4.15)

Suppose that the contrary holds true, i.e., that (4.14) is satisfied and

sup
u∈∂BY (R)

lim
t→∞

F (w0(t, u)) = c0.

Thus, there exists a sequence {uk} ⊂ ∂BY (R) such that

lim
k→∞

lim
t→∞

F (w0(t, uk)) = c0. (4.16)

Since ∂BY (R) is a compact set, there is uk → ũ for some ũ ∈ ∂BY (R) (at least for a subsequence). From (4.14) we
obtain limt→∞ F (w0(t, ũ)) = c0− ε < c0 for an ε > 0. Hence, there exists t̃ ∈ [0,∞) such that F (w0(t̃, ũ)) < c0− ε

2
.

Since the mapping F (w0(t̃, ·)) is continuous, there exists a ball B(ũ, δ) with a sufficiently small radius δ > 0 such
that

F (w0(t̃, u)) < c0 −
ε

2
for all u ∈ B(ũ, δ) ∩ ∂BY (R).

The convergence uk → ũ provides the existence of k̃ ∈ N such that uk ∈ B(ũ, δ) ∩ ∂BY (R) for all k ≥ k̃. Since the
functions F (w0(·, uk)) are decreasing by Lem. 4.2 (iii), there is

F (w0(t, uk)) ≤ F (w0(t̃, uk)) < c0 −
ε

2
for all t ≥ t̃ and k ≥ k̃. (4.17)

At this place we pass to a limit for t→∞ and then to a limit superior for k →∞ in (4.17) to obtain

lim sup
k→∞

lim
t→∞

F (w0(t, uk)) ≤ c0 −
ε

2
< c0,

a contradiction with (4.16). Consequently, under the assumption (4.14), the inequality (4.15) holds.
Denote

S = sup
u∈∂BY (R)

lim
t→∞

F (w0(t, u)).

Since F (w0(·, u)) are continuous, decreasing and S < c0 by (4.15), then for all u ∈ ∂BY (R) there exists

ξ(u) = inf

{
t ∈ [0,∞) : F (w0(τ, u)) <

S + c0
2

for all τ > t

}
.

The mapping ξ : ∂BY (R)→ [0,∞) is upper semicontinuous on the compact set ∂BY (R), i.e.,
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lim sup
k→∞

ξ (uk) ≤ ξ (ũ)

for all sequences {uk} ∈ ∂BY (R) such that uk → ũ for some ũ ∈ ∂BY (R). Indeed, let {uk} ⊂ ∂BY (R) and uk → ũ.
We split the sequence {ξ (uk)} ⊂ [0,∞) into two parts

{ξ (ukm)} such that ξ (ukm) > ξ (ũ) for all m ∈ N,

{ξ (ukl)} such that ξ (ukl) ≤ ξ (ũ) for all l ∈ N.
Note that if one of these parts is a finite set, we can treat only with the other part, i.e., we suppose without loss of
generality that both parts are infinite subsequences of {ξ (uk)}. There is obviously

lim sup
l→∞

ξ (ukl) ≤ ξ (ũ) .

Let us show that also lim sup
m→∞

ξ (ukm) ≤ ξ (ũ). Assume the contrary, i.e., there exists ε > 0 such that

ξ (ukm) ≥ ξ (ũ) + ε (at least for a subsequence). (4.18)

Since F (w0(·, ũ)) is decreasing, the definition of ξ (ũ) implies

F (w0(ξ (ũ) + ε, ũ)) <
S + c0

2
.

The continuity of F (w0(ξ (ũ) + ε, ·)) and the convergence ukm → ũ yield that for sufficiently large m ∈ N there is

F (w0(ξ (ũ) + ε, ukm)) <
S + c0

2
,

a contradiction with the definition of ξ (ukm), (4.18) and the continuity of F (w0(·, ukm)). Therefore, the mapping
ξ : ∂BY (R)→ [0,∞) is upper semicontinuous on the compact set ∂BY (R). This yields that there exists

ξ = max
u∈∂BY (R)

ξ(u) <∞,

(see, e.g., P. Drábek, J. Milota [12, p. 451]). The functions F (w0(·, u)) are decreasing by Lem. 4.2 (iii) and thus,

F (w0(t, u)) ≤ S + c0
2

for all t ≥ ξ and u ∈ ∂BY (R).

This implies that

lim
t→∞

max
u∈∂BY (R)

F (w0(t, u)) ≤ S + c0
2

< c0,

a final contradiction with the definition of c0. Therefore, (4.14) is not valid and the statement of lemma holds.

Consequently, if there exists n0 ∈ N such that c0 > F (uM ) + 1
n0

, Lem. 4.5 guarantees the existence of u0 ∈
∂BY (R) such that

lim
t→∞

F (w0(t, u0)) = c0 > F (uM ) +
1

n0
.

Since F (w0(·, u0)) is decreasing by Lem. 4.2 (iii), the following hold

F (w0(t, u0)) ≤ F (w0(0, u0)) = F (u0) ≤ a < a+ b

2
, i.e., w0(t, u0) /∈ H for all t ∈ [0,∞),

F (w0(t, u0)) ≥ c0 > F (uM ) +
1

n0
, i.e., w0(t, u0) /∈ Bn0 for all t ∈ [0,∞),

where the sets H and Bn0 are defined in (4.4) and (4.5), respectively. This yields that h(w0(t, u0)) = 1 and
fn0(w0(t, u0)) = 1 for all t ∈ [0,∞) (the mappings h and fn0 are defined in (4.6)). Thus, w0(·, u0) is the unique
solution of the following initial value problem

dw0(t, u0)

dt
= −r(‖v(w0(t, u0))‖X)v(w0(t, u0)), t ∈ [0,∞),

w0(0, u0) = u0.

(4.19)

Lemma 4.6. Let the assumptions of Thm. 1.1 and (4.1) be satisfied, there exist n0 ∈ N such that c0 > F (uM )+ 1
n0

and u0 ∈ ∂BY (R) be as in Lem. 4.5. Then there exists a sequence {tk} ∈ [0,∞) such that:

(i) c0 ≤ F (w0(tk, u0)) ≤ a for all k ∈ N,

(ii) ‖F ′(w0(tk, u0))‖X∗ → 0.
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Proof. The statement (i) holds for all sequences {tk} ∈ [0,∞), since the unique solution w0(·, u0) of (4.19) satisfies
c0 ≤ F (w0(t, u0)) ≤ a for all t ∈ [0,∞). Assume by contradiction that (ii) does not hold, i.e., there exists ε > 0
such that for all t ∈ [0,∞) there is

‖F ′(w0(t, u0))‖X∗ ≥ ε. (4.20)

The following estimate holds using the chain rule (see, e.g., P. Drábek, J. Milota [12, Cor. 3.2.13]), (4.19) and the
inequality (4.3) for the pseudo-gradient vector field v

F (w0(t, u0)) = F (w0(0, u0)) +

∫ t

0

dF (w0(τ, u0))

dτ
dτ

= F (u0)−
∫ t

0

r(‖v(w0(τ, u0))‖X)
〈
F ′(w0(τ, u0)), v(w0(τ, u0))

〉
dτ

≤ F (u0)−
∫ t

0

r(‖v(w0(τ, u0))‖X)‖F ′(w0(τ, u0))‖2X∗dτ.

(4.21)

Let us distinguish between two cases for an arbitrary τ ∈ [0,∞). Firstly, if ‖v(w0(τ, u0))‖X ≤ 1, there is
r(‖v(w0(τ, u0))‖X) = 1 by the definition of function r (4.7). Hence, (4.20) implies that

r(‖v(w0(τ, u0))‖X)‖F ′(w0(τ, u0))‖2X∗ = ‖F ′(w0(τ, u0))‖2X∗ ≥ ε2. (4.22)

Secondly, if ‖v(w0(τ, u0))‖X > 1, then by (4.7)

r(‖v(w0(τ, u0))‖X) =
1

‖v(w0(τ, u0))‖X
.

The inequality (4.2) for the pseudo-gradient vector field v and (4.20) yield the following estimate

r(‖v(w0(τ, u0))‖X)‖F ′(w0(τ, u0))‖2X∗ =
‖F ′(w0(τ, u0))‖2X∗
‖v(w0(τ, u0))‖X

≥ ‖F
′(w0(τ, u0))‖2X∗

2‖F ′(w0(τ, u0))‖X∗
≥ ε

2
. (4.23)

Putting (4.22) and (4.23) together, we obtain that

r(‖v(w0(τ, u0))‖X)‖F ′(w0(τ, u0))‖2X∗ ≥ α = min
{
ε2,

ε

2

}
> 0 for all τ ∈ [0,∞).

Consequently, we can continue in the estimate (4.21) as follows

F (w0(t, u0)) ≤ F (u0)−
∫ t

0

r(‖v(w0(τ, u0))‖X)‖F ′(w0(τ, u0))‖2X∗dτ

≤ F (u0)−
∫ t

0

αdτ

= F (u0)− αt.
This yields that

lim
t→∞

F (w0(t, u0)) = −∞,

which is a contradiction with the statement of Lem. 4.5 that limt→∞ F (w0(t, u0)) = c0 (apparently, this also
contradicts the assumption that F is bounded from below).

Lem. 4.6 guarantees the existence of a Palais-Smale sequence {w0(tk, u0)} ⊂ X. Hence, applying the Palais-
Smale condition (PS) we obtain that

w0(tk, u0)→ ν0 ∈ X (at least for a subsequence).

Since F ∈ C1(X,R), there is

F (w0(tk, u0))→ F (ν0) ∈ [c0, a] and F ′(w0(tk, u0))→ F ′(ν0) = o.

Therefore, ν0 is a critical point of F . Moreover, ν0 6= uM and ν0 6= uS , because of F (uM ) < c0 ≤ a < b ≤ F (uS).
This yields a final contradiction with the assumption (4.1). The proof of Thm. 1.1 is complete.

5 Application for semilinear stationary PDE

In this section we present an application of Thm. 1.1 for semilinear stationary PDEs. We study the following
Dirichlet boundary value problem involving superlinear power-function and small spatial perturbation{

−∆u(x) = λu(x)− |u(x)|p−2 u(x) + f(x), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

(5.1)

where Ω ⊂ RN is an open, bounded domain with a smooth boundary, ∆u = div (∇u) is the N -dimensional
Laplacian, λ > 0 and p satisfies:
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(i) 2 < p if N = 1, 2,

(ii) 2 < p < 2N
N−2

if N ≥ 3.

We study the existence of at least three weak solutions of (5.1). The problem (5.1) is widely studied in the
theory of nonlinear PDEs. It describes stationary (or steady state) solutions of the following reaction-diffusion
equation 

∂u(x, t)

∂t
−∆xu(x, t) = λu(x, t)− |u(x, t)|p−2 u(x, t) + f(x), x ∈ Ω, t ∈ [t0,∞),

u(x, t0) = u0(x), x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω, t ∈ [t0,∞).

(5.2)

The initial-boundary value problem (5.2) is related to the so-called bistable equation which is used in physics
as a model of phase transitions. As an example we can mention the case of p = 4 which was studied in 1979 by
S. M. Allen and J. W. Cahn in [1] for modeling of phase separation in binary alloy systems. This problem is therefore
often called the Allen-Cahn equation. For the study of stationary problem for the bistable equation with Dirichlet
boundary condition see, e.g., M. S. Berger, L. E. Fraenkel [3] or N. C. Owen, J. Rubinstein, P. Sternberg [27]. Let
us mention that there are also many works dealing with (5.1) or (5.2) with Neumann boundary condition, see, e.g.,
references in N. C. Owen, J. Rubinstein, P. Sternberg [27].

From another point of view, the reaction-diffusion equation (5.2) is motivated from the population biology.
For example for p = 3 its positive solutions describe the evolution of population density of single species whose
reproduction follows the logistic law and which homogeneously diffuses in the environment with hostile boundary,
see J. D. Murray [25, Sec. 11.2]. This problem is often called the Fischer or Fischer-Kolmogorov-Petrovskii-Piskunov
equation after R. A. Fischer, who proposed the problem in 1937 for the modeling of spatial spread of a gene in the
population [14], and A. Kolmogorov, I. Petrovskii and N. Piskunov, who presented the first fundamental results [18].

The original Fischer equation assumes no spatial perturbation, i.e., f(x) ≡ 0 in (5.2). This problem is widely
studied, see, e.g., D. Henry [16]. However, from the biological point of view (e.g., fishery management problems)
there are natural reasons why the spatial sources or sinks should be involved, for example predation or harvesting
of the species could happen. The problems with logistic growth and constant yield harvesting modeled by f(x) < 0,
x ∈ Ω, in (5.2) or its stationary version (5.1) have been recently studied in many papers, see, e.g., S. Oruganti,
J. Shi, R. Shivaji [26] or P. Liu, J. Shi, Y. Wang [21].

The problem (5.1) with f(x) < 0, x ∈ Ω, is an example of the so-called semipositone problem. Semipositone
problems were introduced by A. Castro and R. Shivaji in [8] as boundary value problems for the following PDE

−∆u(x) = g(x, u), x ∈ Ω, (5.3)

where the right-hand side is not positone, specifically, satisfies g(x, 0) < 0, x ∈ Ω. For an overview about semiposi-
tone problems see A. Castro, C. Maya, R. Shivaji [9]. They point out that these problems could be mathematically
challenging. For example, the existence of positive solutions which is natural specifically in biological models is
intensively studied (see, e.g., S. Oruganti, J. Shi, R. Shivaji [26], P. Liu, J. Shi, Y. Wang [21] again).

We denote by λk, k ∈ N, the k-th eigenvalue of the operator −∆ on Ω with the homogeneous Dirichlet boundary
condition (involving multiplicities). We consider a nonresonant case of (5.1) in which the parameter λ > 0 satisfies
λk < λ < λk+1 for some k ∈ N. Assuming f ∈ L2(Ω) we apply Thm. 1.1 to show the existence of multiple weak
solutions of (5.1). The following definition is well-known (see, e.g., P. Drábek, J. Milota [12, Sec. 5.9A]).

Definition 5.1. The weak solution of (5.1) is a function u ∈ W 1,2
0 (Ω) such that the following equality holds for

any v ∈W 1,2
0 (Ω)∫

Ω

∇u(x) · ∇v(x)dx = λ

∫
Ω

u(x)v(x)dx− 1

p

∫
Ω

|u(x)|p−2 u(x)v(x)dx+

∫
Ω

f(x)v(x)dx.

Remark 5.2. One can note that if we assume instead of f ∈ L2(Ω) a stronger assumption, e.g., that f is Lipschitz
on Ω, then every weak solution of (5.1) is also a classical solution (see, e.g., P. H. Rabinowitz [31, Rem. 2.22]).

We use the equivalent norm on the Sobolev space W 1,2
0 (Ω)

‖u‖ =

(∫
Ω

|∇u(x)|2dx

) 1
2

, u ∈W 1,2
0 (Ω),

and the p-norm on the Lebesgue spaces Lp(Ω), p ≥ 1,

‖u‖p =

(∫
Ω

|u(x)|pdx
) 1

p

, u ∈ Lp(Ω).

In the rest of the section we prove the following theorem about the existence of at least three weak solutions
of (5.1) in the nonresonant case.
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Theorem 5.3. Let λk < λ < λk+1. Then there exists µ > 0 such that the boundary value problem (5.1) possesses
at least three weak solutions for all f ∈ L2(Ω) with ‖f‖2 < µ.

The problem (5.1) with logistic nonlinearity and constant yield harvesting f (i.e., f(x) < 0 for x ∈ Ω) was
also studied in the mentioned paper of S. Oruganti, J. Shi, R. Shivaji [26]. They used the bifurcation theory to
prove (among other things) that under some additional assumptions the following hold for ‖f‖∞ sufficiently small
(see [26, Thm. 3.1, 3.3]):

(i) if λ > λ1, there exists a positive solution u1 of (5.1),

(ii) if λk < λ < λk+1, there exists a second solution u2 6= u1 of (5.1),

(iii) if λ1 < λ < λ1 + δ for some δ > 0 and λ 6= λk, the second solution u2 of (5.1) is also positive.

Lately, P. Liu, J. Shi, Y. Wang [21] studied the exact multiplicity of solutions and obtained precise bifurcation
diagrams for this problem on symmetric domains. Hence, Thm. 5.3 could contribute to this research and bring new
insights via the critical point theory.

We justify the statement of Thm. 5.3 by an application of Thm. 1.1. Let us define the energy functional
F : W 1,2

0 (Ω)→ R corresponding to (5.1) in the standard way as

F (u) =
1

2

∫
Ω

|∇u(x)|2dx− λ

2

∫
Ω

|u(x)|2dx+
1

p

∫
Ω

|u(x)|p dx−
∫

Ω

f(x)u(x)dx. (5.4)

Applying the embedding W 1,2
0 (Ω) ⊂ Lp(Ω) one can rewrite the definition (5.4) into a shorter form as

F (u) =
1

2
‖u‖2 − λ

2
‖u‖22 +

1

p
‖u‖pp −

∫
Ω

f(x)u(x)dx. (5.5)

The following lemma can be proved in the same way as, e.g., D. G. Costa [11, Prop. 2.2.1].

Lemma 5.4. Let f ∈ L2(Ω). Then for the functional F given by (5.5) the following hold:

(i) F ∈ C1
(
W 1,2

0 (Ω),R
)
,

(ii) the Fréchet derivative of F is given by

〈F ′(u), v〉 =

∫
Ω

∇u(x) · ∇v(x)dx− λ
∫

Ω

u(x)v(x)dx+

∫
Ω

|u(x)|p−2 u(x)v(x)dx−
∫

Ω

f(x)v(x)dx, (5.6)

where u, v ∈W 1,2
0 (Ω),

(iii) u ∈W 1,2
0 (Ω) is a weak solution of (5.1) if and only if u ∈W 1,2

0 (Ω) is a critical point of F .

Consequently, it is satisfactory to show that F has at least three critical points by Lem 5.4 (iii). Since F ∈
C1
(
W 1,2

0 (Ω),R
)

by Lem 5.4 (i), it is enough to verify the remaining assumptions of Thm. 1.1.

Lemma 5.5. Let f ∈ L2(Ω). Then for the functional F given by (5.5) the following hold:

(i) F is weakly coercive on W 1,2
0 (Ω), i.e., F (u)→∞ for ‖u‖ → ∞,

(ii) F is bounded from below.

Proof. Since 2 < p < 2N
N−2

, there is W 1,2
0 (Ω) ⊂ Lp(Ω) ⊂ L2(Ω) and the Hölder inequality yields

‖u‖2 ≤ (meas(Ω))
p−2
2p ‖u‖p for all u ∈W 1,2

0 (Ω). (5.7)

Using (5.7) and the Hölder inequality again we obtain the following estimate

F (u) =
1

2
‖u‖2 − λ

2
‖u‖22 +

1

p
‖u‖pp −

∫
Ω

f(x)u(x)dx

≥ 1

2
‖u‖2 − λ

2
‖u‖22 +

1

p
(meas(Ω))

2
p−2 ‖u‖p2 − ‖f‖2‖u‖2.

(5.8)

Let ‖u‖ → ∞, then distinguishing between two possible cases we obtain:

(i) if ‖u‖2 is bounded, then F (u)→∞ thanks to ‖u‖ → ∞,

(ii) if ‖u‖2 →∞, then F (u)→∞ thanks to 2 < p.

Therefore, F is weakly coercive. Moreover, one can continue in the estimate (5.8) to obtain

F (u) ≥ −λ
2
‖u‖22 +

1

p
(meas(Ω))

2
p−2 ‖u‖p2 − ‖f‖2‖u‖2. (5.9)

The right-hand side of (5.9) is a function of ‖u‖2 which is bounded from below for ‖u‖2 ≥ 0 (again thanks to
2 < p). Hence, F is bounded from below.

In the proof of the Palais-Smale condition we apply the following compactness argument which can be proved
in the same way as P. H. Rabinowitz [31, Prop. B.35].
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Lemma 5.6. Let F be given by (5.5). If {un} ⊂W 1,2
0 (Ω) is a bounded sequence such that F ′(un)→ o, then {un}

has a convergent subsequence.

Consequently, the proof of the Palais-Smale condition is now restricted to the proof of boundedness of a Palais-
Smale sequence. However, the boundedness follows immediately from the weak coercivity of F which is guaranteed
by Lem. 5.5 (i). Thus, the following lemma holds.

Lemma 5.7. Let f ∈ L2(Ω). Then the functional F given by (5.5) satisfies the Palais-Smale condition (PS).

Let us finally show that F has the saddle geometry given by the assumption (R). Let ϕi, i ∈ N, be the
normalized eigenfunctions corresponding to eigenvalues λi which form an orthonormal basis of W 1,2

0 (Ω) (see the
Hilbert-Schmidt Theorem, e.g., P. Drábek, J. Milota [12, Thm. 2.2.16, Ex. 5.9.1]) denoted by

B = {ϕi : i ∈ N} .
Recall that λk < λ < λk+1. We split W 1,2

0 (Ω) into Y ⊕ Z with

Y =

{
k∑
i=1

aiϕi : ai ∈ R, ϕi ∈ B

}
, Z =

{
∞∑

i=k+1

aiϕi : ai ∈ R, ϕi ∈ B

}
= Y ⊥. (5.10)

Lemma 5.8. Let λk < λ < λk+1. Then there exists µ > 0 such that the functional F given by (5.5) satisfies (R)
with Y , Z given by (5.10) for all f ∈ L2(Ω) with ‖f‖2 < µ.

Proof. We proceed in two steps. Firstly, let u ∈ Z, i.e., u =
∑∞
i=k+1 aiϕi and by the Parseval equality ‖u‖2 =∑∞

i=k+1 a
2
i . Since ϕi are the unit eigenfunctions of −∆ on Ω with the homogeneous Dirichlet boundary condition,

i.e.,

λi

∫
Ω

|ϕi(x)|2 dx =

∫
Ω

|∇ϕi(x)|2 dx = 1 for all i ∈ N, (5.11)

and λ < λk+1, there is∫
Ω

|∇u(x)|2 dx− λ
∫

Ω

|u(x)|2 dx =

∞∑
i=k+1

a2
i

(
1− λ

λi

)
≥
(

1− λ

λk+1

)
‖u‖2. (5.12)

Hence, we can estimate for u ∈ Z applying (5.12) and the Hölder and Poincaré inequality

F (u) ≥
(

1− λ

λk+1

)
‖u‖2 +

1

p
‖u‖pp −

∫
Ω

f(x)u(x)dx

≥
(

1− λ

λk+1

)
‖u‖2 − λ−

1
2

1 ‖f‖2‖u‖

≥ − λ1‖f‖22
4
(

1− λ
λk+1

) .
(5.13)

The last inequality in (5.13) follows from the minimization of the quadratic function using 1− λ
λk+1

> 0. There is

also

− λ1‖f‖22
4
(

1− λ
λk+1

) < 0.

Secondly, let u ∈ Y , i.e., u =
∑k
i=1 aiϕi and ‖u‖2 =

∑k
i=1 a

2
i . Applying (5.11) again and λk < λ we obtain∫

Ω

|∇u(x)|2 dx− λ
∫

Ω

|u(x)|2 dx =

k∑
i=1

a2
i

(
1− λ

λi

)
≤
(

1− λ

λk

)
‖u‖2. (5.14)

Since p < 2N
N−2

, the embedding W 1,2
0 (Ω) ⊂ Lp(Ω) is continuous (from the Sobolev Embedding Theorem, see,

e.g., P. Drábek, J. Milota [12, Thm. 1.2.26]) and thus, there exists a constant c > 0 such that (applying also (5.14)
and the Hölder and Poincaré inequality)

F (u) ≤
(

1− λ

λk

)
‖u‖2 +

1

p
‖u‖pp −

∫
Ω

f(x)u(x)dx

≤
(

1− λ

λk

)
‖u‖2 +

cp

p
‖u‖p + λ

− 1
2

1 ‖f‖2‖u‖.
(5.15)

Therefore, we realize from (5.13) and (5.15) that (R) is satisfied if we find R > 0 such that the following holds
for u ∈ Y with ‖u‖ = R
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(
1− λ

λk

)
‖u‖2 +

cp

p
‖u‖p + λ

− 1
2

1 ‖f‖2‖u‖ < −
λ1‖f‖22

4
(

1− λ
λk+1

) . (5.16)

We rewrite (5.16) denoting ‖u‖ = ρ into(
1− λ

λk

)
ρ2 +

cp

p
ρp < −λ−

1
2

1 ‖f‖2ρ−
λ1‖f‖22

4
(

1− λ
λk+1

) . (5.17)

Define

l(ρ) =

(
1− λ

λk

)
ρ2 +

cp

p
ρp, r(ρ) = −λ−

1
2

1 ‖f‖2ρ−
λ1‖f‖22

4
(

1− λ
λk+1

) .
One can see that the function l is independent on ‖f‖2. Furthermore, l has a strictly negative minimum at some
R > 0 thanks to 2 < p and λk < λ. The function r is a linear function which is nonpositive for ρ > 0. However,
r(R)→ 0 for ‖f‖2 → 0. Consequently, there is some µ > 0 such that

l(R) < r(R) for all ‖f‖2 < µ.

Thus, for all f ∈ L2(Ω) such that ‖f‖2 < µ and for all u ∈ Y such that ‖u‖ = R there is

F (u) < − λ1‖f‖22
4
(

1− λ
λk+1

) ≤ inf
u∈Z

F (u),

which verifies the assumption (R).

Finally, we can conclude combining Lem. 5.4, Lem. 5.5 (ii), Lem. 5.7 and Lem. 5.8 together, that Thm. 5.3 is
now justified by Thm. 1.1.
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